48,382 research outputs found

    Automated prototyping tool-kit (APT)

    Get PDF
    Automated prototyping tool-kit (APT) is an integrated set of software tools that generate source programs directly from real-time requirements. The APT system uses a fifth-generation prototyping language to model the communication structure, timing constraints, I/O control, and data buffering that comprise the requirements for an embedded software system. The language supports the specification of hard real-time systems with reusable components from domain specific component libraries. APT has been used successfully as a research tool in prototyping large war-fighter control systems (e.g. the command-and-control station, cruise missile flight control system, patriot missile defense systems) and demonstrated its capability to support the development of large complex embedded software. © 2002 Elsevier Science Inc. All rights reserved

    Prototyping real-time systems

    Get PDF
    The traditional software development paradigm, the waterfall life cycle model, is defective when used for developing real-time systems. This thesis puts forward an executable prototyping approach for the development of real-time systems. A prototyping system is proposed which uses ESML (Extended Systems Modelling Language) as a prototype specification language. The prototyping system advocates the translation of non-executable ESML specifications into executable LOOPN (Language of Object Oriented Petn Net) specifications so that ESML can be used as a graphical executable specification language for the prototyping of real-time systems. If the translation process is automatic then the user need not be aware of LOOPN. The ESML/LOOPN prototyping system defines an execution semantics for the ESML language in terms of LOOPN nets, a set of translation templates are supplied for the translation of ESML language specifications into LOOPN language specifications. The execution semantics are based on a set of execution rules (guidelines) which have been defined for ESML to allow prediction of the behaviour of ESML specifications over time. A C language program which can be run by the user as a prototype of the modelled system is generated automatically from the LOOPN specification. The ESML/LOOPN prototyping system has been applied to build an exploratory prototype of a typical real-time system, 1e the Fuel Subsystem of the Auxiliary Power Unit (APU), an avionic system used on the Boeing-737 airplane series

    Software Evolution Approach for the Development of Command and Control Systems

    Get PDF
    2000 Command and Control Research and Technology Symposium (CCRTS), June 11-13, 2000, Naval Postgraduate School, Monterey, CAThis paper addresses the problem of how to produce reliable software that is also flexible and cost effective for the DoD distributed software domain. DoD software systems fall into two categories: information systems and war fighter systems. Both types of systems can be distributed, heterogeneous and network-based, consisting of a set of components running on different platforms and working together via multiple communication links and protocols. We propose to tackle the problem using prototyping and a “wrapper and glue” technology for interoperability and integration. This paper describes a distributed development environment, CAPS (Computer- Aided Prototyping System), to support rapid prototyping and automatic generation of wrapper and glue software based on designer specifications. The CAPS system uses a fifth-generation prototyping language to model the communication structure, timing constraints, I/O control, and data buffering that comprise the requirements for an embedded software system. The language supports the specification of hard real-time systems with reusable components from domain specific component libraries. CAPS has been used successfully as a research tool in prototyping large war-fighter control systems (e.g. the command-and-control station, cruise missile flight control system, missile defense systems) and demonstrated its capability to support the development of large complex embedded software.This research was supported in part by the U. S. Army Research Office under contract/grant number 35037-MA and 40473-MA

    Verif cation of Real-Time Bounded Distributed Systems With Mobility

    Get PDF
    We introduce and study a prototyping language for describing real-time distributed systems. Its time constraints are expressed as bounded intervals to model the uncertainty of the delay in migration and communication of agents placed in the locations of a distributed system. We provide the operational semantics, and illustrate the new language by a detailed example for which we use software tools for analyzing its temporal properties

    Programming real-time sound in Python

    Get PDF
    2noFor its versatility, Python has become one of the most popular programming languages. In spite of its possibility to straightforwardly link native code with powerful libraries for scientific computing, the use of Python for real-time sound applications development is often neglected in favor of alternative programming languages, which are tailored to the digital music domain. This article introduces Python as a real-time software programming tool to interested readers, including Python developers who are new to the real time or, conversely, sound programmers who have not yet taken this language into consideration. Cython and Numba are proposed as libraries supporting agile development of efficient software running at machine level. Moreover, it is shown that refactoring few critical parts of the program under these libraries can dramatically improve the performances of a sound algorithm. Such improvements can be directly benchmarked within Python, thanks to the existence of appropriate code parsing resources. After introducing a simple sound processing example, two algorithms that are known from the literature are coded to show how Python can be effectively employed to program sound software. Finally, issues of efficiency are mainly discussed in terms of latency of the resulting applications. Overall, such issues suggest that the use of real-time Python should be limited to the prototyping phase, where the benefits of language flexibility prevail on low latency requirements, for instance, needed during computer music live performances.openopenDe Pra Y.; Fontana F.De Pra, Y.; Fontana, F

    Constructive tool design for formal languages : from semantics to executing models

    Get PDF
    Embedded, distributed, real-time, electronic systems are becoming more and more dominant in our lives. Hidden in cars, televisions, mp3-players, mobile phones and other appliances, these hardware/software systems influence our daily activities. Their design can be a huge effort and has to be carried out by engineers in a limited amount of time. Computer-aided modelling and design automation shorten the design cycle of these systems enabling companies to deliver their products sooner than their competitors. The design process is divided into different levels of abstraction, starting with a vague product idea (abstract) and ending up with a concrete description ready for implementation. Recently, research has started to focus on the system level, being a promising new area at which the product design could start. This dissertation develops a constructive approach to building tools for system-level design/description/modelling/specification languages, and shows the applicability of this method to the system-level language POOSL (Parallel Object-Oriented Specification Language). The formal semantics of this language is redefined and partly redeveloped, adding probabilistic features, real-time, inheritance, concurrency within processes, dynamic ports and atomic (indivisible) expressions, making the language suitable for performance analysis/modelling. The semantics is two-layered, using a probabilistic denotational semantics for stating the meaning of POOSL’s data layer, and using a probabilistic structural operational semantics for the process layer and architecture layer. The constructive approach has yielded the system-level simulation tool rotalumis, capable of executing large industrial designs, which has been demonstrated by two successful case studies—an ATM-packet switch (in conjunction with IBM Research at Z¨urich) and a packet routing switch for the Internet (in association with Alcatel/Bell at Antwerp). The more generally applicable optimisations of the execution engine (rotalumis) and the decisions taken in its design are discussed in full detail. Prototyping, where the system-level model functions as a part of the prototype implementation of the designed product, is supported by rotalumis-rt, a real-time variant of the execution engine. The viability of prototyping is shown by a case study of a learning infrared remote control, partially realised in hardware and completed with a system-level model. Keywords formal languages / formal specification / modelling languages / systemlevel design / embedded systems / real-time systems / performance analysis / discrete event simulation / probabilistic process algebra / design automation / prototyping / simulation tool

    Evaluation of Design Tools for Rapid Prototyping of Parallel Signal Processing Algorithms

    Get PDF
    Digital signal processing (DSP) has become a popular method for handling not only signal processing, but communications, and control system applications. A DSP application of interest to the Air Force is high speed avionics processing. The real time computing requirements of avionics processing exceed the capabilities of current single chip DSP processors, and parallelization of multiple DSP processors is a solution to handle such requirements. Designing and implementing a parallel DSP algorithm has been a lengthy process often requiring different design tools and extensive programming experience. Through the use of integrated software development tools, rapid prototyping becomes possible by simulating algorithms, generating code for workstations or DSP microprocessors, and generating hardware description language code for hardware synthesis. This research examines the use of one such tool, the Signal Processing WorkSystem (SPW) by the Alta Group of Cadence Design Systems, Inc., and how SPW supports the rapid prototyping process from an avionics algorithm design through simulation and hardware implementation. Throughout this process, SPW is evaluated as an aid to the avionics designer to meet design objectives and evaluate tradeoffs to find the best blend of efficiency and effectiveness. By designing a two dimensional fast Fourier transform algorithm as a specific avionics algorithm and exploring implementation options, SPW is shown to be a viable rapid prototyping solution allowing an avionics designer to focus on design trade-offs instead of implementation details while using parallelization to meet real-time application requirements
    corecore