213,308 research outputs found

    Building Secure and Anonymous Communication Channel: Formal Model and its Prototype Implementation

    Full text link
    Various techniques need to be combined to realize anonymously authenticated communication. Cryptographic tools enable anonymous user authentication while anonymous communication protocols hide users' IP addresses from service providers. One simple approach for realizing anonymously authenticated communication is their simple combination, but this gives rise to another issue; how to build a secure channel. The current public key infrastructure cannot be used since the user's public key identifies the user. To cope with this issue, we propose a protocol that uses identity-based encryption for packet encryption without sacrificing anonymity, and group signature for anonymous user authentication. Communications in the protocol take place through proxy entities that conceal users' IP addresses from service providers. The underlying group signature is customized to meet our objective and improve its efficiency. We also introduce a proof-of-concept implementation to demonstrate the protocol's feasibility. We compare its performance to SSL communication and demonstrate its practicality, and conclude that the protocol realizes secure, anonymous, and authenticated communication between users and service providers with practical performance.Comment: This is a preprint version of our paper presented in SAC'14, March 24-28, 2014, Gyeongju, Korea. ACMSAC 201

    Kak's three-stage protocol of secure quantum communication revisited: Hitherto unknown strengths and weaknesses of the protocol

    Full text link
    Kak's three-stage protocol for quantum key distribution is revisited with special focus on its hitherto unknown strengths and weaknesses. It is shown that this protocol can be used for secure direct quantum communication. Further, the implementability of this protocol in the realistic situation is analyzed by considering various Markovian noise models. It is found that the Kak's protocol and its variants in their original form can be implemented only in a restricted class of noisy channels, where the protocols can be transformed to corresponding protocols based on logical qubits in decoherence free subspace. Specifically, it is observed that Kak's protocol can be implemented in the presence of collective rotation and collective dephasing noise, but cannot be implemented in its original form in the presence of other types of noise, like amplitude damping and phase damping noise. Further, the performance of the protocol in the noisy environment is quantified by computing average fidelity under various noise models, and subsequently a set of preferred states for secure communication in noisy environment have also been identified.Comment: Kak's protocol is not suitable for quantum cryptography in presence of nois

    Secure and energy-efficient multicast routing in smart grids

    Get PDF
    A smart grid is a power system that uses information and communication technology to operate, monitor, and control data flows between the power generating source and the end user. It aims at high efficiency, reliability, and sustainability of the electricity supply process that is provided by the utility centre and is distributed from generation stations to clients. To this end, energy-efficient multicast communication is an important requirement to serve a group of residents in a neighbourhood. However, the multicast routing introduces new challenges in terms of secure operation of the smart grid and user privacy. In this paper, after having analysed the security threats for multicast-enabled smart grids, we propose a novel multicast routing protocol that is both sufficiently secure and energy efficient.We also evaluate the performance of the proposed protocol by means of computer simulations, in terms of its energy-efficient operation

    Simulation and Evaluation of CTP and Secure-CTP Protocols

    Get PDF
    The paper discusses characteristics and qualities of two routing protocols – Collection Tree Protocol and its secure modiïŹcation. The original protocol, as well as other protocols for wireless sensors, solves only problems of ra- dio communication and limited resources. Our design of the secure protocol tries to solve also the essential security ob- jectives. For the evaluation of properties of our protocol in large networks, a TOSSIM simulator was used. Our effort was to show the inïŹ‚uence of the modiïŹcation of the routing protocol to its behavior and quality of routing trees. We have proved that adding security into protocol design does not necessarily mean higher demands for data transfer, power consumption or worse protocol efïŹciency. In the paper, we manifest that security in the protocol may be achieved with low cost and may offer similar performance as the original protocol

    Kak's three-stage protocol of secure quantum communication revisited: Hitherto unknown strengths and weaknesses of the protocol

    Full text link
    Kak's three-stage protocol for quantum key distribution is revisited with special focus on its hitherto unknown strengths and weaknesses. It is shown that this protocol can be used for secure direct quantum communication. Further, the implementability of this protocol in the realistic situation is analyzed by considering various Markovian noise models. It is found that the Kak's protocol and its variants in their original form can be implemented only in a restricted class of noisy channels, where the protocols can be transformed to corresponding protocols based on logical qubits in decoherence free subspace. Specifically, it is observed that Kak's protocol can be implemented in the presence of collective rotation and collective dephasing noise, but cannot be implemented in its original form in the presence of other types of noise, like amplitude damping and phase damping noise. Further, the performance of the protocol in the noisy environment is quantified by computing average fidelity under various noise models, and subsequently a set of preferred states for secure communication in noisy environment have also been identified.Comment: Kak's protocol is not suitable for quantum cryptography in presence of nois

    High-dimensional coherent one-way quantum key distribution

    Full text link
    High-dimensional quantum key distribution (QKD) offers secure communication, with secure key rates that surpass those achievable by QKD protocols utilizing two-dimensional encoding. However, existing high-dimensional QKD protocols require additional experimental resources, such as multiport interferometers and multiple detectors, thus raising the cost of practical high-dimensional systems and limiting their use. Here, we present and analyze a novel protocol for arbitrary-dimensional QKD, that requires only the hardware of a standard two-dimensional system. We provide security proofs against individual attacks and coherent attacks, setting an upper and lower bound on the secure key rates. Then, we test the new high-dimensional protocol in a standard two-dimensional QKD system over a 40 km fiber link. The new protocol yields a two-fold enhancement of the secure key rate compared to the standard two-dimensional coherent one-way protocol, without introducing any hardware modifications to the system. This work, therefore, holds great potential to enhance the performance of already deployed time-bin QKD systems through a software update alone. Furthermore, its applications extend across different encoding schemes of QKD qudits
    • 

    corecore