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Australasian Journal of Logic

Episodes in Model-Theoretic

Xenology: Rationals as Positive

Integers in R
♯

Thomas Macaulay Ferguson and Elisángela Ramı́rez-Cámara

ILLC, University of Amsterdam and Arché Research Centre, University of St. Andrews

National Autonomous University of Mexico

Xenology is an unnatural mixture of science fiction and formal
logic. At its core is a flawed assumption—that an alien race would
be psychologically human. - Arkady and Boris Strugatsky, Road-
side Picnic

Abstract

Meyer and Mortensen’s Alien Intruder Theorem includes the extraor-
dinary observation that the rationals can be extended to a model of
the relevant arithmetic R

♯, thereby serving as integers themselves. Al-
though the mysteriousness of this observation is acknowledged, little
is done to explain why such rationals-as-integers exist or how they
operate. In this paper, we show that Meyer and Mortensen’s models
can be identified with a class of ultraproducts of finite models of R♯,
providing insights into some of the more mysterious phenomena of the
rational models.

1 Introduction

Multiple roads charted during the twentieth century exposed nonstandard el-
ements that lie outside the intended domain of Peano arithmetic (PA). Such
nonstandard elements were described pejoratively by Dedekind as “alien in-
truders.” In a letter (translated by Hao Wang in [15]), Dedekind considers a
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series of first-order expressible, arithmetical “facts” before posing the ques-
tion:

What must we now add to the facts above in order to cleanse our
system S from such alien intruders t which disturb every vestige
of order, and to restrict ourselves to the system N?[15, p. 150]

Although the existence of nonstandard models of PA establishes that the
specter of such intruders cannot be exorcised by classical first-order methods,
the xenology of these objects is well-studied (see e.g. [4] and [5]).

Relevant arithmetic R
♯—resting on a weaker deductive base than PA—

enjoys even fewer exorcistic powers than classical arithmetic and, conse-
quently, admits an even broader class of nonstandard models. In [10], Robert
K. Meyer and Chris Mortensen survey the expanded xenology of alien intrud-
ers admitted by R

♯, culminating in the Alien Intruder Theorem: That there
exist models of R♯ including all rationals in Q in which each rational acts as
a nonstandard natural number.

Meyer and Mortensen observe that the inclusion of all rationals as natural
numbers is surprising and identify several other mysterious features, like the
fact that − 1 has a Lagrangian four-square representation. However, the pre-
sentation of this otherwordly phenomena, like grainy photographs of UFOs,
displays only that something anomalous exists. Like so much documenta-
tion of flying saucers, the details necessary to investigate more critically are
absorbed by the noise.

In this paper, we use the model-theoretic techniques developed in [1]—in
which ultraproducts of RM3 models are described—to increase the fidelity of
the picture by illuminating some of these mysterious features. Although
ultraproduct models are themselves non-constructive, by selecting distin-
guished elements from the equivalence classes which compose their domains
we have the ability to take the analysis a step further and recover more detail.
Thus, by exposing the relationship between the Meyer-Mortensen models and
ultraproducts, we can perform some deeper model-theoretic xenology on these
(relevant) alien intruders.

In particular, we produce ultraproduct models of R♯ in which all rationals
are, as Meyer and Mortensen intended, nonstandard natural numbers. This
not only provides a deeper insight into the mysteries of the Meyer-Mortensen
rational models, but also reflexively reveals some subtleties about the struc-
ture of ultraproduct models of relevant arithmetic.
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2 Models of Relevant Arithmetic

In this section, we lay the groundwork by describing the project of relevant
arithmetic and two types of model: The rational model whose existence
follows from the Alien Intruder Theorem and models obtained by applying
the ultraproduct construction to a family of finite models of R

♯. In what
follows, we will be brief about many technical details about the project of
relevant arithmetic and the two types of models, leaving the reader to consult
[7], [10], or [1], respectively.

In a pair of manuscripts ([6] and [7]) and the abstract [8], Meyer undertook
a full study of arithmetic formulated according to the relevant logic R. While
Meyer’s motivations for proposing relevant arithmetic were subtle, one of the
main threads was that the use of material implication in classical PA obscured
any distinction between factive and lawlike implications between arithmetical
facts. While it holds unobjectionably in PA that ∃x(x2 = 2) ⊃ 0 = 1—
in virtue of 2 having no square root—it is not immediately obvious how
the existence of a square root for 2 would lead to the identity 0 = 1 as a
matter of arithmetical law.1 R

♯ was proposed as a corrective against classical
arithmetic’s confusion between these two notions.

One of the most startling formal properties of R♯ in contrast to classical
PA is that the theory’s non-triviality can be proven through finitary meth-
ods. In [9], the Post consistency of R♯ is demonstrated by producing finite
inconsistent models, structures Ai in which the underlying domain is Z/iZ,
i.e., the ring of integers modulo i. The finitude of such models of R♯ entails
that their theories are decidable—if not feasibly so—a fact which, according
to Meyer in [6] and [7], serves in a sense as a refutation of Gödel’s Second
Incompleteness Theorem.

Considering the philosophical and technical weight placed on their shoul-
ders, finite inconsistent models are arguably the most famous constructions

1A referee has countered with an inspired argument that 0 = 1 does follow from the
existence of

√
2 as a matter of arithmetical law. The traditional argument for the irra-

tionality of
√

2 assumes the existence of a rational expression of
√

2—call it m
n

—and shows
that this assumption entails that one of m or n must be both even and odd. As the referee
has pointed out, this (without loss of generality) is just to say that m has a remainder of

0 on division by 2 and has a remainder of 1 on division by 2. Thus, by identity between
the remainders of m on division by 2, 0 = 1. As we have meant for the example only to
illustrate Meyer’s motivations, we have chosen to let the example stand, but concede that
the referee’s comment underscores the difficulty of making precise the intended distinction
between ⊃ and the relevant →.
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from the toolkit of the relevant arithmetician; such models have been stud-
ied in e.g. [11] and [14]. However, as Meyer and Mortensen observe, it also
makes sense to consider equivalence classes of nonstandard integers mod-
ulo a nonstandard number, the fruits of which [10] shows to include some
very fascinating structures. Meyer and Mortensen thus open the door to an
expanded xenography of nonstandard models of R♯; if the nonstandard mod-
els of PA compose an uncanny and alien landscape, then the boundaries of
nonstandard models of R♯ extend into still far stranger territories.

Among the more uncanny of these landmarks is a model whose existence
is shown through Meyer and Mortensen’s Alien Intruders Theorem, which
states:

Alien Intruder Theorem. Every rational number is a non-negative inte-
ger. That is, there is a model A of R♯ such that the following obtain, in a
straightforward sense.

(a) Every rational number is an element of A.

(b) The ordinary laws of rational arithmetic hold, for addition, multipli-
cation, subtraction, division.

(c) The Peano postulates are satisfied by A, including mathematical in-
duction.

The construction begins by introducing a new constant n̂—with the intended
interpretation as a nonstandard natural number—whose nonstandard nature
is enforced by padding the positive theory of PA with an axiom ¬(m = n̂)
for each numeral m. n̂ usefully determines a defined relation ≡ where t ≡
u =DF ∃x(t = u + x · n̂ ∨ t + x · n̂ = u). With this relation, Meyer and
Mortensen add a final enrichment to the theory by including the novel axiom
∀x(x ≡ 0∨∃y(x ·y ≡ 1)) guaranteeing a multiplicative inverse for every non-
zero element. Once every finite subset of the augmented theory is shown to be
consistent, an appeal to compactness immediately establishes the existence
of a model.

The addition of the multiplicative inverse axiom to the theory ensures
that for any non-zero numerals m and n, there is an element satisfying the
open formula n · x ≡ m. If one identifies the solution to this formula with
the rational m

n
, it follows all rationals are included in the model.

Exposing these newfound rationals in this way has exegetical limitations,
however. Each rational is identified in virtue of its answering to a particular
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linguistic tag, i.e., the formula n ·x ≡ m. As twentieth century investigations
into axiomatic approaches to arithmetic have so decisively shown, the classes
of such solutions are frequently more promiscuous than we might expect.

Absent more information, distinguishing the rational from its doppelgänger
is impossible and—in turn—absent the ability to make such a distinction, we
cannot understand the doppelgänger on its own terms. We will show that an
appeal to the method of ultraproducts allows a far more explicit approach
to the Alien Intruder Theorem which reveals enough fine structure to begin
to grasp their authentically alien nature.

In preparing to describe ultraproduct models of R♯ it would be hypocrit-
ical to single out the non-constructivity of the technique described in [10]
as a shortcoming. But it is fair to point out that the Alien Intruder The-
orem conjures the existence of these rationals from thin air by reciting the
widely known incantation, “compactness theorem”. However breathtaking
such conjurations may be, the pulling a rabbit from a hat hardly illumi-
nates which lagomorphological properties make rabbits especially conducive
to such events. And while switching incantations and invoking the words
“ Loś’ Theorem” instead may not allow the reader to constructively produce
an ultraproduct at home, at the very least, our preferred incantation is de-
tailed enough to explain why the trick works.2

2.1 Ultraproduct Models of Relevant Arithmetic

Ultraproducts are an algebraic technique that convert families of first-order
models into a single model whose theory is determined by an ultrafilter on
the power set of the indices of the family. By appeal to  Loś’ Theorem—the
fundamental theorem of ultraproducts—we are able to exert a fine degree
of control over the theory of the resulting model by careful choice of the
ultrafilter.

While this is a technique traditionally employed in classical model theory,
the paper [1] extends its range to De Morgan logics, including RM3, a three-
valued and nonrelevant extension of R. Thus, by taking a family of finite

2The reader familiar with model theory may note that the compactness theorem follows
immediately from  Loś’ Theorem, with compactness often offered as the first application
of  Loś’ Theorem (see e.g. [13]). Thus, not only does the ultraproduct construction expose
more of the algebraic structure of Meyer and Mortensen’s rationals, it is a strictly stronger
theorem.
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models of RM3
♯ (and a fortiori models of R

♯), selection of the ultrafilter
allows us to choose the properties we wish for the ultraproduct to exhibit.3

Although [10] employs a six-valued logic to show the existence of their
rational models, we can stand by RM3 to do the same work. RM3 can be
described with truth values {t,b, f} (corresponding to “true,” “both true
and false,” and “false,” respectively) ordered so that t > b > f . The only
relation that we are concerned with is identity, which has an extension and
antiextension as described in [1].

The connectives of RM3 observe the following matrices:

¬ ∨ t b f ∧ t b f → t b f

t f t t t t t t b f t t f f

b b b t b b b b b f b t b f

f t f t b f f f f f f t t t

The quantifiers ∀ and ∃ map sets of truth values to the minimum and max-
imum, respectively. For a more detailed account, the reader is referred to
[1].4

In what follows, we will define a privileged family of finite models of
RM3

♯. For a natural number a, let āi be the corresponding equivalence class
of integers modulo i and let ω+ be the non-zero natural numbers. Then we
define each Ai as follows:

Definition 1. For each i ∈ ω+, Ai is a model in which:

• The domain Ai = Z/iZ (i.e., the ring of integers modulo i)

• For all numerals nAi = n̄i

• For successor, (s′)Ai = (s′)i

• For binary function symbols ∗, (s ∗ t)Ai = (s ∗ t)i

• Ai � s = t if s̄i = t̄i

• Ai � ¬(s = t) for all terms s, t

3We observe Meyer’s convention of denoting the closure of the Peano axioms under a
deductive system L by “L♯,” except for classical arithmetic PA.

4Importantly, note that although the intensionality of the → connective is lost in the
truth-functionality of RM3, → nevertheless remains distinct from ⊃ if defined so that
ϕ ⊃ ψ is ¬ϕ ∨ ψ.
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We will frequently conflate the equivalence class ni with the least natural
number it includes. For example, we may treat the domain of A2 as the set
{0, 1, 2}. No confusion should arise from this abuse of notation.

To extend the evaluation to complex sentences in the language of arith-
metic, we appeal to the truth-functional interpretation of RM3 described
above with the following caveat: Our treatment takes truth-in-a-model—
rather than truth-values—as the primitive notion. E.g., the value t encapsu-
lates the state in which ϕ—but not ¬ϕ—is true in A while the paradoxical
value b encapsulates the state in which both A � ϕ and A � ¬ϕ hold.

From e.g. [9], we have the following proposition:

Proposition 1. Each Ai is a model of RM3
♯ (and a fortiori R♯)

Although the finite models in Definition 1 are three-valued, the de facto iden-
tity of their structure to that of the six-valued models of [10] makes them
useful exegetical tools nevertheless. For readers inclined to hew more closely
to the six-valued semantics of [10], we note that the generalized ultraproduct
constructions described in [2] show that the six-valued case can be handled
via ultraproducts as well.

2.2 Ultraproducts of RM3
♯ Structures

We will provide a concise summary of the construction of ultraproducts of
RM3 structures. As special cases of reduced products, the first step to defining
ultraproducts of RM3 structures is to define product structures. Fixing our
family of RM3

♯ models from Definition 1, we define the product structure as
follows:

Definition 2. The product
∏

i∈ω+ Ai is a structure with domain
∏

i∈ω+ Ai,
i.e., infinite sequences of equivalence classes with modulus i for each coordi-
nate i. The for all terms s and t:

• tΠA = (tA1, tA2 , ...)

•
∏

i∈ω+ Ai � s = t if for all i ∈ ω+ Ai � s = t

•
∏

i∈ω+ Ai � ¬(s = t) if for some i ∈ ω+ Ai � ¬(s = t)

As an element a of
∏

i∈ω+ Ai is an infinite sequence, let a(i) denote the
element in the ith coordinate of the sequence.
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The nature of ultraproducts requires making reference to the sets of points
in which some formula or other is satisfied among our models {Ai}. For this,
we introduce the notation:

Definition 3. The set JϕK is the set {i ∈ ω+ | Ai � ϕ}.

The final piece of machinery to define an ultraproduct is the definition of a
notion of equivalence between two elements of the product structure by the
lights of an ultrafilter U .

Definition 4. For U an ultrafilter on P(ω+) and a, b in the domain of∏
i∈ω+ Ai, a ∼U b if {i | a(i) = b(i)} ∈ U .

Now, we may define ultraproducts:

Definition 5. Given U an ultrafilter on the set P(ω+),
∏

i∈ω+ Ai/U is a
structure with domain composed of equivalence classes of elements of the
product structure modulo ∼U (with such classes denoted JaKU ). Then for
terms s and t:

• tΠA/U = JtΠAKU

•
∏

i∈ω+ Ai � s = t if Js = tK ∈ U

•
∏

i∈ω+ Ai � ¬(s = t) if J¬(s = t)K ∈ U

Then one of the primary results of [1] is the extension of  Loś’ Theorem—the
fundamental theorem of ultraproducts—to the case of RM3. In the venue of
our choice of finite models of RM3

♯, we have for any ultrafilter U :

Theorem 1.
∏

i∈ω+ Ai/U � ϕ iff JϕK ∈ U

It is therefore immediate from Proposition 1 and  Loś’ Theorem that for any
ultrafilter, the corresponding ultraproduct is a model of RM3

♯ and a fortiori
R
♯.

3 Analysis of the Meyer-Mortensen Model

Now, we’ll bring the analysis to bear on three of the puzzling features Meyer
and Mortensen describe in [10]:
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• Why a model in which rationals behave as positive nonstandard natural
numbers should exist

• Why mathematical induction should hold of a model of relevant arith-
metic including prima facie inaccessible nonstandard elements

• Why a negative integer like − 1 should have a Lagrangian four-square
representation

Our principal thesis is this: By appealing to the compactness theorem for the
existence of their models, Meyer and Mortensen lacked access to the internal
structure granted to us by  Loś’s Theorem and had no choice but to expect in-
tegers or rationals qua nonstandard natural numbers to observe the good be-
havior expected of integers and rationals. Thus, [10] makes the critical xeno-
logical mistake—warned against by the Strugatsky brothers—of expecting
that alien intruders obey “human” psychological norms. Under the shadow of
this hasty assumption, the corresponding mysterious phenomena—the four-
square representation of − 1 or how induction can cover the rationals—are
inevitably befuddling. But, having exposed the machinery of these nonstan-
dard elements—as we do in this section—we can approach their internal
psychologies on their own terms.

3.1 Rationals in Ultraproduct Models

An element of
∏

Ai/U is a rational if it is the quotient of two integers.
We’ll say that a

b
exists in a model if there is a solution to the formula a = xb,

supposing that we trivially extend the language to include a constant − n for
each natural number n.5 Formally:

Definition 6. For A a model of R♯, an element m ∈ A is identified with the
rational a

b
if A � m · b = a.

This definition is obvious enough; the rational nature of e.g. 3

4
is captured

by the fact that 3

4
· 4 = 3. Indeed, we can identify a solution to the open

formula x · b = a with the rational 3

4
.

We put this formally by defining a telltale, first-order marker of a ratio-
nal’s existence in a model:

5Note that this is trivial because each Ai includes all the integers in a sense; due to the
“loop” of the construction, 0 has a predecessor, which itself has a predecessor, and so on.
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Definition 7. The formula ∃a
b
—indicating that the rational a

b
exists—is

shorthand for the formula ∃x(x · b = a).

For a model A, we understand that the rational a
b

exists in the domain A
precisely when A � ∃a

b
.

In order to proceed, we must establish that the sets J∃a
b
K enjoy the ap-

propriate properties. Thus, we prove a lemma:

Lemma 1. For all integers a, b, the set J∃a
b
K is infinite.

Proof. Fix an i such that Ai � ∃a
b
; such an i must exist by appeal to the de-

generate case in which i = 1. Then there exists a k such that a ≡ kb(mod i),
and thus a j such that a − kb = ji. As k can be arbitrarily large, assume
that k > j and assume without loss of generality that b is positive. Then
because a − (k − j)b = ji + jb—or a − (k − j)b = j(i + b)—it follows that
a ≡ (k− j)b(mod i+ b), whence Ai+b � ∃a

b
. As J∃a

b
K is nonempty and closed

upward by this procedure, it must be infinite.

Now, as an illustration, let us consider where the rational 3

4
lives in several

models. It may easily be confirmed that e.g., 4 · 0 ≡ 3(mod 1), 4 · 0 ≡
3(mod 3), and 4 · 2 ≡ 3(mod 5) are all true. Thus, the equivalence classes
for the integers 0, 0, and 2 play the role of the rational 3

4
in A1, A3, and A5,

respectively, as represented in Figure 1.

0

A1

0

A3

1

2

0

A5

1

2

3

4

Figure 1: Finite Models of RM3
♯ Including 3

4

By Lemma 1, the set J∃3

4
K is infinite, and thus can be extended to a nonprin-

cipal ultrafilter U on P(ω+); the resulting ultraproduct
∏

i∈ω+ Ai/U will,
by  Loś’s Theorem, include the rational 3

4
.
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The existence of any particular rational in an ultraproduct depends on
the selection of U . Having displayed a model in which one rational exists, in
other words, is no guarantor that all rationals will appear in the ultraprod-
uct. Of course, the perspicuity afforded to the Meyer-Mortensen observation
by the ultraproduct construction would be enhanced were we to display a
model in which all rationals live. However, the matter of whether or not an
ultraproduct exists in which all rationals appear—an ultraproduct which, in
essence, corresponds to the construction of the Alien Intruders Theorem—is
non-trivial.

We display such a model by proving an additional lemma establishing
that the set of indices of models at which any given rational exists has the
appropriate properties.

Lemma 2. For all integers a, b, c, d, J∃a
b
K ∩ J∃ c

d
K is infinite.

Proof. By appeal to the degenerate case, J∃a
b
K∩J∃ c

d
K must be populated. Fix

an i in this intersection. There exist natural numbers m and n such that a ≡
m · b(mod i) and c ≡ n · d(mod i). By definition of the congruence relation,
there exist integers j and k such that a−mb = ji and c−nd = ki. (As there
exist arbitrarily large possible values for m and n, assume that m > jd and
n > kc.) By adding jbd and kbd to each side of the respective equations, we
yield the identities a− (m−jd)b = ji+ jbd and c− (n−kb)d = ki+kbd, i.e.,
a− (m− jd)b = j(i+ bd) and c− (n−kb)d = k(i+ bd). i+ bd thus serves as a
modulus for which (m−jd)·b ≡ a(mod i+bd) and (n−kb)·d ≡ c(mod i+bd)
hold, whence we infer that Ai+bd � ∃a

b
and Ai+bd � ∃ c

d
. As this procedure

may be applied to any i, J∃a
b
K ∩ J∃ c

d
K must be infinite.

Lemmas 1 and 2 provide precisely the properties we need to build our own
rational model of R♯ via the ultraproduct technique.

Choose a collection F including the closure of all sets J∃a
b
K under finite

intersections. As each member is infinite and F is has the finite intersection
property, F can be extended to a nonprincipal ultrafilter on P(ω+). With
such an ultrafilter, it is easy to establish that the corresponding ultraproduct
on {Ai} includes all rationals.

Theorem 2. For our family {Ai}, there exists an ultrafilter U ⊂ P(ω+)
such that

∏
i∈ω+ Ai/U includes all rationals.

Proof. Consider the set Q = {⋂
0<j≤kJ∃

aj
bj

K | aj , bj ∈ Z & k ∈ ω+}, i.e., the

set including for each finite collection of rationals the collection of indices
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of models Ai in which each rational in the collection exists. By Lemmas
1 and 2, each member of Q is infinite and by construction, Q enjoys the
finite intersection property. With these two properties, Q can be extended
to a nonprincipal ultrafilter Q⋆ ⊂ P(ω+). By  Loś’s Theorem, we infer two
things about

∏
i∈ω+ Ai/Q

⋆. First, it is a model of R♯ (in virtue of its being a

model of RM3
♯). Second, for every rational a

b
, the formula ∃a

b
is true in the

ultraproduct. Thus, all rationals exist in this model.

Although [1] includes a proof of  Loś’ Theorem for RM3, the discussion of
arithmetic was restricted to LP

♯ in the vein of Priest’s [11] and [12]. But each
of the models Ai described here are models of both RM3

♯ and LP
♯. In other

words, although the investigations into the above ultraproducts
∏

i∈ω+ Ai/U
in [1] were considered in the context of LP, remarks on their structure carry
over to this case.

The most germane remarks are provided below, with emphasis added:

Such a structure looks like a single “tag-end” of length n [in the
present case, the element 0], extended by an ω∗-block on one end
and an ω-block on the other. Beyond the limits of each end of
this block lies an undifferentiated “sea” of further ζ-blocks of non-
standard elements; these blocks are not meaningfully orderable,
as any element of any particular block is both greater than and
less than the elements of every other block. It is most convenient
to think of such a structure as a densely ordered cycle of c-many
ζ-blocks, but these blocks may just as well be interwoven among
each other, or stacked atop one another, or worse.[1, p. 125]

In other words, if only the local and inconsistent notion of “greater than” is
applied, there is no “meaningful” order between a nonstandard element and
any other. This obscures the relationship between Meyer and Mortensen’s
rational model of R♯ and the ultraproduct construction.

If, however, we follow the suggestion that the ζ blocks may be “interwoven
among each other,” so that externally they are viewed qua rationals, then
the identification between the fruits of the two techniques may be cleanly
made. The difference, in other words, is only a matter of perspective: In
Q, every rational—in virtue of having a successor and a predecessor—finds
itself in a ζ-block.
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3.2 Mathematical Induction on Alien Intruders

This observation concerning the structure of the model allows us to dig into
another puzzling phenomenon in Meyer and Mortensen’s rational model:
How is it that the standard induction schema somehow covers the rationals
as well?

From the näıve perspective, this fact indeed seems puzzling. Induction
“infers up” along a well-ordered and discrete chain of naturals but e.g. 3

4

resides in the “gap” between 0 and 1. Intuitively, the inductive process
should miss or otherwise overlook this rational. In other words, it is natural
to suppose that 3

4
—and its properly rational brethren—somehow live in an

inductive blind spot.
In Friedman and Meyer’s [3] showing R

♯ to be PA-incomplete, a crucial
component involves showing that the complex ring C models R

♯.6 The fact
that arithmetical induction is admissible in C receives proof in [3], which
may be sketched as follows: Let ϕ(x) be the inductive formula and let α be
its satisfaction set, assuming that 0 ∈ α and that α is closed under successor.
By a result of Friedman, any definable subset of C is either cofinite or finite.
α is by hypothesis not finite—it is nonempty and closed under successor—
and must be cofinitely infinite.7 Consequently, Cr α must be at most finite
and, insofar as it is closed under predecessor, must thereby be empty, i.e.,
α = C.

Although the argument is extraordinarily elegant, it does little to dispel
the troubling sense that a rational or an irrational should somehow be “over-
looked” by induction. Let us try to dissolve this misapprehension by consid-
ering the structure of 3

4
through the lens of the ultraproduct construction.

Recall that our standard numerals in the model are constructed out of natural
numbers. There are, to be sure, several operations that are applied to nat-
ural numbers during the process—elements of

∏
i∈ω+ Ai/U are equivalence

classes of infinite sequences of equivalence classes of natural numbers—but
we can take exemplars from the equivalence classes for expository purposes
and treat them as infinite sequences of naturals. So, e.g., the interpretation
of a numeral n in the ultraproduct will be

6Properly speaking, C is shown to model the positive fragment of R
+, but this can

trivially be extended to a basis for a model for R
♯ itself.

7It is interesting to observe that the argument establishes a theorem about relevant

arithmetic in part by tacit appeal to disjunctive syllogism, a form of inference that is often
identified as a source of irrelevance.
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n
∏

A/U = J(nA1, nA2 , nA3, nA4, ...)KU

Now consider what mathematical induction tells us: If ϕ holds of 0 (i.e.,
J(0, 0, 0, ...)KU ) and for an arbitrary natural number m (i.e., J(m,m,m, ...)KU )
that ϕ holds of m entails that ϕ holds of m′ (i.e., J(m′, m′, m′, ...)KU ), infer
that ϕ holds of all n. Whence for all elements J(n, n, n, ...)KU , ϕ holds.
Consequently, for almost all i and n, Ai � ϕ(n) and Jϕ(n)K ∈ U .

Now, consider the rational 3

4
with distinguished element (a1, a2, a3, ...); as

all ai are equivalence classes of integers, we may without loss of generality
conflate each element with the least natural number from that class. The
reason that 3

4
should satisfy the formula ϕ(x) in the ultraproduct is now

straightforward.
Mathematical induction in our structure arguably establishes a stronger

conclusion than in N or any Ai. It tells us that for almost all structures Ai

and any numeral n, Ai � ϕ(n). Hence, in our  Loś-inspired representation
of the rational 3

4
, we know that for almost all i ∈ ω+, Ai � ϕ(ai), whence

{i | Ai � ϕ(ai)} ∈ U . Thus it follows that 3

4
satisfies ϕ(x) in the ultraproduct

as well.
Properly understood, then, that induction covers rationals in these mod-

els should be unsurprising. We frequently lift inductive reasoning from one
type to a higher type. Although the type “cast of a sitcom” is of a higher
order than the type “person,” people are generally comfortable lifting from
“all persons are mortal” to “any cast of a sitcom will at some point per-
ish.” The reasoning is sound precisely because casts are composed by persons.
Likewise, looking at the nature of the rational 3

4
through the lens of  Loś’

Theorem shows that the substrate is exactly composed by natural numbers
and  Loś Theorem guarantees that any property true of the substrate holds
of the complex. That Meyer and Mortensen’s 3

4
exhibits familiar proper-

ties characteristic of the rational number may lull us into a nescient state
with respect to its alien nature. But recognizing this 3

4
qua alien intruder

gives us the opportunity to analyze its alien psychology; so understood, that
induction should hold is altogether reasonable.

In short, the nonstandard elements are fundamentally alien—that an el-
ement meets the necessary criteria that we earthlings are tempted to label it
e.g. a rational number does not domesticate the object nor are we thereby
licensed to project upon it all the features of its most natural counterpart.
Such projections only serve to obscure the native mechanisms of the objects
themselves. What explains the efficacy of arithmetical induction on these
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Figure 2: Finite Models of RM3
♯ Including − 1

alien intruders? Viewed properly, it is simple: These elements, strange as-
semblages whose properties are governed by similarity to their constituent
parts, and induction guarantees that all their parts have the requisite prop-
erty.

3.3 The Four-Square Representation of − 1

In each of the finite RM3
♯ models in our family, the sentence ∃x(x′ = 0)

is true. Thus, by  Loś’ Theorem, the predecessor of 0 exists in
∏

Ai/U for
any ultrafilter U ⊂ P(ω). This element is an equivalence class of infinite
sequences of natural numbers, but we can expose a natural exemplar: the
sequence (0, 1, 2, 3, 4, ...).

Let us briefly examine why the equivalence class of this sequence serves
as the successor of 0 in the ultraproduct. Consider its selection. For each
index i, the ith element of this sequence is the predecessor of 0 in the model
Ai+1, represented in Figure 2.

Our distinguished element is the element that includes in its ith coordi-
nate for each Ai+1 the least natural number acting as a predecessor to 0. In
other words,

− 1
∏

A/U = J(0, 1, 2, 3, 4, ...)KU

If we follow  Loś’ counsel, that Lagrange’s four-square theorem counts − 1
within its scope is unsurprising. But the natural numbers—even if we count
rationals among them—are foundational and, one would hope, should find
that their behavior admits explanation.
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Given our exemplar, explaining why the four-square theorem should hold—
indeed, even to sketch out a picture of what the four-square representation of
− 1 should be—is simple. Now, having equipped ourselves, let us ask: What
would the four-square representation of − 1 look like?

Insofar as each coordinate of − 1 in this model is a natural number in the
straightforward sense, Lagrange’s four-square theorem entails that each co-
ordinate has a four-square representation. Moreover, by construction of each
Ai, all positive arithmetical facts—like Lagrange’s four-square theorem—
are preserved. For each n ∈ ω+, let us choose a distinguished four-square
representation gathered in a tuple of four natural numbers (an, bn, cn, dn).
Then in the model we have e.g. an element J(a1, a2, a3, ...)KU (and simi-
larly for bn, cn, and dn). This element can be seen, by Lagrange, to be a
square in the ultraproduct; because for each an,

√
an is a natural number,

J(
√
a1,

√
a2,

√
a3, ...)K

2
U

= J(a1, a2, a3, ...)KU .
So the solution for the four-square representation of − 1 will be:

J(a1, a2, a3, ...)KU + J(b1, b2, b3, ...)KU + J(c1, c2, c3, ...)KU + J(d1, d2, d3, ...)KU

Or, more explicitly, one such solution would be:

J(0, 1, 1, 1, 1, ...)KU + J(0, 0, 1, 1, ...)KU + J(0, 0, 0, 1, ...)KU + J(0, 0, 0, 0, ...)KU

Once more, we find that respecting the alienness of our “little green numbers”
grants us the insight into their operations which is denied to us when we try
to foist our “human” interpretation upon them. The inclination to categorize
the − 1 of

∏
i∈ω+ Ai/U as a negative integer is an expediency. Looking at

the Meyer-Mortensen models through  Loś’ lens encourages us to recognize
the expediency for what it is.

4 Conclusions

Having established that there exist models of R♯ in which all rationals are
nonstandard natural numbers, [10] asks—and leaves open—the question of
whether there exist models in which each element of R is included as a
nonstandard natural. Although a positive solution is an unacknowledged
consequence of [3]—in which C is shown to be a model of R♯—in conclusion,
we wish to make a couple of remarks of the applicability of our investigation
of Q towards an independent solution.
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At first blush, it seems as though such a solution requires tools beyond
 Loś’ Theorem. We were able to leverage  Loś’ Theorem for rationals in virtue
of the sufficient expressivity of the language by aligning the existence of
any given rational with a first-order formula in the language of arithmetic.
This can be extended past the rationals, of course; it is e.g. plausible that
 Loś can thus establish that a model in which all algebraic numbers serve as
nonstandard naturals. Extending this to include transcendental numbers—
which lack such a characteristic formula—is another matter. To align the
existence of a real with an infinite set of formulae describing e.g. a Cauchy
sequence, risks straining the limits of  Loś’ Theorem.8

However there are some encouraging indications that the ultraproduct
approach may serve to answer this question in the affirmative. For one,
we can establish that there exist ultraproducts in which irrational numbers
live and act as the same type of “alien intruder” as Meyer and Mortensen’s
rationals. For example, we can produce a model in which the irrational

√
2

exists in the domain.

Observation 1. There is a U ⊂ P(ω+) such that
√

2 exists in
∏

i∈ω+ Ai/U .

Proof. First, we show that the set J∃x(x · x = 2)K is infinite. For a Ai, this
formula will hold if there are x and k such that i = (x2 − 2)/k. For each
even natural number n, let k = 2. Then n ·n ≡ 2(mod i) for i = n2/2 which,
by evenness of n, is a natural number. As n grows, so does i, whence there
is a solution for e.g. any i in {2 · n2 | n ∈ ω+}. Because J∃x(x · x = 2)K
is infinite, then there exists a nonprincipal ultrafilter including it and, by
 Loś, the resulting ultraproduct will verify ∃x(x · x = 2), i.e., will include the
irrational

√
2.

Moreover, as observed in [1], for U nonprincipal, the domain of
∏

i∈ω+ Ai/U
will be the size of the continuum. While this does not directly imply that
there exists a U for which all the reals have a corresponding element in the
domain, it at least suggests that the size of the domain is sufficiently large to
accommodate R. Moreover, if such a model exists, there is sufficient detail
to examine the properties of these reals without appeal to a mere existence
result like Löwenheim-Skolem.

In tandem, these two observations are suggestive. There are demonstrably
models in which some irrationals serve as nonstandard natural numbers and

8A concrete concern is that such an approach might require that U be closed under
infinitary intersection, a stronger property than the standard finite intersection property.

Australasian Journal of Logic (18:5) 2021, Article no. 9



445

such models have the capacity to warehouse all reals. We will leave the
question of how to refine the approach for future work.
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