50,835 research outputs found

    The Knowledge Level in Cognitive Architectures: Current Limitations and Possible Developments

    Get PDF
    In this paper we identify and characterize an analysis of two problematic aspects affecting the representational level of cognitive architectures (CAs), namely: the limited size and the homogeneous typology of the encoded and processed knowledge. We argue that such aspects may constitute not only a technological problem that, in our opinion, should be addressed in order to build articial agents able to exhibit intelligent behaviours in general scenarios, but also an epistemological one, since they limit the plausibility of the comparison of the CAs' knowledge representation and processing mechanisms with those executed by humans in their everyday activities. In the final part of the paper further directions of research will be explored, trying to address current limitations and future challenges

    The Ambient Horn: Designing a novel audio-based learning experience

    Get PDF
    The Ambient Horn is a novel handheld device designed to support children learning about habitat distributions and interdependencies in an outdoor woodland environment. The horn was designed to emit non-speech audio sounds representing ecological processes. Both symbolic and arbitrary mappings were used to represent the processes. The sounds are triggered in response to the children’s location in certain parts of the woodland. A main objective was to provoke children into interpreting and reflecting upon the significance of the sounds in the context in which they occur. Our study of the horn being used showed the sounds to be provocative, generating much discussion about what they signified in relation to what the children saw in the woodland. In addition, the children appropriated the horn in creative ways, trying to ‘scoop’ up new sounds as they walked in different parts of the woodland

    Integrating Symbolic and Neural Processing in a Self-Organizing Architechture for Pattern Recognition and Prediction

    Full text link
    British Petroleum (89A-1204); Defense Advanced Research Projects Agency (N00014-92-J-4015); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100); Air Force Office of Scientific Research (F49620-92-J-0225

    Towards an Architecture for Semiautonomous Robot Telecontrol Systems.

    Get PDF
    The design and development of a computational system to support robot–operator collaboration is a challenging task, not only because of the overall system complexity, but furthermore because of the involvement of different technical and scientific disciplines, namely, Software Engineering, Psychology and Artificial Intelligence, among others. In our opinion the approach generally used to face this type of project is based on system architectures inherited from the development of autonomous robots and therefore fails to incorporate explicitly the role of the operator, i.e. these architectures lack a view that help the operator to see him/herself as an integral part of the system. The goal of this paper is to provide a human-centered paradigm that makes it possible to create this kind of view of the system architecture. This architectural description includes the definition of the role of operator and autonomous behaviour of the robot, it identifies the shared knowledge, and it helps the operator to see the robot as an intentional being as himself/herself

    Conceptual Spaces in Object-Oriented Framework

    Get PDF
    The aim of this paper is to show that the middle level of mental representations in a conceptual spaces framework is consistent with the OOP paradigm. We argue that conceptual spaces framework together with vague prototype theory of categorization appears to be the most suitable solution for modeling the cognitive apparatus of humans, and that the OOP paradigm can be easily and intuitively reconciled with this framework. First, we show that the prototypebased OOP approach is consistent with Gärdenfors’ model in terms of structural coherence. Second, we argue that the product of cloning process in a prototype-based model is in line with the structure of categories in Gärdenfors’ proposal. Finally, in order to make the fuzzy object-oriented model consistent with conceptual space, we demonstrate how to define membership function in a more cognitive manner, i.e. in terms of similarity to prototype

    Self-tuning diagnosis of routine alarms in rotating plant items

    Get PDF
    Condition monitoring of rotating plant items in the energy generation industry is often achieved through examination of vibration signals. Engineers use this data to monitor the operation of turbine generators, gas circulators and other key plant assets. A common approach in such monitoring is to trigger an alarm when a vibration deviates from a predefined envelope of normal operation. This limit-based approach, however, generates a large volume of alarms not indicative of system damage or concern, such as operational transients that result in temporary increases in vibration. In the nuclear generation context, all alarms on rotating plant assets must be analysed and subjected to auditable review. The analysis of these alarms is often undertaken manually, on a case- by-case basis, but recent developments in monitoring research have brought forward the use of intelligent systems techniques to automate parts of this process. A knowledge- based system (KBS) has been developed to automatically analyse routine alarms, where the underlying cause can be attributed to observable operational changes. The initialisation and ongoing calibration of such systems, however, is a problem, as normal machine state is not uniform throughout asset life due to maintenance procedures and the wear of components. In addition, different machines will exhibit differing vibro- acoustic dynamics. This paper proposes a self-tuning knowledge-driven analysis system for routine alarm diagnosis across the key rotating plant items within the nuclear context common to the UK. Such a system has the ability to automatically infer the causes of routine alarms, and provide auditable reports to the engineering staff
    corecore