6,222 research outputs found

    Proximal Mean Field Learning in Shallow Neural Networks

    Full text link
    We propose a custom learning algorithm for shallow over-parameterized neural networks, i.e., networks with single hidden layer having infinite width. The infinite width of the hidden layer serves as an abstraction for the over-parameterization. Building on the recent mean field interpretations of learning dynamics in shallow neural networks, we realize mean field learning as a computational algorithm, rather than as an analytical tool. Specifically, we design a Sinkhorn regularized proximal algorithm to approximate the distributional flow for the learning dynamics over weighted point clouds. In this setting, a contractive fixed point recursion computes the time-varying weights, numerically realizing the interacting Wasserstein gradient flow of the parameter distribution supported over the neuronal ensemble. An appealing aspect of the proposed algorithm is that the measure-valued recursions allow meshless computation. We demonstrate the proposed computational framework of interacting weighted particle evolution on binary and multi-class classification. Our algorithm performs gradient descent of the free energy associated with the risk functional

    Gradient Flows for Sampling: Mean-Field Models, Gaussian Approximations and Affine Invariance

    Full text link
    Sampling a probability distribution with an unknown normalization constant is a fundamental problem in computational science and engineering. This task may be cast as an optimization problem over all probability measures, and an initial distribution can be evolved to the desired minimizer dynamically via gradient flows. Mean-field models, whose law is governed by the gradient flow in the space of probability measures, may also be identified; particle approximations of these mean-field models form the basis of algorithms. The gradient flow approach is also the basis of algorithms for variational inference, in which the optimization is performed over a parameterized family of probability distributions such as Gaussians, and the underlying gradient flow is restricted to the parameterized family. By choosing different energy functionals and metrics for the gradient flow, different algorithms with different convergence properties arise. In this paper, we concentrate on the Kullback-Leibler divergence after showing that, up to scaling, it has the unique property that the gradient flows resulting from this choice of energy do not depend on the normalization constant. For the metrics, we focus on variants of the Fisher-Rao, Wasserstein, and Stein metrics; we introduce the affine invariance property for gradient flows, and their corresponding mean-field models, determine whether a given metric leads to affine invariance, and modify it to make it affine invariant if it does not. We study the resulting gradient flows in both probability density space and Gaussian space. The flow in the Gaussian space may be understood as a Gaussian approximation of the flow. We demonstrate that the Gaussian approximation based on the metric and through moment closure coincide, establish connections between them, and study their long-time convergence properties showing the advantages of affine invariance.Comment: 82 pages, 8 figures (Welcome any feedback!

    Resolving transition metal chemical space: feature selection for machine learning and structure-property relationships

    Full text link
    Machine learning (ML) of quantum mechanical properties shows promise for accelerating chemical discovery. For transition metal chemistry where accurate calculations are computationally costly and available training data sets are small, the molecular representation becomes a critical ingredient in ML model predictive accuracy. We introduce a series of revised autocorrelation functions (RACs) that encode relationships between the heuristic atomic properties (e.g., size, connectivity, and electronegativity) on a molecular graph. We alter the starting point, scope, and nature of the quantities evaluated in standard ACs to make these RACs amenable to inorganic chemistry. On an organic molecule set, we first demonstrate superior standard AC performance to other presently-available topological descriptors for ML model training, with mean unsigned errors (MUEs) for atomization energies on set-aside test molecules as low as 6 kcal/mol. For inorganic chemistry, our RACs yield 1 kcal/mol ML MUEs on set-aside test molecules in spin-state splitting in comparison to 15-20x higher errors from feature sets that encode whole-molecule structural information. Systematic feature selection methods including univariate filtering, recursive feature elimination, and direct optimization (e.g., random forest and LASSO) are compared. Random-forest- or LASSO-selected subsets 4-5x smaller than RAC-155 produce sub- to 1-kcal/mol spin-splitting MUEs, with good transferability to metal-ligand bond length prediction (0.004-5 {\AA} MUE) and redox potential on a smaller data set (0.2-0.3 eV MUE). Evaluation of feature selection results across property sets reveals the relative importance of local, electronic descriptors (e.g., electronegativity, atomic number) in spin-splitting and distal, steric effects in redox potential and bond lengths.Comment: 43 double spaced pages, 11 figures, 4 table

    Kohn-Sham theory with paramagnetic currents: compatibility and functional differentiability

    Get PDF
    Recent work has established Moreau-Yosida regularization as a mathematical tool to achieve rigorous functional differentiability in density-functional theory. In this article, we extend this tool to paramagnetic current-density-functional theory, the most common density-functional framework for magnetic field effects. The extension includes a well-defined Kohn-Sham iteration scheme with a partial convergence result. To this end, we rely on a formulation of Moreau-Yosida regularization for reflexive and strictly convex function spaces. The optimal LpL^p-characterization of the paramagnetic current density L1∩L3/2L^1\cap L^{3/2} is derived from the NN-representability conditions. A crucial prerequisite for the convex formulation of paramagnetic current-density-functional theory, termed compatibility between function spaces for the particle density and the current density, is pointed out and analyzed. Several results about compatible function spaces are given, including their recursive construction. The regularized, exact functionals are calculated numerically for a Kohn-Sham iteration on a quantum ring, illustrating their performance for different regularization parameters
    • …
    corecore