5 research outputs found

    Mobile Network Tracing

    Full text link

    A Quantitative Analysis of Cache Policies for Scalable Network File Systems

    No full text
    Current network file system protocols rely heavily on a central server to coordinate file activity among client workstations. This central server can become a bottleneck that limits scalability for environments with large numbers of clients. In central server systems such as NFS and AFS, all client writes, cache misses, and coherence messages are handled by the server. To keep up with this workload, expensive server machines are needed, configured with high-performance CPUs, memory systems, and I/O channels. Since the server stores all data, it must be physically capable of connecting to many disks. This reliance on a central server also makes current systems inappropriate for wide area network use where the network bandwidth to the server may be limited. In this paper, we investigate the quantitative performance effect of moving as many of the server responsibilities as possible to client workstations to reduce the need for high-performance server machines. We have devised a cache protocol in which all data reside on clients and all data transfers proceed directly from client to client. The server is used only to coordinate these data transfers. This protocol is being incorporated as part of our experimental file system, xFS. We present results from a trace-driven simulation study of the protocol using traces from a 237 client NFS installation. We find that the xFS protocol reduces server load by more than a factor of six compared to AFS without significantly affecting response time or file availability.

    Fifth NASA Goddard Conference on Mass Storage Systems and Technologies

    Get PDF
    This document contains copies of those technical papers received in time for publication prior to the Fifth Goddard Conference on Mass Storage Systems and Technologies held September 17 - 19, 1996, at the University of Maryland, University Conference Center in College Park, Maryland. As one of an ongoing series, this conference continues to serve as a unique medium for the exchange of information on topics relating to the ingestion and management of substantial amounts of data and the attendant problems involved. This year's discussion topics include storage architecture, database management, data distribution, file system performance and modeling, and optical recording technology. There will also be a paper on Application Programming Interfaces (API) for a Physical Volume Repository (PVR) defined in Version 5 of the Institute of Electrical and Electronics Engineers (IEEE) Reference Model (RM). In addition, there are papers on specific archives and storage products
    corecore