137 research outputs found

    Investigating TCP performance in mobile ad hoc networks

    Get PDF
    Mobile ad hoc networks (MANETs) have become increasingly important in view of their promise of ubiquitous connectivity beyond traditional fixed infrastructure networks. Such networks, consisting of potentially highly mobile nodes, have provided new challenges by introducing special consideration stemming from the unique characteristics of the wireless medium and the dynamic nature of the network topology. The TCP protocol, which has been widely deployed on a multitude of internetworks including the Internet, is naturally viewed as the de facto reliable transport protocol for use in MANETs. However, assumptions made at TCP’s inception reflected characteristics of the prevalent wired infrastructure of networks at the time and could subsequently lead to sub-optimal performance when used in wireless ad hoc environments. The basic presupposition underlying TCP congestion control is that packet losses are predominantly an indication of congestion in the network. The detrimental effect of such an assumption on TCP’s performance in MANET environments has been a long-standing research problem. Hence, previous work has focused on addressing the ambiguity behind the cause of packet loss as perceived by TCP by proposing changes at various levels across the network protocol stack, such as at the MAC mechanism of the transceiver or via coupling with the routing protocol at the network layer. The main challenge addressed by the current work is to propose new methods to ameliorate the illness-effects of TCP’s misinterpretation of the causes of packet loss in MANETs. An assumed restriction on any proposed modifications is that resulting performance increases should be achievable by introducing limited changes confined to the transport layer. Such a restriction aids incremental adoption and ease of deployment by requiring minimal implementation effort. Further, the issue of packet loss ambiguity, from a transport layer perspective, has, by definition, to be dealt with in an end-to-end fashion. As such, a proposed solution may involve implementation at the sender, the receiver or both to address TCP shortcomings. Some attempts at describing TCP behaviour in MANETs have been previously reported in the literature. However, a thorough enquiry into the performance of those TCP agents popular in terms of research and adoption has been lacking. Specifically, very little work has been performed on an exhaustive analysis of TCP variants across different MANET routing protocols and under various mobility conditions. The first part of the dissertation addresses this shortcoming through extensive simulation evaluation in order to ascertain the relative performance merits of each TCP variant in terms of achieved goodput over dynamic topologies. Careful examination reveals sub-par performance of TCP Reno, the largely equivalent performance of NewReno and SACK, whilst the effectiveness of a proactive TCP variant (Vegas) is explicitly stated and justified for the first time in a dynamic MANET environment. Examination of the literature reveals that in addition to losses caused by route breakages, the hidden terminal effect contributes significantly to non-congestion induced packet losses in MANETs, which in turn has noticeably negative impact on TCP goodput. By adapting the conservative slow start mechanism of TCP Vegas into a form suitable for reactive TCP agents, like Reno, NewReno and SACK, the second part of the dissertation proposes a new Reno-based congestion avoidance mechanism which increases TCP goodput considerably across long paths by mitigating the negative effects of hidden terminals and alleviating some of the ambiguity of non-congestion related packet loss in MANETs. The proposed changes maintain intact the end-to-end semantics of TCP and are solely applicable to the sender. The new mechanism is further contrasted with an existing transport layer-focused solution and is shown to perform significantly better in a range of dynamic scenarios. As solution from an end-to-end perspective may be applicable to either or both communicating ends, the idea of implementing receiver-side alterations is also explored. Previous work has been primarily concerned with reducing receiver-generated cumulative ACK responses by “bundling” them into as few packets as possible thereby reducing misinterpretations of packet loss due to hidden terminals. However, a thorough evaluation of such receiver-side solutions reveals limitations in common evaluation practices and the solutions themselves. In an effort to address this shortcoming, the third part of this research work first specifies a tighter problem domain, identifying the circumstances under which the problem may be tackled by an end-to-end solution. Subsequent original analysis reveals that by taking into account optimisations possible in wireless communications, namely the partial or complete omission of the RTS/CTS handshake, noticeable improvements in TCP goodput are achievable especially over long paths. This novel modification is activated in a variety of topologies and is assessed using new metrics to more accurately gauge its effectiveness in a wireless multihop environment

    ADHOCTCP: Improving TCP Performance in Ad Hoc Networks

    Get PDF

    MANETs: Internet Connectivity and Transport Protocols

    Get PDF
    A Mobile Ad hoc Network (MANET) is a collection of mobile nodes connected together over a wireless medium, which self-organize into an autonomous multi-hop wireless network. This kind of networks allows people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking is not a new concept, having been around in various forms for over 20 years. However, in the past only tactical networks followed the ad hoc networking paradigm. Recently, the introduction of new technologies such as IEEE 802.11, are moved the application field of MANETs to a more commercial field. These evolutions have been generating a renewed and growing interest in the research and development of MANETs. It is widely recognized that a prerequisite for the commercial penetration of the ad hoc networking technologies is the integration with existing wired/wireless infrastructure-based networks to provide an easy and transparent access to the Internet and its services. However, most of the existing solutions for enabling the interconnection between MANETs and the Internet are based on complex and inefficient mechanisms, as Mobile-IP and IP tunnelling. This thesis describes an alternative approach to build multi-hop and heterogeneous proactive ad hoc networks, which can be used as flexible and low-cost extensions of traditional wired LANs. The proposed architecture provides transparent global Internet connectivity and address autocofiguration capabilities to mobile nodes without requiring configuration changes in the pre-existing wired LAN, and relying on basic layer-2 functionalities. This thesis also includes an experimental evaluation of the proposed architecture and a comparison between this architecture with a well-known alternative NAT-based solution. The experimental outcomes confirm that the proposed technique ensures higher per-connection throughputs than the NAT-based solution. This thesis also examines the problems encountered by TCP over multi-hop ad hoc networks. Research on efficient transport protocols for ad hoc networks is one of the most active topics in the MANET community. Such a great interest is basically motivated by numerous observations showing that, in general, TCP is not able to efficiently deal with the unstable and very dynamic environment provided by multi-hop ad hoc networks. This is because some assumptions, in TCP design, are clearly inspired by the characteristics of wired networks dominant at the time when it was conceived. More specifically, TCP implicitly assumes that packet loss is almost always due to congestion phenomena causing buffer overflows at intermediate routers. Furthermore, it also assumes that nodes are static (i.e., they do not change their position over time). Unfortunately, these assumptions do not hold in MANETs, since in this kind of networks packet losses due to interference and link-layer contentions are largely predominant, and nodes may be mobile. The typical approach to solve these problems is patching TCP to fix its inefficiencies while preserving compatibility with the original protocol. This thesis explores a different approach. Specifically, this thesis presents a new transport protocol (TPA) designed from scratch, and address TCP interoperability at a late design stage. In this way, TPA can include all desired features in a neat and coherent way. This thesis also includes an experimental, as well as, a simulative evaluation of TPA, and a comparison between TCP and TPA performance (in terms of throughput, number of unnecessary transmissions and fairness). The presented analysis considers several of possible configurations of the protocols parameters, different routing protocols, and various networking scenarios. In all the cases taken into consideration TPA significantly outperforms TCP

    Collaboration Enforcement In Mobile Ad Hoc Networks

    Get PDF
    Mobile Ad hoc NETworks (MANETs) have attracted great research interest in recent years. Among many issues, lack of motivation for participating nodes to collaborate forms a major obstacle to the adoption of MANETs. Many contemporary collaboration enforcement techniques employ reputation mechanisms for nodes to avoid and penalize malicious participants. Reputation information is propagated among participants and updated based on complicated trust relationships to thwart false accusation of benign nodes. The aforementioned strategy suffers from low scalability and is likely to be exploited by adversaries. To address these problems, we first propose a finite state model. With this technique, no reputation information is propagated in the network and malicious nodes cannot cause false penalty to benign hosts. Misbehaving node detection is performed on-demand; and malicious node punishment and avoidance are accomplished by only maintaining reputation information within neighboring nodes. This scheme, however, requires that each node equip with a tamper-proof hardware. In the second technique, no such restriction applies. Participating nodes classify their one-hop neighbors through direct observation and misbehaving nodes are penalized within their localities. Data packets are dynamically rerouted to circumvent selfish nodes. In both schemes, overall network performance is greatly enhanced. Our approach significantly simplifies the collaboration enforcement process, incurs low overhead, and is robust against various malicious behaviors. Simulation results based on different system configurations indicate that the proposed technique can significantly improve network performance with very low communication cost

    A Pragmatic View of MANET Performance Evaluation and Design of a Prototype MAC Level Routing Algorithm

    Get PDF
    Our goal in this research is to investigate and determine how to best support a challenging mobile wireless network based in a military operational environment. Since routing protocols used in mobile ad hoc networks (MANET) must adapt to frequent or continual changes of topology, while simultaneously limiting the impact of tracking these changes on wireless resources, we focused our initial research on improving the efficiency of route discovery. We proposed and designed a new MAC layer routing protocol that pursues reduced routing overhead, greater interaction of network protocol layers and passive neighbor/path discovery. This algorithm, called Virtual MAC Tag Switching (VMTS), evolved as we implemented a prototype in the ns-2 network simulator and conducted simulation analysis of existing protocols: DSDV, DSR and AODV. Upon analyzing the performance of existing routing protocols using pragmatic metrics not applied in any MANET literature it was found that current MANET models produce unsatisfactory performance. Subsequent analysis of transport layer protocol behaviors pinpointed the causes that undermine the performance of the existing protocols and would have thwarted VMTS as well

    Moving toward the intra-protocol de-ossification of TCP in mobile networks: Start-up and mobility

    Get PDF
    182 p.El uso de las redes móviles de banda ancha ha aumentado significativamente los últimos años y se espera un crecimiento aún mayor con la inclusión de las futuras capacidades 5G. 5G proporcionará unas velocidades de transmisión y reducidos retardos nunca antes vistos. Sin embargo, la posibilidad de alcanzar las mencionadas cuotas está limitada por la gestión y rendimiento de los protocolos de transporte. A este respecto, TCP sigue siendo el protocolo de transporte imperante y sus diferentes algoritmos de control de congestión (CCA) los responsables finales del rendimiento obtenido. Mientras que originalmente los distintos CCAs han sido implementados para hacer frente a diferentes casos de uso en redes fijas, ninguno de los CCAs ha sido diseñado para poder gestionar la variabilidad de throughput y retardos de diferentes condiciones de red redes móviles de una manera fácilmente implantable. Dado que el análisis de TCP sobre redes móviles es complejo debido a los múltiples factores de impacto, nuestro trabajo se centra en dos casos de uso generalizados que resultan significativos en cuanto a afección del rendimiento: movimiento de los usuarios como representación de la característica principal de las redes móviles frente a las redes fijas y el rendimiento de la fase de Start-up de TCP debido a la presencia mayoritaria de flujos cortos en Internet. Diferentes trabajos han sugerido la importancia de una mayor flexibilidad en la capa de transporte, creando servicios de transporte sobre TCP o UDP. Sin embargo, estas propuestas han encontrado limitaciones relativas a las dependencias arquitecturales de los protocolos utilizados como sustrato (p.ej. imposibilidad de cambiar la configuración de la capa de transporte una vez la transmisión a comenzado), experimentando una capa de transporte "osificada". Esta tesis surge como respuesta a fin de abordar la citada limitación y demostrando que existen posibilidades de mejora dentro de la familia de TCP (intra-protocolar), proponiendo un marco para solventar parcialmente la restricción a través de la selección dinámica del CCA más apropiado. Para ello, se evalúan y seleccionan los mayores puntos de impacto en el rendimiento de los casos de uso seleccionados en despliegues de red 4G y en despliegues de baja latencia que emulan las potenciales latencias en las futuras capacidades 5G. Estos puntos de impacto sirven como heurísticas para decidir el CCA más apropiado en el propuesto marco. Por último, se valida la propuesta en entornos de movilidad con dos posibilidades de selección: al comienzo de la transmisión (limitada flexibilidad de la capa de transporte) y dinámicamente durante la transmisión (con una capa de transporte flexible). Se concluye que la propuesta puede acarrear importantes mejoras de rendimiento al seleccionar el CCA más apropiado teniendo en cuenta la situación de red y los requerimientos de la capa de aplicación

    Broadcasting Protocol for Effective Data Dissemination in Vehicular Ad Hoc Networks

    Get PDF
    VANET topology is very dynamic due to frequent movements of the nodes. Using beacon information connected dominated set are formed and nodes further enhanced with neighbor elimination scheme. With acknowledgement the inter section issues are solve. A modified Broadcast Conquest and Delay De-synchronization mechanism address the broadcasting storm issues. Although data dissemination is possible in all direction, the performance of data dissemination in the opposite direction is investigated and compared against the existing protocols

    Protecting 802.11-Based Wireless Networks From SCTS and JACK Attacks

    Get PDF
    The convenience of IEEE 802.11-based wireless access networks has led to widespread deployment. However, these applications are predicated on the assumption of availability and confidentiality. Error-prone wireless networks afford an attacker considerable flexibility to exploit the vulnerabilities of 802.11-based mechanism. Two of most famous misbehaviors are selfish and malicious attacks. In this thesis we investigate two attacks: Spurious CTS attack (SCTS) and Jamming ACK attack (JACK). In the SCTS, malicious nodes may send periodic Spurious CTS packets to force other nodes to update their NAV values and prevent them from using the channel. In the JACK, an attacker ruins legitimate ACK packets for the intention of disrupting the traffic flow and draining the battery energy of victim nodes quickly. Correspondingly, we propose solutions: termed Carrier Sensing based Discarding (CSD), and Extended Network Allocation Vector (ENAV) scheme. We further demonstrate the performance of our proposed schemes through analysis and NS2 simulations
    corecore