1,702 research outputs found

    HIL: designing an exokernel for the data center

    Full text link
    We propose a new Exokernel-like layer to allow mutually untrusting physically deployed services to efficiently share the resources of a data center. We believe that such a layer offers not only efficiency gains, but may also enable new economic models, new applications, and new security-sensitive uses. A prototype (currently in active use) demonstrates that the proposed layer is viable, and can support a variety of existing provisioning tools and use cases.Partial support for this work was provided by the MassTech Collaborative Research Matching Grant Program, National Science Foundation awards 1347525 and 1149232 as well as the several commercial partners of the Massachusetts Open Cloud who may be found at http://www.massopencloud.or

    Grid Databases for Shared Image Analysis in the MammoGrid Project

    Full text link
    The MammoGrid project aims to prove that Grid infrastructures can be used for collaborative clinical analysis of database-resident but geographically distributed medical images. This requires: a) the provision of a clinician-facing front-end workstation and b) the ability to service real-world clinician queries across a distributed and federated database. The MammoGrid project will prove the viability of the Grid by harnessing its power to enable radiologists from geographically dispersed hospitals to share standardized mammograms, to compare diagnoses (with and without computer aided detection of tumours) and to perform sophisticated epidemiological studies across national boundaries. This paper outlines the approach taken in MammoGrid to seamlessly connect radiologist workstations across a Grid using an "information infrastructure" and a DICOM-compliant object model residing in multiple distributed data stores in Italy and the UKComment: 10 pages, 5 figure

    Networking Solutions for Integrated Heterogeneous Wireless Ecosystem

    Get PDF
    As wireless communications technology is steadily evolving to improve the offered connectivity levels, additional research on emerging network architectures is becoming timely to understand the applicability of both traditional and novel networking solutions. This chapter concentrates on the utilization of cloud computing techniques to construct feasible system prototypes and demonstrators within the rapidly maturing heterogeneous wireless ecosystem. Our first solution facilitates cooperative radio resource management in heterogeneous networks. The second solution enables assisted direct connectivity between proximate users. The contents of the chapter outline our corresponding research and development efforts as well as summarize the major experiences and lessons learned

    Securely Launching Virtual Machines on Trustworthy Platforms in a Public Cloud

    Get PDF
    In this paper we consider the Infrastructure-as-a-Service (IaaS) cloud model which allows cloud users to run their own virtual machines (VMs) on available cloud computing resources. IaaS gives enterprises the possibility to outsource their process workloads with minimal effort and expense. However, one major problem with existing approaches of cloud leasing, is that the users can only get contractual guarantees regarding the integrity of the offered platforms. The fact that the IaaS user himself or herself cannot verify the provider promised cloud platform integrity, is a security risk which threatens to prevent the IaaS business in general. In this paper we address this issue and propose a novel secure VM launch protocol using Trusted Computing techniques. This protocol allows the cloud IaaS users to securely bind the VM to a trusted computer configuration such that the clear text VM only will run on a platform that has been booted into a trustworthy state. This capability builds user confidence and can serve as an important enabler for creating trust in public clouds. We evaluate the feasibility of our proposed protocol via a full scale system implementation and perform a system security analysis

    Managing Access Control in Virtual Private Networks

    Get PDF
    Virtual Private Network technology allows remote network users to benefit from resources on a private network as if their host machines actually resided on the network. However, each resource on a network may also have its own access control policies, which may be completely unrelated to network access. Thus users� access to a network (even by VPN technology) does not guarantee their access to the sought resources. With the introduction of more complicated access privileges, such as delegated access, it is conceivable for a scenario to arise where a user can access a network remotely (because of direct permissions from the network administrator or by delegated permission) but cannot access any resources on the network. There is, therefore, a need for a network access control mechanism that understands the privileges of each remote network user on one hand, and the access control policies of various network resources on the other hand, and so can aid a remote user in accessing these resources based on the user\u27s privileges. This research presents a software solution in the form of a centralized access control framework called an Access Control Service (ACS), that can grant remote users network presence and simultaneously aid them in accessing various network resources with varying access control policies. At the same time, the ACS provides a centralized framework for administrators to manage access to their resources. The ACS achieves these objectives using VPN technology, network address translation and by proxying various authentication protocols on behalf of remote users

    Location aware self-adapting firewall policies

    Get PDF
    Private access to corporate servers from Internet can be achieved using various security mechanisms. This article presents a network access control mechanism that employs a policy management architecture empowered with dynamic firewalls. With the existence of such an architecture, system and/or network administrators do not need to reconfigure firewalls when there is a location change in user settings, reconfiguration will be automatic and seamless. The proposed architecture utilizes dynamic firewalls, which adapt their policies according to user locations through the guidance of a policy server. This architecture is composed of a VPN client at user site, a domain firewall with VPN capabilities, a policy server containing a policy decision engine, and policy agents residing in dynamic firewalls, which map policy server decisions to firewall policy rules, at server site
    corecore