2 research outputs found

    A quadral-Fuzzy control approach to flight formation by a fleet of unmanned aerial vehicles

    Get PDF
    This paper addresses the control of a fleet of unmanned aerial systems (UAVs), termed as drones, for flight formation problems. Getting drones to fly in formation is a relevant problem to be solved when cooperative cargo transportation is desired. A general approach for this problem considers the coordination of a fleet of UAVs, by fusing all information coming from several individual sensors posed on each UAVs. However, this approach induces a high cost as every UAV should have its advanced perception system. As an alternative, this paper proposes the use of a single perception system by a fleet composed of several elementary drones (workers) with primitive low-cost sensors and a leader drone carrying a 3D perception source. We propose a Quadral-Fuzzy approach to ensure that all drones fly in formation and will not collide with each other or with environment obstacles. We also develop a new way to compute potential fields based on possibility fuzzy (fuzziness) measure with the focus of avoiding collisions between the drones. The proposed approach encompasses four high-coupled intelligent controllers that respectively control the leader and worker drones' motion and implement obstacle and collision avoidance procedures. Simulation results using a fleet of four aerial drones are presented, showing the potential for solving usual problems to flights in formation, such as dodging obstacles, avoiding collisions between the drones, among others.This work was supported in part by the National Counsel of Technological and Scientific Development of Brazil (CNPq), in part by the Coordination for the Improvement of Higher Level People (CAPES), in part by the Brazilian Ministry of Science, Technology, Innovation and Communication (MCTIC), and in part by the Robotics and Internet-of-Things Lab in Prince Sultan University.info:eu-repo/semantics/publishedVersio

    Classical and intelligent methods in model extraction and stabilization of a dual-axis reaction wheel pendulum: A comparative study

    Get PDF
    Controlling underactuated open-loop unstable systems is challenging. In this study, first, both nonlinear and linear models of a dual-axis reaction wheel pendulum (DA-RWP) are extracted by employing Lagrangian equa-tions which are based on energy methods. Then to control the system and stabilize the pendulum's angle in the upright position, fuzzy logic based controllers for both x -y directions are developed. To show the efficiency of the designed intelligent controller, comparisons are made with its classical optimal control counterparts. In our simulations, as proof of the reliability and robustness of the fuzzy controller, two scenarios including noise -disturbance-free and noisy-disturbed situations are considered. The comparisons made between the classical and fuzzy-based controllers reveal the superiority of the proposed fuzzy logic controller, in terms of time response. The simulation results of our experiments in terms of both mathematical modeling and control can be deployed as a baseline for robotics and aerospace studies as developing walking humanoid robots and satellite attitude systems, respectively.The work of U.F.-G. was supported by the government of the Basque Country for the ELKARTEK21/10 KK-2021/00014 and ELKARTEK22/85 research programs, respectively
    corecore