1,125 research outputs found

    The next convergence: High-performance and mission-critical markets

    Get PDF
    The well-known convergence of the high-performance computing and the mobile markets has been a dominating factor in the computing market during the last two decades. In this paper we witness a new type of convergence between the mission-critical market (such as avionic or automotive) and the mainstream consumer electronics market. Such convergence is fuelled by the common needs of both markets for more reliability, support for mission-critical functionalities and the challenge of harnessing the unsustainable increases in safety margins to guarantee either correctness or timing. In this position paper, we present a description of this new convergence, as well as the main challenges and opportunities that it brings to computing industry.Peer ReviewedPostprint (published version

    A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems

    Full text link
    Recent technological advances have greatly improved the performance and features of embedded systems. With the number of just mobile devices now reaching nearly equal to the population of earth, embedded systems have truly become ubiquitous. These trends, however, have also made the task of managing their power consumption extremely challenging. In recent years, several techniques have been proposed to address this issue. In this paper, we survey the techniques for managing power consumption of embedded systems. We discuss the need of power management and provide a classification of the techniques on several important parameters to highlight their similarities and differences. This paper is intended to help the researchers and application-developers in gaining insights into the working of power management techniques and designing even more efficient high-performance embedded systems of tomorrow

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    Video streaming with quality adaption using collaborative active grid networks

    Get PDF
    Due to the services and demands of the end users, Distributed Computing (Grid Technology, Web Services, and Peer-to-Peer) has been developedrapidJy in thelastyears. Theconvergence of these architectures has been possible using mechanisms such as Collaborative work and Resources Sharing. Grid computing is a platform to enable flexible, secure, controlled, scalable, ubiquitous and heterogeneous services. On the other hand, Video Streaming applications demand a greater deployment over connected Internet users. The present work uses the Acti ve Grid technology as a fundamental platform to give a solution of multimediacontentrecovery. This solution takes into account the following key concepts: collaborative work, multi-source recovery and adapti ve quality. A new archi tecture is designed to deliver video content over a Grid Network. The acti ve and passi ve roles of the nodes are important to guarantee a high quality and efficiency for the video streaming system. The acti ve sender nodes are the content suppliers, while the passive sender nodes wiU perform the backup functions, based on global resource control policies. The aim of the backup node is minirnize the time to restore the systemin caseoffailures. In this way, all participant peers work in a collaborati ve manner following a mul ti -source recovery scheme. Furthermore, Video La yered Encoding is used to manage the video data in a high scalable way, di viding the video in multiple layers. This video codification scheme enables thequality adaptation according to the availability of system resources. In addition, a buffer by sender peer and by layer is needed for an effecti ve control ofthe video retrieve. The QoS will fit considering the state of each buffer and the measurement tools provide by the Acti ve Grid on the network nodes. Ke ywords: Peer -to-Peer Grid Architecture, Services for Active Grids, Streaming Media, Layered Coding, Quality Adaptation, CoUaborative Work.Peer Reviewe

    Video streaming with quality adaption using collaborative active grid networks

    Get PDF
    Due to the services and demands of the end users, Distributed Computing (Grid Technology, Web Services, and Peer-to-Peer) has been developedrapidJy in thelastyears. Theconvergence of these architectures has been possible using mechanisms such as Collaborative work and Resources Sharing. Grid computing is a platform to enable flexible, secure, controlled, scalable, ubiquitous and heterogeneous services. On the other hand, Video Streaming applications demand a greater deployment over connected Internet users. The present work uses the Acti ve Grid technology as a fundamental platform to give a solution of multimediacontentrecovery. This solution takes into account the following key concepts: collaborative work, multi-source recovery and adapti ve quality. A new archi tecture is designed to deliver video content over a Grid Network. The acti ve and passi ve roles of the nodes are important to guarantee a high quality and efficiency for the video streaming system. The acti ve sender nodes are the content suppliers, while the passive sender nodes wiU perform the backup functions, based on global resource control policies. The aim of the backup node is minirnize the time to restore the systemin caseoffailures. In this way, all participant peers work in a collaborati ve manner following a mul ti -source recovery scheme. Furthermore, Video La yered Encoding is used to manage the video data in a high scalable way, di viding the video in multiple layers. This video codification scheme enables thequality adaptation according to the availability of system resources. In addition, a buffer by sender peer and by layer is needed for an effecti ve control ofthe video retrieve. The QoS will fit considering the state of each buffer and the measurement tools provide by the Acti ve Grid on the network nodes. Ke ywords: Peer -to-Peer Grid Architecture, Services for Active Grids, Streaming Media, Layered Coding, Quality Adaptation, CoUaborative Work.Peer Reviewe

    PIASA: A power and interference aware resource management strategy for heterogeneous workloads in cloud data centers

    Get PDF
    Cloud data centers have been progressively adopted in different scenarios, as reflected in the execution of heterogeneous applications with diverse workloads and diverse quality of service (QoS) requirements. Virtual machine (VM) technology eases resource management in physical servers and helps cloud providers achieve goals such as optimization of energy consumption. However, the performance of an application running inside a VM is not guaranteed due to the interference among co-hosted workloads sharing the same physical resources. Moreover, the different types of co-hosted applications with diverse QoS requirements as well as the dynamic behavior of the cloud makes efficient provisioning of resources even more difficult and a challenging problem in cloud data centers. In this paper, we address the problem of resource allocation within a data center that runs different types of application workloads, particularly CPU- and network-intensive applications. To address these challenges, we propose an interference- and power-aware management mechanism that combines a performance deviation estimator and a scheduling algorithm to guide the resource allocation in virtualized environments. We conduct simulations by injecting synthetic workloads whose characteristics follow the last version of the Google Cloud tracelogs. The results indicate that our performance-enforcing strategy is able to fulfill contracted SLAs of real-world environments while reducing energy costs by as much as 21%

    Selection of a new hardware and software platform for railway interlocking

    Get PDF
    The interlocking system is one of the main actors for safe railway transportation. In most cases, the whole system is supplied by a single vendor. The recent regulations from the European Union direct for an “open” architecture to invite new game changers and reduce life-cycle costs. The objective of the thesis is to propose an alternative platform that could replace a legacy interlocking system. In the thesis, various commercial off-the-shelf hardware and software products are studied which could be assembled to compose an alternative interlocking platform. The platform must be open enough to adapt to any changes in the constituent elements and abide by the proposed baselines of new standardization initiatives, such as ERTMS, EULYNX, and RCA. In this thesis, a comparative study is performed between these products based on hardware capacity, architecture, communication protocols, programming tools, security, railway certifications, life-cycle issues, etc
    • …
    corecore