729 research outputs found

    A Proof Theoretic Analysis of Intruder Theories

    Full text link
    We consider the problem of intruder deduction in security protocol analysis: that is, deciding whether a given message M can be deduced from a set of messages Gamma under the theory of blind signatures and arbitrary convergent equational theories modulo associativity and commutativity (AC) of certain binary operators. The traditional formulations of intruder deduction are usually given in natural-deduction-like systems and proving decidability requires significant effort in showing that the rules are "local" in some sense. By using the well-known translation between natural deduction and sequent calculus, we recast the intruder deduction problem as proof search in sequent calculus, in which locality is immediate. Using standard proof theoretic methods, such as permutability of rules and cut elimination, we show that the intruder deduction problem can be reduced, in polynomial time, to the elementary deduction problem, which amounts to solving certain equations in the underlying individual equational theories. We show that this result extends to combinations of disjoint AC-convergent theories whereby the decidability of intruder deduction under the combined theory reduces to the decidability of elementary deduction in each constituent theory. To further demonstrate the utility of the sequent-based approach, we show that, for Dolev-Yao intruders, our sequent-based techniques can be used to solve the more difficult problem of solving deducibility constraints, where the sequents to be deduced may contain gaps (or variables) representing possible messages the intruder may produce.Comment: Extended version of RTA 2009 pape

    Proof Theory, Transformations, and Logic Programming for Debugging Security Protocols

    Get PDF
    We define a sequent calculus to formally specify, simulate, debug and verify security protocols. In our sequents we distinguish between the current knowledge of principals and the current global state of the session. Hereby, we can describe the operational semantics of principals and of an intruder in a simple and modular way. Furthermore, using proof theoretic tools like the analysis of permutability of rules, we are able to find efficient proof strategies that we prove complete for special classes of security protocols including Needham-Schroeder. Based on the results of this preliminary analysis, we have implemented a Prolog meta-interpreter which allows for rapid prototyping and for checking safety properties of security protocols, and we have applied it for finding error traces and proving correctness of practical examples

    Symbolic Abstractions for Quantum Protocol Verification

    Get PDF
    Quantum protocols such as the BB84 Quantum Key Distribution protocol exchange qubits to achieve information-theoretic security guarantees. Many variants thereof were proposed, some of them being already deployed. Existing security proofs in that field are mostly tedious, error-prone pen-and-paper proofs of the core protocol only that rarely account for other crucial components such as authentication. This calls for formal and automated verification techniques that exhaustively explore all possible intruder behaviors and that scale well. The symbolic approach offers rigorous, mathematical frameworks and automated tools to analyze security protocols. Based on well-designed abstractions, it has allowed for large-scale formal analyses of real-life protocols such as TLS 1.3 and mobile telephony protocols. Hence a natural question is: Can we use this successful line of work to analyze quantum protocols? This paper proposes a first positive answer and motivates further research on this unexplored path

    A static analysis of the applied Pi calculus

    Get PDF
    We present in this technical report a non-uniform static analysis for detecting the term-substitution property in systems specified in the language of the applied pi calculus. The analysis implements a denotational framework that has previously introduced analyses for the pi calculus and the spi calculus. The main novelty of this analysis is its ability to deal with systems specified in languages with non-free term algebras, like the applied pi calculus, where non-identity equations may relate different terms of the language. We demonstrate the applicability of the analysis to one famous security protocol, which uses non-identity equations, namely the Diffie-Hellman protocol

    Episodes in Model-Theoretic Xenology: Rationals as Positive Integers in R#

    Get PDF
    Meyer and Mortensen’s Alien Intruder Theorem includes the extraor- dinary observation that the rationals can be extended to a model of the relevant arithmetic R♯, thereby serving as integers themselves. Al- though the mysteriousness of this observation is acknowledged, little is done to explain why such rationals-as-integers exist or how they operate. In this paper, we show that Meyer and Mortensen’s models can be identified with a class of ultraproducts of finite models of R♯, providing insights into some of the more mysterious phenomena of the rational models

    Alien Intruders in Relevant Arithmetic

    Get PDF
    This paper explores the model theory of relevant arithmetic, emphasizing the structure of nonstandard natural numbers in the relevant arithmetic R#. In particular, the authors prove the “Alien Intruder Theorem” guaranteeing the existence of a model of R# including the rational numbers in which each rational acts as a nonstandard natural number. The authors conclude by considering some consequences of and open questions about the construction used in the theorem. &nbsp
    • …
    corecore