486 research outputs found

    On semantics and refinement of UML statecharts: a coalgebraic view

    Get PDF
    Statecharts was conceived as a visual formalism for the design of reactive systems. UML statecharts is an object-based variant of classical statecharts, incorporating several concepts different from the classical statecharts. This paper discusses a coalgebraic description of UML statecharts, directly derived from its operational semantics. In particular such an approach induces suitable notions of equivalence and (behavioral) refinement for statecharts. Finally, a few refinement laws are investigated to support verifiable stepwise system development with statecharts.(undefined

    On UML statechart with variabilities

    Get PDF
    El uso de métodos formales para el diseño de software contribuye a la confiabilidad y robustez del sistema a construir. A medida que los sistemas se vuelven complejos, el enfoque formal es esencial, debido a que permite la demostrabilidad y verificabilidad del diseño. El diseño formal es un proceso que comienza con la etapa de especificación, en la cual el sistema es de nido utilizando un lenguaje de modelado; luego la etapa de verificación, en la cual el sistema es analizado mediante un enfoque de corrección basado en pruebas formales utilizando herramientas matemá ticas y, por último, la etapa de implementación, en la cual la especificación se convierte en código ejecutable. El Lenguaje de Modelado Unificado (UML por sus siglas en inglés) es un lenguaje específico ampliamente utilizado en la industria y la academia. Desafortunadamente, carece de una semántica formal que permita el desarrollo de modelos utilizando un enfoque de corrección basado en pruebas formales. Este trabajo se centra en la especificación formal de familias de sistemas, y, en particular, en la semán- tica de máquinas de estados de UML (UML Statecharts) con variabilidades y sus aplicaciones a líneas de productos de software. La principal contribución es la definición de un formalismo que permite modelar el comportamiento de una familia de sistemas. Tal comportamiento se describe utilizando UML Statecharts en combinación con Diagramas de funcionalidades (Feature Diagrams), con el fin de representar las funcionalidades comunes y variantes de una familia. Para ello se define una relación de orden entre los UML Statecharts, que representa el hecho de que un statechart posee una estructura mas rica que otro. Luego se defi ne con precisión la forma de combinar diferentes extensiones de un mismo statechart. Utilizando estos conceptos, es posible definir el efecto que cada funcionalidad tiene en los productos en los cuales se encuentra presente.Estas definiciones proporcionan una forma muy simple de obtener la especificación del comportamiento de un producto de la línea como la combinación de los UML Statecharts que implementan todas las funcionalidades presentes en un producto en particular. Mas aún, se prueba que la relación de extensión propuesta constituye un refinamiento de comportamiento. El presente enfoque se compara con el estado del arte y se estudia su aplicación práctica con el n de visualizar sus bene cios y posibles debilidades. Adicionalmente, con el fin de comprobar la adecuación de la propuesta, una gran parte de las ideas fueron implementadas en un prototipo utilizando Prolog

    Refinement sensitive formal semantics of state machines with persistent choice

    Get PDF
    Modeling languages usually support two kinds of nondeterminism, an external one for interactions of a system with its environment, and one that stems from under-specification as familiar in models of behavioral requirements. Both forms of nondeterminism are resolvable by composing a system with an environment model and by refining under-specified behavior (respectively). Modeling languages usually dont support nondeterminism that is persistent in that neither the composition with an environment nor refinements of under-specification will resolve it. Persistent nondeterminism is used, e.g., for modeling faulty systems. We present a formal semantics for UML state machines enriched with an operator persistent choice that models persistent nondeterminism. This semantics is based on abstract models - μ-automata with a novel refinement relation - and a sound three-valued satisfaction relation for properties expressed in the μ-calculus. © 2009 Elsevier B.V. All rights reserved

    Semantic Embedding of Petri Nets into Event-B

    Full text link
    We present an embedding of Petri nets into B abstract systems. The embedding is achieved by translating both the static structure (modelling aspect) and the evolution semantics of Petri nets. The static structure of a Petri-net is captured within a B abstract system through a graph structure. This abstract system is then included in another abstract system which captures the evolution semantics of Petri-nets. The evolution semantics results in some B events depending on the chosen policies: basic nets or high level Petri nets. The current embedding enables one to use conjointly Petri nets and Event-B in the same system development, but at different steps and for various analysis.Comment: 16 pages, 3 figure

    Collaborative Verification-Driven Engineering of Hybrid Systems

    Full text link
    Hybrid systems with both discrete and continuous dynamics are an important model for real-world cyber-physical systems. The key challenge is to ensure their correct functioning w.r.t. safety requirements. Promising techniques to ensure safety seem to be model-driven engineering to develop hybrid systems in a well-defined and traceable manner, and formal verification to prove their correctness. Their combination forms the vision of verification-driven engineering. Often, hybrid systems are rather complex in that they require expertise from many domains (e.g., robotics, control systems, computer science, software engineering, and mechanical engineering). Moreover, despite the remarkable progress in automating formal verification of hybrid systems, the construction of proofs of complex systems often requires nontrivial human guidance, since hybrid systems verification tools solve undecidable problems. It is, thus, not uncommon for development and verification teams to consist of many players with diverse expertise. This paper introduces a verification-driven engineering toolset that extends our previous work on hybrid and arithmetic verification with tools for (i) graphical (UML) and textual modeling of hybrid systems, (ii) exchanging and comparing models and proofs, and (iii) managing verification tasks. This toolset makes it easier to tackle large-scale verification tasks

    Modeling Time in Computing: A Taxonomy and a Comparative Survey

    Full text link
    The increasing relevance of areas such as real-time and embedded systems, pervasive computing, hybrid systems control, and biological and social systems modeling is bringing a growing attention to the temporal aspects of computing, not only in the computer science domain, but also in more traditional fields of engineering. This article surveys various approaches to the formal modeling and analysis of the temporal features of computer-based systems, with a level of detail that is suitable also for non-specialists. In doing so, it provides a unifying framework, rather than just a comprehensive list of formalisms. The paper first lays out some key dimensions along which the various formalisms can be evaluated and compared. Then, a significant sample of formalisms for time modeling in computing are presented and discussed according to these dimensions. The adopted perspective is, to some extent, historical, going from "traditional" models and formalisms to more modern ones.Comment: More typos fixe
    corecore