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Director de tesis: Dra. Nora Szasz

Tribunal: Dra. Claudia Pons - Revisora
Dr. Ariel Sabiguero
Dra. Cristina Cornes





Resumen

El uso de métodos formales para el diseño de software contribuye a la confiabilidad y
robustez del sistema a construir. A medida que los sistemas se vuelven complejos, el enfoque
formal es esencial, debido a que permite la demostrabilidad y verificabilidad del diseño.
El diseño formal es un proceso que comienza con la etapa de especificación, en la cual
el sistema es definido utilizando un lenguaje de modelado; luego la etapa de verificación,
en la cual el sistema es analizado mediante un enfoque de corrección basado en pruebas
formales utilizando herramientas matemáticas y, por último, la etapa de implementación,
en la cual la especificación se convierte en código ejecutable. El Lenguaje de Modelado
Unificado (UML por sus siglas en inglés) es un lenguaje espećıfico ampliamente utilizado
en la industria y la academia. Desafortunadamente, carece de una semántica formal que
permita el desarrollo de modelos utilizando un enfoque de corrección basado en pruebas
formales.

Este trabajo se centra en la especificación formal de familias de sistemas, y, en par-
ticular, en la semántica de maquinas de estados de UML (UML Statecharts) con variabil-
idades y sus aplicaciones a ĺıneas de productos de software. La principal contribución es
la definición de un formalismo que permite modelar el comportamiento de una familia de
sistemas. Tal comportamiento se describe utilizando UML Statecharts en combinación con
Diagramas de funcionalidades (Feature Diagrams), con el fin de representar las funcionali-
dades comunes y variantes de una familia. Para ello se define una relación de orden entre los
UML Statecharts, que representa el hecho de que un statechart posee una estructura más
rica que otro. Luego se define con precisión la forma de combinar diferentes extensiones
de un mismo statechart. Utilizando estos conceptos, es posible definir el efecto que cada
funcionalidad tiene en los productos en los cuales se encuentra presente. Estas definiciones
proporcionan una forma muy simple de obtener la especificación del comportamiento de
un producto de la ĺınea como la combinación de los UML Statecharts que implementan
todas las funcionalidades presentes en un producto en particular. Mas aún, se prueba que
la relación de extensión propuesta constituye un refinamiento de comportamiento.

El presente enfoque se compara con el estado del arte y se estudia su aplicación práctica
con el fin de visualizar sus beneficios y posibles debilidades. Adicionalmente, con el fin de
comprobar la adecuacin de la propuesta, una gran parte de las ideas fueron implementadas
en un prototipo utilizando Prolog.

Palabras clave: Máquinas de estado UML, Semántica formal, Modelado formal de
variabilidades, Máquinas de estado con variabilidades, Ĺıneas de productos de software.





Abstract

The use of formal methods for software design contributes to the reliability and robustness
of the system being constructed. As systems become more complex, the formal approach is
essential, as it enables provability and verifiability of the design. Formal design is a process
starting with the specification stage, in which the system is defined using a modeling
language; it continues with the verification stage, in which the system is analyzed in a
provable-correct approach using mathematical tools and finally, the implementation stage,
in which the specification is converted into code. The Unified Modeling Language (UML)
is a specification language widely used by the industry and the academia. Unfortunately,
it lacks a formal semantics for the development of provably-correct models.

This work concerns with the formal specification of families of systems, and in particular
with the semantics of UML Statecharts with Variabilities and its applications to Software
Product Lines. The main contribution is the definition of a formalism which allows to
model the behavior of an entire family of systems. Such behavior is described using UML
Statecharts in combination with Feature Diagrams in order to represent the common and
variant functionalities of the family. Using an order relation among statecharts, which
represents when an UML statechart has a richer structure than another one, it is possible
to precisely define how to combine different extensions of the same UML statechart into an
integral new one. With these notions, it is possible to describe the effect that each feature
has on the products in which it is present. These definitions provide a very simple way to
obtain the specification of the behavior of a product of the line as the combination of the
statecharts that implement all the features present in that particular product. Moreover,
a proof that the proposed extension relation constitutes a behavioral refinement is given.
The present approach is also compared with related work and its practical application is
studied in order to visualize its benefits and possible weaknesses. Additionally, in order
to check the adequacy of the present approach, most of the ideas were implemented in a
prototype using Prolog.

Summarizing, this thesis contributes to the formalization of concepts widely used in
practice as well as its implementation in modeling and formal reasoning tools.

Key words: UML Statecharts, Formal semantics, Formal variability modeling, Stat-
echarts with variabilities, Software product lines.
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Chapter 1

Introduction

Software reusability has become a key challenge for the software industry. Software reuse
is the systematic (in contrast to ad hoc) use of existing software assets to construct new
software. Although the idea of software reuse has been applied and practiced since pro-
gramming began, the concept of systematic reuse, as a field of study in software engineering,
was introduced by Doug McIlroy in 1969 [Mci69]. McIlroy envisioned the construction of
complex systems using parameterized families of software components, able to satisfy the
needs of any type of user. Later, David Parnas [Par72] developed the information hiding
principle and the idea of program families, which became the engineering foundation for
reuse based application development. Soon after, extensive research efforts on software
reuse followed, with the result of the development of a great diversity of techniques. All
of them includes some sort of abstraction (components seen as a “black box”), selection
(catalogues of components), specialization (configuration of components through param-
eters) and/or integration (combination of components), as pointed out in [Kru92, FK05]
and references therein.

Nowadays, reusability is of wide interest because of the need of software engineers to
construct highly complex systems in a more reliable, cheaper and timely way [MC08, FK05,
MMM95, PD93]. As pointed out in [FK05], a crucial breakthrough in software reuse is the
concept of Software Product Lines (SPLs). The key idea is that most software systems are
not entirely new, in contrast, they are variants of systems that have already been built.
Essentially, a SPL consists of a family of systems that share functionality and satisfy, in
general, the needs of a particular user [Gom05, CN02]. Recently, the Software Engineering
Institute (SEI) [SEI11a] developed a framework called Product Line Engineering (PLE) for
reuse-based development of a family of closely related applications [CN02]. The main goal
of PLE is to achieve software reuse in a strategic, prescribed way, while using a managed
set of features [JKB08].

Software PLE and Model-Driven Software Development (MDD) are two recent trends
that have been drawing increased attention from the software development community.
Essentially, MDD [BG05] is a software engineering methodology based on models of the
system to be constructed and the evolution of those models, in order to perform an in-
cremental development. Models allow to directly capture the needs of the stakeholders,
and abstract from specific implementation details, more amenable to analysis. In MDD,
models are source artifacts and they are used for automated analysis and code generation.
Generative software development [Cza98] and related approaches have been the integra-
tion of PLE and MDD [CAK+05]. While MDD allows to represent different aspects of a
SPL more abstractly, PLE provides a well defined scope, which puts the development and
selection of appropriate modeling languages on a firm basis. Moreover, automated analysis
and code generation permits the automatization of product line member creation.

Feature modeling is a technique for representing the commonalities and variabilities
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among a set of related systems in a concise way. Usually, Feature Diagrams (FD) are used
to document this, using hierarchies of features that describe different types of variability
[KCH+90, Kan10, CHE05a, CHE05b]. A particular technique of Model-Driven Develop-
ment of Product Lines, based on model templates is proposed in [Cza05]. A feature-based
model template consists of feature models and annotated models implementing the fea-
tures. The annotations refer to the features and can have the form of any notation defined
using the Meta-Object Facility (MOF) [omg06], such as Unified Modeling Language.

The Unified Modeling Language (UML) has become the industry and academic stan-
dard for system specification. UML Statecharts are one of the most important constituents
of UML models, since they are widely used for modeling the reactive behavior of systems.
The fact that the semantics of UML is only informally described leads to many ambiguities
and inconsistencies, which renders difficult or impossible the application of a formal design
process.

The subject of this thesis is the formal specification of families of systems that share
some functionality. In particular, it investigates an expressive modeling formalism for
specifying Software Product Lines, based on a formal approach of UML state machines, in
conjunction with Feature Diagrams. By achieving this, the expressivity of UML Statecharts
can be augmented with the explicit handling of behavior refinement. A complete seman-
tics will allow the incorporation of the resulting proposal in Model-Driven Development
methods.

1.1 Contribution of this Work

The primary goal of this thesis is to specify the behavior of a Software Product Line (SPL)
using formal methods. It constitutes an advance towards a complete formal semantics
of UML Statecharts with Variabilities in a SPL context. The main contribution is the
formulation of a notion of refinement based on UML Statecharts, which can be integrated
into software engineering tools. This could provide solid formal background that helps
to bridge the gap between the needs of modern software development techniques for a
formal specification language and UML, which is mainly described using natural language.
Applying formal rigour to the precise semantics of these models and languages allows to
automate the steps needed to transform models, as well as to trace and analyze those
transformations. Each model should be based on a formalism, in order to rigorously define
its syntax and semantics. Unfortunately, UML’s lack of rigour can lead to ambiguous,
imprecise and contradictive specifications.

In this work, Feature Diagrams (FDs) are used to represent the common and variant
functionality of a family of products, presenting a formal syntax for Feature Diagrams and
its configurations. On the other hand, based on von der Beeck’s [vdB02] UML Statecharts
abstract syntax, an order relation is defined among the set of UML Statecharts, which
represents when an UML statechart has a richer structure than another one. This relation
sets the basis for the definition of behavior refinement of a UML statechart. Then, an
operation able to combine different extensions of a given statechart is defined. With these
notions, and given the description of a family of products as a FD, an UML Statechart
with Variabilities is defined as a function that associates each feature of the FD with a
statechart. The mapping must comply with the hierarchical structure and the feature
restrictions, i.e., the more features a product has, the richer the statechart that models
it must be. In this way, it is possible to describe the effect that each feature has on the
products in which it is present. This definition provides a very simple and flexible way
to obtain the specification of the behavior of any configuration of the product line as the
combination of the statecharts that implement all the features present in that product. We
consider both the extension relation and the definition of UML statechart with variabilities
authentic contributions. The first one, because it provides an ordering among the abstract
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syntax defined in [vdB02], which proved to be a semantic preserving one, in the sense
of a properly defined structural operational (SO) semantics. The second one, because it
allows to integrate parts of two different modeling languanges, FDs and UML Statecharts,
through its abstract syntax.

Then, based on the extension relation, the concept of behavioral refinement of a UML
statechart is explored. In contrast to most of the related work, in which there are no
exhaustive proofs, it is proven that it is possible to extend a statechart without loosing
any behavior, in the sense of the SO semantics proposed in [vdB02]. That is, when a
statechart is extended, it is still possible to perform the same semantic transitions on it
as before. Therefore, the extension relation can be considered as a behavioral refinement,
as it preserves the behavior, but adding new functionalities. Moreover, it is also proved
that the set of actions generated by the SO semantics of a given statechart is preserved
with any possible extension of it. We consider this also as a contribution because, until the
date this work was finished, there were no concrete formal refinement patterns for UML
Statecharts, with the sole exception of [MNB04], which uses a different priority mechanism
for the transition firing from UML’s.

Finally, the practical point of view of this proposal is addressed, through the construc-
tion of a tool prototype called “SC* Modeler”. This prototype was constructed basically
for checking the adequacy of the definitions and for exploring the possibilities of a future
software engineering tool. Using this tool, a case study for a product line of microwave
oven systems, adapted from a classic SPL modeling book [Gom05], was implemented.

1.2 Related Work

Variability modeling is a domain specific modeling technique, that is becoming more inte-
grated into traditional software engineering. Unfortunately, it is not integrated to UML.
Software Product Line Engineering with UML received a lot of attention in recent years,
but most of these works “only concern variability in UML static models and few works
concern behavioral models” [CABA09]. In a formal setting, few citations are relevant.
In [CGW05] a formal semantics of UML interactions with variabilities is given, and in
[ZHJ04a, ZHJ04c, ZHJ04b, CABA09] UML sequence diagrams with variabilities are for-
malized using an algebraic framework for synthesizing flat statecharts from the sequence
diagrams. In [GL10], the authors define functions which map UML Statechart components
to functionalities of a Feature Diagram. Then, the behavior of a product line is obtained
essentially by a selection process, and not a combination of statecharts, in contrast to the
present work. In [FG08], the authors define a general labeled transition system framework
for describing families of products. Using this framework, products can be derived, but
this approach is not intended to be used to describe product families, but rather “to give
basic modeling concepts on which verification activities can be carried out”.

Although UML Statecharts refinement has already been investigated in a formal set-
ting [GL10], [MNB04] and [SK10], there is still a lack of a formal definition of behavioral
refinement for UML Statecharts. The UML 2.0 documents use the term refinement (and its
counterpart, abstraction) without a specific definition or meaning [Gro05]. Sun Meng et al.
[MNB04] propose refinement patterns similar to the ones presented in this work. Their se-
mantics is based on Lattela et.al. [LMM99], which uses a priority mechanism (of conflicting
transitions) which is the opposite as required in the UML specification [Gro05]. Moreover,
the refinement laws are abstract and elementary, and there are no proofs regarding the
resulting behavior once the rules are applied.

The closest work to the present one, in terms of the results obtained, is the recent paper
by Schönborn et al. [SK10], based on the semantics presented in [FS06]. Regarding the
UML coverage of the semantics, they do not model history pseudostates, and according to
them it is a “harder challenge” to implement, compared to other missing UML features like
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fork and join states. Moreover, they do not model entry and exit actions. Regarding the
refinement patterns, the authors allow the removal of behavior from a statechart, contrary
to the present work. With respect to the actions generated by the refined statecharts,
which can be a “data-refinement” of the original actions, these are not treated in that
work.

1.3 Outline of this Thesis

This thesis is structured as follows: In chapter 2, the general context of this work is
presented. A brief description of the current state-of-the-art in formal approaches for UML
Statecharts is given, together with the concept of Software Product Lines and its relation
with Feature Diagrams as a tool for modeling the variability of a family of systems. In
chapter 3, the syntax and semantics of UML Statecharts are presented. The work contained
in this chapter is based on [vdB02]. In chapter 4, an extension relation is defined between
UML Statecharts, in order to give a formal definition of when a given statechart has a richer
behavior than another one. Then, it is shown how to combine different extensions of a given
statechart into an integral new one. In chapter 5, main concepts and definitions of formal
variability modeling are presented. The syntax and configurations of Feature Diagrams
and the definition of UML Statechart with variabilities is given. An early version of the
work contained in this chapter and the previous one is published in [SV08]. In chapter 6, it
is proved that the extension relation can indeed be considered as a refinement, in the sense
that it preserves the semantic transitions defined in the semantics. Moreover, a theorem
that proves that the set of possible actions generated by a statechart are preserved by
the refinement is given. The work contained in this chapter is published in [SV10]. In
chapter 7, the description of a prototype implementation of the ideas introduced in this
work is presented. In chapter 8, a case study for a product line of microwave oven systems
is presented is order to analyze and validate the proposal. Conclusions, related work, and
future research are given in chapter 9.



Chapter 2

Background

In this chapter, main concepts of behavior specification of families of systems are presented,
constituting the general context in which the subject of this work is placed. Model-Driven
Development is introduced, as a software engineering methodology based on the systematic
use of models, capable of reducing development costs. The use of the Unified Modeling
Language (UML) is motivated as a modeling language for this purpose, in particular, UML
Statecharts for behavioral modeling. Next, a brief description of the current state-of-the-
art in formal approaches for UML Statecharts is given and a rationale for the choice of
the particular formalization used in this work is also examined. Finally, Software Product
Lines are presented together with its relation with Feature Diagrams as a tool for modeling
the inherent variability of a family of systems, and a brief description of the current state-
of-the-art in formal variability modeling is presented.

2.1 Model-Driven Development

The use of models in engineering and applied sciences is one of the most fundamental
technique for addressing inherent complexity. Models provide abstractions of a real-world
system that enables the reasoning about that system by ignoring superfluous details while
focusing on the relevant ones. Models are used in many ways: predicting the system
behavior, reasoning about particular properties, early evaluation about possible system
changes, and even communicating important system characteristics. Depending on what
is considered relevant, various modeling concepts and notations may be used, in order to
provide different “views” of the system. Furthermore, it is often necessary to transform
between different views of the system at an equivalent level of abstraction, for example,
between a structural view and a behavioral view. In other cases, a transformation converts
models between levels of abstraction, usually from a more abstract to a less abstract view,
by adding more detail.

Models and model transformations form the basis for a set of software development
techniques known as Model-Driven Development (MDD) [BG05]. In that context, models
are used to reason about the problem and the solution domain. Applying formal rigour to
the semantics of these models, it is possible to define precise rules in order to automate
the steps needed to transform one model to another; to trace between model elements
and transformations and to analyse relevant characteristics of the models. Each model
should be based on a formalism, in order to rigorously define its syntax and semantics.
Syntax refers to the way that symbols may be combined to create well-formed sentences
in the language, that is, the form and structure of symbols in a given language. Seman-
tics, on the other hand, defines the meaning of syntactically valid strings in a language.
Three main semantics approaches can be distinguished: Operational semantics, in which
the meaning of a construct is specified by the computation it induces when it is executed
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(how to execute); Denotational semantics, in which the meaning is modeled by mathemat-
ical objects that represent the effect of executing the constructs (effect of the execution);
and Axiomatic semantics, in which the meaning is expressed through properties about
the language constructs, expressed with axioms and inference rules from symbolic logic
(correctness properties). Visual formalisms are also very useful in order to simplify the
communication between different stakeholders involved in a software development process.

One specific implementation of the MDD is the Model-Driven Architecture (MDA),
which is supported by the Object Management Group (OMG) [Gro11]. MDA introduces a
set of layers that describe different levels of abstraction and uses model transformations as
a central element, principally to transform high-level models (such as platform-independent
models) toward more implementation-oriented models (platform-specific models). A key
characteristic of the MDA approach is to recognize that transformations can be applied to
abstract descriptions of some aspect of a system to add more detail, refine that description
to be more concrete, or to convert it to another representation. The MDA approach
provides an open, neutral basis for system interoperability via OMG’s established modeling
standards [BG05]. MDA uses the Unified Modeling Language (UML) as its specification
language [Gro05]. This language has become the industry and academic standard for
system specification.

2.2 Unified Modeling Language

The Unified Modeling Language (UML) is a set of graphical languages for specify and
document the artifacts of a software-intensive system. These languages allow specifying a
wide variety of aspects of a system, from static structure to dynamic behavior. Structure
can be described with static model elements such as classes, relationships, nodes, and
components. Behavior describes how the elements within the structure interact over time.
Moreover, any UML language can be extended by its own extension mechanisms in order
to define domain-specific models.

UML has its roots on object-oriented modeling languages. From the late 1980s, prac-
titioners, faced with a new generation of increasingly complex software systems, began to
experiment with alternative approaches to analysis and design. Learning from experience,
three clearly prominent methods emerged, each one with its own notation: The Booch
method devised by Grady Booch; the Object Modeling Technique (OMT) devised by Jim
Rumbaugh; and the Object Oriented Software Engineering (also known as Objectory) de-
vised by Ivar Jacobson. The UML standardization effort started officially in October 1994,
with the establishment of a UML consortium, with several partners conformed by leading
software industry firms. Finally, UML 1.0 was offered for standardization to the Object
Management Group (OMG) in January 1997.

UML 2.0 presents four languages to specify dynamic behavior: Use Cases, State Ma-
chines, Activities, and Interactions. Use cases captures the behavior of the system as it
appears to an outside user. It specifies functional requirements of the system from the
user point of view. State Machines, which are the main concern of this work, specify the
dynamic behavior of objects over time. Each object communicates with the rest of the
world by detecting events and responding to them. An Activity is a graph of nodes that
shows the flow of control and data through the concurrent steps of a computation. Finally,
Interactions are used to describe how a set of objects interact with each other in a specific
scenario.

UML is defined using a metamodel, that is, a model of the constructs in UML. The
metamodel itself is expressed in UML. Each section of the UML specification document
contains a diagram showing a portion of the metamodel; a text description of the elements
defined in that section, with their attributes and relationships; a list of constraints on
elements expressed in natural language and in Object Constraint Language (OCL); and a
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text description of the dynamic semantics of the UML constructs defined in the section.
According to [RJB04] “The dynamic semantics are therefore informal, but a fully formal
description would be both impractical and unreadable by most”. The metamodel is divided
into two main packages, structure, which defines the static structure of UML and behavior,
which defines the dynamic structure of UML.

Although UML is simple and flexible, it is not the ideal MDA specification language
since it is defined using natural language and/or semi-formal language instead of being
described in a fully formal way. The lack of a formal setting leads to ambiguous (interpreted
in more than one way are possible), imprecise (no clear statement is made), inconsistent
(some parts are in contradiction with other ones) and erroneous (it is unclear whether
the implicitly given interpretation is the intended one) specifications, as pointed out in
the literature [SG98, RW99, FSKdR05, FKS05]. Many of the detected ambiguities and
inconsistencies are removed in UML 2.0 [Gro05], but new ones are introduced. Without
a rigorous semantic definition, precise model behavior over time is not well defined and
automatic code synthesis is not possible to achieve.

This deficiency can be understood in part, because there are thirteen diagram types
in UML 2.0. Each notation itself forms a complex language, and the notations are interre-
lated and interdependent, making the task of providing a unified semantics very challenging
[HR00]. These drawbacks are present since the beginning of UML, and promoted extensive
academic work in order to solve them [BCR00, BLMF00, CGW05, CK01, Mer02, Krü02,
CK04, SZ08, CGW06, BCR, GZK02, Jür02, RCA01, SH05, Stö03, BCD+06]. In general,
these works were developed independently, which implies a weakness for achieving a com-
plete and unified semantics. Recently, an heterogeneous approach to the semantics of UML
is proposed which deals with the integration of different formalisms. The idea is to define a
family of formalisms capturing various UML sublanguages, and morphisms that represent
the expected semantic relationships between them [CKTW08]. For the purposes of this
work, a survey on the formal semantics approaches for UML Statecharts is given in section
2.4.

2.2.1 UML Statecharts

In several branches of computer science state transition diagrams are commonly used to
describe the behavior of real world systems. Those diagrams represent a model of compu-
tation called finite state machine, which consists of a finite set of states, an initial state,
an input alphabet of events and a transition function which maps current states and event
symbols to next states [HU79]. However, as soon as the behavior of the described system
becomes complex, the diagram gets unmanageable from the modeler’s point of view (this
is usually called state and transition “explosion”).

In the late 80’s, Harel [Har87] developed an effective visual formalism able to express
structure by means of hierarchical states. He called this visual formalism “statecharts”.
In Harel words, this new formalism “extends conventional state transition diagrams with
essentially three elements, dealing, respectively, with the notions of hierarchy, concurrency
and communication”. Basically, it allows to describe states in a modular way. In contrast
to the usual state transition diagrams which are flat, unstructured and sequential, in the
statecharts philosophy each state consists of a hierarchy of states. Behavior is then modeled
by the execution of series of actions which are determined by transitions that are triggered
by events, one by one being dispatched. Unfortunately, Harel’s extension comes with a
price: it is only a visual formalism. Far from being a finished work, statecharts evolved
over the years, summing up to at least 20 variants [Bee94, Har97].

UML behavioral state machines, UML Statecharts, are extensively used in the software
engineering community for modeling the reactive behavior of object-oriented systems. UML
Statecharts were incorporated by the OMG to UML 1.1 in 1997, and it was subject to
examination during the UML 1.2 and 1.3 revisions. Moreover, UML Statecharts are one of
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the four languages to specify dynamic behavior and serves the foundation for Interactions
[Gro05], and was for Activities in UML 1.x.

2.3 Formal Methods

Formal methods is the name usually given to a set of design techniques that rigorously use
mathematical models to build software systems. In contrast to other design systems, formal
methods use mathematical proofs as a complement to system testing in order to ensure
correct behavior. As systems become more complex, the formal approach to system design
offers an additional level of confidence. Formal design can be seen as a three step process:
First, the formal specification phase. The designer defines a system using a modeling
language. This is the process of converting a problem written in natural language into a
mathematical notation. Formal modeling languages syntax is rigorously defined, making
it possible to distinguish between well-formed formulas and non-well-formed ones. The
second phase is the verification: This is the stage in which formal methods differ most
from other specification techniques and it involves the use of theorems in order to prove
that the system is correct. It is a difficult process, because even a simple system comprises
several theorems. In order to accomplish this, almost any formal method uses some sort of
automated or semi-automated proving tool. These tools can prove elementary theorems,
verify the semantics of the system, or just provide assistance for developing complicated
proofs. The third and final phase is the implementation, in which the specification is
converted into code. This conversion can be done using code generators in order to obtain
provable-correct by construction implementation, which implies a substantial reduction of
testing effort. Code generation is the essence of model driven approaches in order to be
able to abstract specific implementation details from the designer’s mind. Then, the the
code generators automatically translate models into implementations.

As mentioned before, the main benefit of formal methods is provability. Furthermore,
formality promotes discipline, because it requires thinking in a more systematic way. This
discipline can help identifying faulty reasoning in earlier stages of software development.
Formal methods also provide a formal and rigorous framework as in other classical (me-
chanical, civil) engineering processes. The use of formal specification languages, which are
generally coupled with a system of logic inference, enables the construction of automa-
tized tools that verify the formal properties of the conceptual models created in the earlier
stages.

2.4 Formal Semantics Approaches of UML Statecharts

As mentioned in section 2.2 UML languages are only informally defined. Several efforts
have been made in order to give formal semantics to these UML languages. In order to
illustrate the landscape of different semantic approaches to UML Statecharts, a succinct
categorization based on [CD05] and [DJPV02] is given. Three main broad categories of
approaches can be distinguished, according to the underlying formalism: Mathematical
Models, Rewriting Systems and Translation Approaches.

1. Mathematical Models: This category comprises semantic approaches which are
based directly on standard mathematical concepts and notations. The advantage of
using a mathematical notation is that it encourages precision and attention to detail,
making it more likely that the resulting semantics is complete and unambiguous. In
principle, the notation should be accessible to anybody with a standard mathematical
background. Four subcategories can be distinguished: Labeled Transition Systems,
Abstract State Machines, Petri Nets and other approaches. These approaches will
be described in detail in section 2.4.1.
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2. Rewriting Systems: A rewrite system typically consists of a set of rewrite rules,
consisting of a left- and a right-hand side. The execution of a rewrite system involves
the repeated application of the rules to some “configuration”. In each application,
an occurrence of the left-hand side of a rule in the configuration is replaced by the
right-hand side. The execution terminates when no matching rule can be found. As a
rewriting system based formalism, the authors distinguish between Graph Rewriting
and Term Rewriting. Graph rewriting (also called graph transformation) provides a
mathematically precise and visual specification technique by combining the advan-
tages of graphs and rules into a single computational paradigm. On the other hand,
Term rewriting is a similar concept to graph rewriting, except that the rewrite rules
are performed on terms rather than on graphs. An introduction to the subject can
be found on [EEPT06] and [BN98].

3. Translation Approaches: This category contains approaches which rely on trans-
lating a UML state machine into some other formal language, such as a specification
language, the input language to a model checker, or a programming language. As a
translation based formalism, the authors distinguish between Model Checking Lan-
guages and Specification Languages. Model checking is a well-researched dynamic
analysis method in which systems are modeled as finite state models. Temporal
logic is used to define properties and the models are checked to verify whether these
properties hold. This approaches typically transforms UML Statecharts into a lan-
guage designed for such analysis. It is important to mention that model checking
languages are not considered truly formal languages. A good introduction to the
subject is [Hol03]. On the other hand, several approaches attempt to inject for-
malism into UML state machines by translating them into an already formalized
specification language, such as Z. An introduction to the subject can be found on
[Jac96].

2.4.1 The Mathematical Approach

Since the formalism used in this work belongs to the mathematical approach, a detailed
description is presented in this section. As mentioned before, four subcategories can be
distinguished:

• Transition Systems: In general, a transition system is essentially a structure
(S,−→) where S is a set of configurations and −→ is a binary relation on S × S

(called the transition relation). Some examples of transition systems are Labeled
Transition System (LTS), Kripke structures and Symbolic Transition Systems. A
natural reference is [MP92, MP95]. The formalization used in the present work is
included in this category. The most relevant approaches included in this category are
[EW00, Esh09], [LMM99, GLM02, MLG06], [Kwo00], [RACH00, CR09] and [vdB02].

• Abstract State Machines: Basically, Abstract State Machines (ASMs) are finite
sets of transition rules of the form if Condition then Updates which transform ab-
stract states. The Condition (also called guard) under which a rule is applied is an
arbitrary predicate logic formula without free variables, whose interpretation evalu-
ates to true or false. Updates is a finite set of assignments of the form f(p1, ..., pn) := p

where pi are arguments and p a specified value, which evaluates to vi and v respec-
tively. The execution is the change in parallel of f at the locations vi to the value
v. The syntax of ASMs is reminiscent of a simple imperative programming language
which makes them quite accessible to users with a programming background. A
software engineering introduction to ASMs is [BS03]. ASMs can also be considered
transition systems [BCR04]. The most relevant approaches included in this category
are [CR00, BCR04], [CHS00, SCH02], [JEJ04], [J0̈2, Jür04] and [KG10].
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• Petri Nets: Petri nets are a well-studied and intuitive formalism that is both
graphical and mathematical. Petri nets are a bipartite directed graph consisting of
two kinds of nodes and two kinds of arcs. The nodes are places and transitions. The
arcs are either input arcs or output arcs.A place is connected to a transition via an
input arc. A connection from a transition to a place is established via an output arc.
Arcs between the same kinds of nodes are not allowed. The places from which an arc
runs to a transition are called the input places of the transition; the places to which
arcs run from a transition are called the output places of the transition. A Petri net
furthermore consists of tokens represented by dots within places. A transition of a
Petri net may fire whenever there is a token at the start of all input arcs; when it
fires, it consumes these tokens, and places tokens at the end of all output arcs. The
firing is atomic, i.e., a single non-interruptible step. Natural references for Petri nets
in software engineering are [Pet81, GV01]. Petri net formalism was introduced in
[Pet62]. The most relevant approaches included in this category are [BP01, BP05],
[BDM02, MC02], [KP00] and [GZ09].

• Other: It is a residual category of approaches that are not included in the preceding
ones. Approaches included in this category are [LC08, LC09].

2.4.2 Rationale of the Transition Based Formalism

The explanation of the fundamental reasons for choosing the transition based formalism
starts with Gordon Plotkins’s [Plo81] words on transition systems: “Very little is required
in the way of mathematical background; all that will be involved is symbol-pushing of
one kind or another of the sort which will already be familiar to readers with experience
of either the non-numerical aspects of programming languages or else formal deductive
systems of the kind employed in mathematical logic”. Structural Operational Semantics
(SOS) was introduced by Plotkin in [Plo81]. A SOS specification defines the behavior of
a program in terms of a set of transition relations. SOS specifications take the form of a
set of inference rules which define the valid transitions of a composite piece of syntax in
terms of the transitions of its components. SOS was intended as being like an abstract
machine but without all the complex machinery in the configurations, just the minimum
needed to explain the semantical aspects of the programming language constructs. The
extra machinery is avoided by the use of the rules, making the exploration of syntactical
structure implicit rather than drearily explicit. In an operational semantics the focus
are the operations the system can perform. In Plotkin’s words: “... it is an operational
method of specifying semantics based on syntactic transformations of programs and simple
operations on discrete data. The idea is that in general one should be interested in computer
systems whether hardware or software and for semantics one thinks of systems whose
configurations are a mixture of syntactical objects - the programs and data - ...”. In
the operational semantics the meaning of a construct is specified by the computation it
induces when it is executed on a machine. In particular, it is of interest how the effect
of a computation is produced. This leads to an ease on the implementation of an SOS
semantics in a rule based programming language, like Prolog.

Von der Beeck’s [vdB02] semantics provides a reasonable coverage of UML 1.4 stat-
echarts features, and it is easy to extend both its syntax and semantics. The approach
includes full support of the history mechanism (shallow and deep cases) and intralevel
transitions which are in general not supported by the rest of the approaches. As will be
presented, the definition of the semantics is modularized in two phases as follows: In the
first phase an auxiliary UML Statecharts semantics is defined which only deals with pro-
cessing single input events, but not with sequences of input events. In a second phase this
auxiliary semantics is used to define the (complete) UML Statecharts semantics, which is
done by processing sequences of input events. This separation already supports modularity.
Furthermore, concepts from the SOS approach are used, that is, the auxiliary semantics
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is a function on the set of labeled transition systems and where the (semantic) transitions
work on single input events. For the second phase, Kripke structures are used as the se-
mantic domain. This selection simplifies the processing of event sequences considerably,
since Kripke structures are very appropriate for modeling the fact that the output of one
step serves as (part of) the input of the next step. Both phases constitute an operational
and modular approach, such that comprehension as well as flexibility (e.g. with respect to
subsequent enhancements) are supported without restricting preciseness.

Another advantage of von der Beeck’s semantics is that all of the features implemented
comply with the UML specification [Gro05], as for example the conflicting transitions
execution priority or the maximality principle (in each step of the semantic execution, the
maximum number of non conflicting transitions must be taken).

However, many features of UML Statecharts have not been considered in this work:
final, junction, choice and terminate pseudostates; deferred, time, and change events; com-
pletion transitions; guards, variables, and data dependencies in transitions; creation and
destruction of objects; send clauses within actions; and do actions. Some of those features
can be covered easily, like final pseudostates and do actions. In section 9.2.1 a comment on
possible extensions, in order to cover a wider range of UML 2.0 statecharts features, will
be given.

2.5 Software Product Lines

According to the Software Engineering Institute [SEI11a], a Software Product Line “is a
set of software-intensive systems that share a common, managed set of features satisfying
the specific needs of a particular market segment or mission and that are developed from
a common set of core assets in a prescribed way. A Software Product Line epitomizes
strategic, planned reuse.”. One of the major motivations behind Software Product Lines
(SPLs) is that they can be more efficient to manage a group of similar software systems as a
whole, rather than considering each individual system on its own [Gom05, CN02, SEI11b].
The main goal of SPL engineering is to achieve software reuse in a strategic, prescribed
way, while using a managed set of features [JKB08].

SPL engineering introduces two new dimensions into the traditional software engineer-
ing approaches: variability modeling and product derivation. Variabilities are characteris-
tics or features that varies from one product to another, whereas product derivation is the
process of constructing products from the product line.

2.5.1 Variability Modeling

SPL engineering has to provides a mean to describe the commonalities and variabilities
between different products. Usually, Feature Diagrams are used to document this. Fea-
ture Diagrams are a family of popular modeling languages used for engineering require-
ments in SPLs. Feature Diagrams were introduced by Kyo Kang in 1990 as part of the
Feature-Oriented Domain Analysis (FODA), which is a method for systematic discovery
and exploitation of commonality across related software systems to support software reuse
[KCH+90, Kan10].

Although there were initial attempts to develop a formal definition for FD, the first
systematic treatment of formal semantics was given by [SHT06, SHTB07]. In that work,
Schobbens et al generalizes the various syntaxes found in the literature into a generic
construction, called Free Feature Diagrams (FFD). The formal semantics is then defined at
FFD level, in which “all formalization choices found a clear answer in the original FODA
FD definition”. Finally, they showed that the original FODA FD definition suffered no
ambiguity problem. Due its importance, a comparison with the present work is given in
chapter 5.
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In [CHE05a] and [CHE05b], Czarnecki et al. define a new Feature Diagram language
to account for staged configuration. They introduce feature cardinality (the number of
times a feature can be repeated in a product) in addition to the more usual (group) car-
dinality. The semantics is defined in a staged process where FDs are translated into an
extended abstract syntax, a context-free grammar and an algebra. In [JB08], the authors
provide a formalization of dependencies between features and components and propose
automated techniques to derive additional information and provide feedback to the user.
Other approaches include [dJVI02] which proposes the use of context-free grammars and
the feature configurations are defined as the sentences generated by the pertaining gram-
mar. This idea is extended in [Bat05] by combining grammars and propositional logic. Van
der Storm [VDS07] maps features to components, which are organized in a dependency tree.

2.5.2 Product derivation

Although variability in software systems is not a new problem, the key difference in a
SPL context is that variability involves not only a single product and variability cannot
be resolved after the product is delivered to the user. In this context, variability must
be specified in the development process and is an integral part of the product line. The
“single product” variability is usually called “run time variability”, and the SPL variability
is usually called “development time variability” [ZHJ04c].

Product derivation support of a particular SPL engineering approach is an important
criteria in order to go beyond the description of the PL and serve the propose for resolv-
ing variability and obtaining products [CABA09]. Current product derivation approaches
can be classified into two main categories: configuration based and transformation based
[PKGJ08].

The first approach bases the derivation process on Feature Models (FD). For example,
in the FORM approach [KKL+98], Kang et al. define a derivation process which starts
with an analysis of commonality among applications in a particular domain. The model
constructed during the analysis is called a feature model, which captures mandatory and
alternative features. This model is used to define parameterized architectures and reusable
components instantiatable during application development. According to the authors “Pa-
rameterization of artifacts with features and development of applications through selection
of feature sets is a powerful synthesis technique for implementing an effective application
generator for a stable domain”. This refinement approach was later formalized by Czarnecki
[CHE05a, CHE05b, Cza05]. In that work, feature models are mapped to UML activity and
class diagrams via annotations, and then an automated configuration process is realized.
In [Pre03], the author presents a set of graphic “plug-and-play” specification rules for the
construction of statecharts, which allows to combine features based on semantic refinement.
In that work, a refined statechart has fewer possible traces and is hence more concrete, in
contrast to the present work in where a refined statechart has an augmented behaviour.
In [VG07], the authors provide a mapping from the problem domain (modeled as a feature
model) to the solution domain.

The second approach consists of transforming core assets rather than configuring them.
In general this approach is aligned with MDA standards. Usually, at the requirements level,
the product line is modeled in terms of UML use cases and then model transformations
relates this requirements to core assets, modeled in terms of UML class and sequence
diagrams. The variability is realized via stereotypes, and OCL constraints are used in
order to ensure consistency. Finally, a model transformation taking the product line model
as its parameter, transforms the core assets into a platform specific model which is finally
implemented in the target platform [ZJ06, KMHC05, ZHJ04c].



Chapter 3

Syntax and Semantics of UML
Statecharts

In this chapter, main concepts and definitions of UML Statecharts used in this work are
presented. These definitions are based on the paper “A structured operational semantics
for UML-statecharts” by M. von der Beeck [vdB02]. First, the formal syntax of UML
Statecharts is presented and the concept of configuration is discussed. Then, given a UML
statechart, it is shown how a UML statechart transition modifies the actual configuration
of the state. After that, the two phase semantics is presented, first, the auxiliary semantics
which only deals with single input events, and second, the complete semantics who deals
with sequences of input events.

3.1 Syntax

UML Statecharts (or simply statecharts) constitutes a notation to describe behavioral
aspects of a system. As mentioned before, UML Statecharts are a generalization of finite
state diagrams. Basically, UML Statecharts consist of states and transitions between them.
The main feature of statecharts is that states can be refined, defining a state hierarchy.
The decomposition of a state can be either sequential or parallel. In the first case, a
state is decomposed into a new state automaton (OR state), while in the second case a
state is decomposed in two or more automata that can execute concurrently (AND state).
Transitions are directed arrows between states. A transition connects a source state to a
target state, and inter-level transitions are allowed. Transitions are labeled by a trigger
event, a sequence of actions and the type of history of the target state. There is a history
mechanism that allows transitions to reenter a sequential state in the last active substate.
UML Statecharts follow the run-to-completion assumption, that is, “an event occurrence
can only be taken from the pool and dispatched if the processing of the previous current
occurrence is fully completed” [Gro05].

UML distinguishes between states and pseudostates. The key difference is that pseu-
dostates are never elements of an active state configuration; they mainly serve to model
compound transitions or to reduce the graphical complexity. Pseudostates do not have
names or associated actions. An example is the history pseudostate.

Let S, T , A, E be countable sets of state names, transition names, actions and events
respectively with E ⊆ A. S contains an empty name denoted by λ. Events and actions are
denoted by a, b, c, .. and sequences of events as well as actions by α, β, γ, .... The empty
sequence is denoted by (). The set SC of statecharts is inductively defined by the rules in
figure 3.1, together with the functions name: SC → S, that is, the name of the statechart,
and the predicate wf-tran (defined below), which decides if a transition is well formed with
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respect to a set of states. Abusing the notation, name(s) is abbreviated with ŝ. The same
applies to transitions.

ŝ ∈ S en, ex ∈ A∗

[ŝ,(en,ex)] ∈ SC
Basic

s1, .., sn ∈ SC, ŝi 6= ŝj ∀i 6=j

ŝ ∈ S, ŝ 6= ŝi ∀i=1..n

en, ex ∈ A∗

[ŝ,(s1,..,sn),(en,ex)] ∈ SC
And

s1, .., sn ∈ SC, ŝi 6= ŝj ∀i 6=j

ŝ ∈ S, ŝ 6= ŝi ∀i=1..n

T ⊆ T, wf-tran({s1, .., sn}, t) ∀t∈T
ŝl ∈ S.l ∈ {1, .., n}
ŝd ∈ S.d ∈ {1, .., n}
en, ex ∈ A∗

[ŝ, (s1, ..sn), ŝd, ŝl, T, (en, ex)] ∈ SC
Or

Figure 3.1: Syntax of Statecharts

The rules are explained as follows:

Basic Statecharts: s = [ŝ,(en,ex)] is a basic statechart with name ŝ, entry sequence of
actions en, exit sequence of actions ex and type(s) = basic.

And-Statecharts: s = [ŝ,(s1,..,sn),(en,ex)] is an and-statechart with name ŝ, parallel
substates s1, .., sn, n > 0, entry sequence of actions en, exit sequence of actions ex

and type(s) = and.

Or-Statecharts: s = [ŝ, (s1, .., sn), ŝd, ŝl, T, (en, ex)] is an or-statechart with name ŝ,
parallel substates s1, .., sn, n > 0, entry sequence of actions en, exit sequence of
actions ex, ŝd is the name of the default initial substate1, where d ∈ {1, .., n} is the
index of the default initial substate, ŝl is the name of the current active substate of
s, l ∈ {1, .., n} is the index of the current active substate, T is the set of transitions
between its substates, s1 is the default state of s, type(s)=or. The syntax presented
in [vdB02] is extended, requiring a default substate in the Or-Statechart. According
to the UML superstructure specification [Gro05] , a composite state without initial
substate can be considered as an ill-formed model. Then, in this work, an initial
substate is required.

The set of transitions T is included in T := T ×S × P(S)×E×A∗×P(S)×S×HT,
where HT = {none, shallow, deep} are the history types.

Further define:
SCB = {s∈SC | type(s)=basic}

SCA = {s∈SC | type(s)=and}

SCO = {s∈SC | type(s)=or}.

Given a statechart s, the following projection functions are defined: act-en(s) := en and
act-ex(s) := ex which are the corresponding entry and exit sequences of actions. Given a

1In order to simplify the notation, the name is denoted with the index only, because within a
statechart each substate can be uniquely referred to by its name.
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statechart transition t = 〈t̂,ŝi,Sr,e,α,Td,ŝj ,ht〉 ∈ T, the following are defined: name(t) := t̂,
is the name of the transition t, sou(t) := si, tar(t) := sj , are the source and target states
of t respectively, sou-r(t) := Sr, is the source restriction set, ev(t) := e, is the triggering
event of t, act(t) := α, is the action sequence associated to t, tar-d(t) := Td, is the target
determinator set, historyType(t) := ht, is the history type of t. A transition t uses the
history mechanism, if historyType(t) ∈ {deep, shallow}. There are two types of history
pseudostates defined in UML: shallow and deep history. A shallow history pseudostate is
used to represent the most recently active substate. The shallow history pseudostate does
not recurse into its substates active state configuration. A deep history pseudostate, in
contrast, recurses into the most recently active substates of that substate, if they exist.
That is, it “remembers” the active substates along the state hierarchy down to the basic
states.

Source restriction and target determinator provide a means for modeling an interlevel
transition by a simple transition on the level of the uppermost states the interlevel transition
exits and enters. The source and target of the interlevel transition are represented as
additional label information by the source restriction and the target determinator.

In the definition of Or-statecharts, the predicate wf-tran ⊆ P(SC) × T, defined by
mutual recursion, decides if a transition t is well formed with respect to a set of states
s1, .., sn and it is defined as wf-tran({s1..sn}, t) ⊆ (sou(t), tar(t) ∈ {s1.., sn}) ∧ (sou-r(t) ∈
ec-all(sou(t))∨sou-r(t) = ∅)∧(tar-d(t) ∈ ec-all(tar(t))∨tar-d(t) = ∅). The definition of ec-all
is postponed to the next section. Please note that the definition of wf-tran is well founded.

Note that the definition of SC implies that, within a statechart, each substate can
be uniquely referred to by its name. This is an important fact regarding configurations,
which is the topic of the next section. From now on, if there is no risk of ambiguity, when
denoting a state only the syntactic elements that are relevant in each case are shown. The
abbreviation s1..k for s1, s2, .., sk is extensively used. Finally, the substitution notation
is used as follows: If t is a term, then t[a/b] is the term which results from replacing all
occurrences of a in t by b.

In figure 3.2 a graphical representation of each type of state is shown.
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Figure 3.2: Basic-; And-; Or- statechart examples, respectively

3.2 Statechart Configurations

A configuration is a valid global state of a statechart. While the system is in a configuration,
events can occur. In response, the system leaves the current configuration by taking a set of
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transitions, and enters a new configuration. At the same time, new events can be generated
to which the system should respond in the same way. A configurations describes snapshots
of a statechart execution.

The function conf: SC → P(S) gives the current configuration of a statechart s, i.e. the
set of the names of all currently active substates within s (also including ŝ):

conf([ŝ]) := {ŝ}
conf([ŝ, (s1..n), l, T ]) := {ŝ} ∪ conf(sl)
conf([ŝ, (s1..n)]) := {ŝ} ∪

⋃

i=1..n conf(si)

The function conf-all: SC → P(P(S)) computes the set of all potential configurations
of a statechart s (complete or incomplete). By potential, it is implied that not only the
current active substate of an or-substate is considered, but all possibilities for choosing
such a substate. Note the difference with the definition of conf. The term incomplete
denotes a configuration which results from an application of conf-all where the recursion
terminates before the basic states are reached. This definition is crucial to handle inter-
level transitions just like normal transitions on the level of the uppermost states that the
inter-level transition exits and enters.

conf-all([ŝ]) := {{ŝ}}
conf-all([ŝ, (s1..n), T ]) := {{ŝ} ∪ c|∃i ∈ {1..n}.c ∈ conf-all(si)} ∪ {{ŝ}}
conf-all([ŝ, (s1..n)]) := {{ŝ} ∪

⋃

i=1..n ci|ci ∈ conf-all(si)} ∪ {{ŝ}}

Incomplete configurations are realized in the second and third cases of the definition
by the union with the term {{ŝ}}. Note that ∀s ∈ SC : conf(s) ∈ conf-all(s).

The set of possible partial configuratons is further expanded in order to include in-
complete parallel configurations. An incomplete parallel configuration is such that it is
possible to know the configuration of some of the parallel components of a state, but not
all of them. That is,

ec-all([ŝ]) := {{ŝ}}
ec-all([ŝ, (s1..n), T ]) := {{ŝ} ∪ c|∃i ∈ {1..n}.c ∈ ec-all(si)} ∪ {{ŝ}}
ec-all([ŝ, (s1..n)]) := {{ŝ} ∪

⋃

i⊆{1,..,n} ci|ci ∈ ec-all(si)} ∪ {{ŝ}}

The first two cases are analogous to conf-all. The third one allows as a valid config-
uration a parallel incomplete one, that is, one can “choose” a subset of {s1, .., sk}. For
example, let s = [ŝ, (s1, ..sk)], where s1, ..., sk ∈ SCB . Then, ec-all(si) = {{ŝi}}, ∀i = 1, ..k
and

ec-all(s) ⊃ {{ŝ1}, {ŝ3, ŝ2}, {ŝ1, ŝ4, ŝk}}

The need of this relaxation will become clear later, in section 6.1. Note that, by
definition, ∀s ∈ SC : conf-all(s) ⊆ ec-all(s).

3.3 Computing the Next State

If a UML statechart transition is executed, particularly its history type and possibly its
target determinator have to be considered. Therefore, the function next is defined, which
computes the next state after a UML statechart transition t is executed. Later, this function
is used in the SO semantics rule which handles transition execution in an OR statechart.

Given a UML statechart transition t, with target s, history type ht=historyType(t)
and target determinator N=tar-d(t) the function next: HT× P(S)× SC → SC computes
the UML statechart term s′ = next(ht,N, s) which results after the execution of transition
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t.

next(ht,N, [ŝ]) := [ŝ]

next(ht,N, [ŝ, (s1..n), l, T ]) :=







[ŝ, (s1..n)[sj/next(ht,N,sj)], j, T ]

if (∃ν ∈ N, j ∈ {1..n}).ν = ŝj
next-stop(ht, [ŝ, (s1..n), l, T ]) otherwise

next(ht,N, [ŝ, (s1..n)]) := [ŝ, (next(ht,N, s1), .., next(ht,N, sn))]

The terms s and s′ = next(ht,N, s) have identical static structure, only the currently
active substate information may change. Here it becomes clear why the naming convention
is needed: If N contains one of the state names of the substates s1, ..., sn then the active
state is replaced by sj and the function is recursively applied. Then, if N = tar-d(t),
the target determinator information is exploited when zooming into the state hierarchy.
Otherwise, i.e. if N does not contain a name ν of one of the state names of the substates
s1..k, function next-stop is called which uses the history type information to determine
currently active substates of a state:

next-stop(ht, [ŝ, (s1..n), d, l, T ]) :=







[ŝ, (s1..n), d, l, T ] if ht = deep

[ŝ, (s1..n)[sd/def(sd)], d, d, T ] if ht = none

[ŝ, (s1..n)[sl/def(sl)], d, l, T ] if ht = shallow

Note that, if ht = none, then the active state is now the default substate, and the function
def is used to initialize the substate sd.

The function next-stop uses the function def: SC → SC which defines for an s ∈ SCO

that its currently active substate is given by its default substate:

def([ŝ]) := [ŝ]
def([ŝ, (s1..n), d, l, T ]) := [ŝ, (s1..n)[sd/def(sd)], d, d, T ]

def([ŝ, (s1..n)]) := [ŝ, (def(s1), ..., def(sn))]

When a UML statechart transition t is taken, a set of actions is executed. In general,
if a transition from state si to sj with action part α is taken, then the sequence of actions
ex::α::en is executed, with ex ∈ exit(si), en ∈ exit(sj), where the infix operator :: appends
sequences of actions.

exit([ŝ, (en, ex)]) := {ex}
exit([ŝ, (s1..k), l, T, (en, ex)]) := {ex′::ex | ex′ ∈ exit(sl)}
exit([ŝ, (s1..k), (en, ex)]) := {m1::..::mk::ex| ∃p:{1..k}↔{1..k}.∀i mi∈exit(sp(i))}

entry([ŝ, (en, ex)]) := {en}
entry([ŝ, (s1..k), l, T, (en, ex)]) := {en::en′ | en′ ∈ entry(sl)}
entry([ŝ, (s1..k), (en, ex)]) := {en::m1::..::mk| ∃p:{1..k}↔{1..k}.∀i mi∈entry(sp(i))}

where “↔” denotes a bijective function.

3.4 Structured Operational Semantics

Given s ∈ SC, its structured operational semantics (SO semantics) [[s]]aux is given by a
Labelled Transition System (C,L,−→, conf(s)) where C is a set of state label sets (config-
urations), L ⊆ E×A∗×{0, 1} is the set of labels, −→⊆ C×L×C is the semantic2 transition
relation, and conf(s) is the start configuration.

C is defined as C := conf-all(s), where L and −→ are defined by the rules in figure 3.3.

We note c
e
−→

f

α c′ for (c, (e, α, f), c′) ∈ −→, and c 6
e
−→

f
for 6 ∃c′, α.c

e
−→α c′.

2We use the term semantic to differentiate the semantic transition relation from the syntactic
element UML transition.
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Idle

[ŝ]
e
−→

0

〈〉 [ŝ]
BAS

Progress

〈t̂,l,Sr,e,α,Td,m,ht〉 ∈ T, Sr ⊆ conf(sl), sl 6
e
−→

1

[ŝ, (s1..k), l, T ]
e
−→

1

ex::α::en [ŝ, (s1..k)[sm/next(ht,Td,sm)],m, T ]
OR-1

where ex ∈ exit(ss) and en ∈ entry(next(ht, Td, st))

Propagation of progress

sl
e
−→

1

α s′l

[ŝ, (s1..k), l, T ]
e
−→

1

α [ŝ, (s1..k)[sl/s′l], l, T ]
OR-2

Propagation of stuttering

[ŝ, (s1..k), l, T ] 6
e
−→

1
, sl

e
−→

0

〈〉 sl

[ŝ, (s1..k), l, T ]
e
−→

0

〈〉 [ŝ, (s1..k), l, T ]
OR-3

Composition

∀j∈{1,...,k}.sj
e
−→

fj
αj

s′j

[ŝ, (s1..k)]
e
−→

∨k
j=1

fj
α [ŝ, (s′1..k)]

AND
(

α ∈ perm(α(i))
)

Figure 3.3: Rules of the SO semantics

The stuttering flag f is used to reflect the priority mechanism for statecharts transi-
tions. It also allows the semantics to fullfill the maximality condition of UML statecharts,
that is, a maximal number of non conflicting statechart transitions is taken when a se-
mantic transition is performed. The stuttering flag f can take the values 0 or 1. If f=0,
then no statechart transition is taken, only the event e is consumed. If f=1 a statechart
transition is taken. The flag is needed to assure that idle steps can only occur if no non-idle
step is possible. A key role is played by the stuttering step (f = 0), since when no UML
statechart transition can be taken, a stuttering step (loop) can be done.

Let us explain the OR rules:

OR-1: This rule models a semantic transition from a statechart transition. Given a
statechart transition of an OR state with trigger e, then that state can perform a semantic
transition with positive flag and trigger e, given that, the source restriction is a complete
current configuration of the currently active substate sl (Sr ⊆ conf(sl)) and sl cannot
perform a semantic transition with input e and positive flag.
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OR-2: This rule propagates the progress of rule OR-1. If the current active substate
can perform a semantic transition with positive flag, then the OR state may perform a
semantic transition with positive flag.

OR-3: This rule propagates the negative flag. That is, if the current active substate
can perform a semantic transition with negative flag, and if the OR state cannot perform a
semantic transition with positive flag, then the OR state can perform a semantic transition
to itself with positive flag.

3.5 Complete Semantics

As mentioned before, the semantics is divided in two phases, in the first one the auxiliary
semantics is defined (section 3.4), and in a second one Kripke structures and the auxiliary
semantics are used to define the complete semantics. Given a sequence of input events,
the statechart performs a sequence of steps, such that one event of the current sequence of
input events is consumed and then a sequence of actions is generated which is added to the
remaining sequence of input events. This results in a new sequence of input events which
are used in the subsequent step. Kripke structures (a transition system with an initial
state) are used in order to model this.

The complete semantics is then, [[]] : SC → K, where K is the set of Kripke structures.
Given s ∈ SC, its complete semantics is given by [[s]] = (S, st,=⇒) ∈ K such that S =
SC × A∗ is the set of Kripke states, st = (s, ǫ0) ∈ S is the start state (ǫ0 ∈ A∗) and the
transition relation =⇒⊆ S × S is defined by the rule:

s
e
−→
α f

s′

(s, ǫ) =⇒ (s′, ǫ′′)
GI (∃(ǫ, e, ǫ′) ∈ sel, ∃(α, ǫ′, ǫ′′) ∈ join)

where

• sel ⊆ A∗ × (A × A∗), given a sequence of events, separates one event from the
rest. That is, if (ǫ, e, ǫ′) ∈ sel, then it separates e from sequence ǫ and the resulting
sequence is ǫ′.

• join ⊆ (A∗×A∗)×A∗, composes two sequences of events. That is, if (α, ǫ′, ǫ′′) ∈ join

then it composes α to the sequence ǫ′ and the resulting sequence is ǫ′′.

Relations sel and join are defined by the user. This is in accordance to the UML definition
which does not define the scheduling strategy of the input event queue.





Chapter 4

Extension and Union of UML
Statecharts

In this chapter, an extension relation is defined between UML Statecharts. This extension
determines a partial order, which represents when an statechart has a richer structure than
another one. Then, given two different extensions of the same statechart, the question
on whether there is a way to combine both extensions into an integral new statechart is
addressed, showing how this process of combination is formalized. This results into a union
operation of UML Statecharts.

4.1 Extension Relation

In this section, a relation ≺ between statecharts is defined, such that s1 ≺ s2 (read “s2
extends s1”) if s2 enriches states or transitions of s1 with more complex structures. The
definition of the extension relation is given in two stages, first the one-step extension
relation ≺

1
in figure 4.1.

Basically, it is possible to extend a statechart by either adding a parallel or sequential
statechart to it, by adding a new transition between two existing states, or by adding
actions in transitions or entry and exit actions. For this last extension, the relation ⊳ is
defined between sequences of actions as the ordinary subsequence relation between elements
of A∗ (α ⊳ α′ means that α is a subsequence of α′). The subsequence relation is a partial
order. We extend subsequence relation to transitions in the following way. Given t =
〈t̂,j,S,e,α,T ,k,ht〉 ∈ T and t̃ = 〈t̂,j,S,e,α̃,T ,k,ht〉 ∈ T, two statechart transitions which
differ only on the generated sequence of actions such that α ⊳ α̃, then we say that t ⊳ t̃.

The next step is the definition of ≺ as the reflexo-transitive closure of ≺
1
which is given

in figure 4.2.
In these definitions it is assumed that the well-formedness conditions of the definitions

given in section 3 hold whenever a statechart is built.
Finally, note that (s1..k, s̃)[st/s′t] = (s1..k[st/s′t], s̃) if t ∈ {1..k} and s1..k, s̃ ∈ SC. If T is

a set, (T \ {t}) ∪ {t′} is denoted by T[t/t′].

Remark 1. The extension relation ≺ defines a partial order on the set SC, up to the
default initial substate and the current active of an Or-statechart.

4.1.1 Extension functions

The rules in figure 4.1 can be written as (partial) functions that, receiving a statechart and
the elements to extend it, returns the extended statechart whenever possible. This will be
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Parallel components

ext-and1
s′ ∈ SCB, ŝ′ 6= ŝ

[ŝ]≺
1
[ŝ, (s′)]

ext-and2
s′ ∈ SCB, ŝi 6= ŝ′ ∀i, ŝ′ 6= ŝ

[ŝ, (s1,..,sn)]≺1
[ŝ, (s1,..,sn, s

′)]

inside-and
si≺1

s′i, ŝ′i 6= ŝj ∀j=1..i−1,i+1..n

[ŝ, (s1, .., sn)]≺1
[ŝ, (s1, .., sn)[si/s′i]]

Sequential components

ext-or1
s′ ∈ SCB, ŝ′ 6= ŝ

[ŝ]≺
1
[ŝ, (s′), 1, 1, ∅]

ext-or2
s′ ∈ SCB, ŝi 6= ŝ′ ∀i, ŝ′ 6= ŝ

[ŝ, (s1,..,sn), d, l, T ]≺1
[ŝ, (s1,..,sn, s

′), d, l, T ]

inside-or
si≺1

s′i, ŝ′i 6= ŝj ∀j=1..i−1,i+1,..n

[ŝ, (s1, .., sn), d, l, T ]≺1
[ŝ, (s1, .., sn)[si/s′i], d, l, T ]

Transitions

add-trans
t ∈ T, wf-tran({s1, .., sn}, t)

[ŝ, (s1, ..., sn), d, l, T ]≺1
[ŝ, (s1, ..., sn), d, l, T ∪ {t}]

Actions

ext-act-trans
α ⊲ α̃, t = 〈t̂,i,Sr,e,α,Td,j,ht〉 ∈ T, t′ ∈ T

[ŝ, (s1,..,sn), d, l, T ]≺1
[ŝ, (s1,..,sn), d, l, T[t/t′]]

where t′ = 〈t̂,i,Sr,e,α̃,Td,j,ht〉

ext-act-en
en ⊳ ẽn

[ŝ, (en, ex)]≺
1
[ŝ, (ẽn, ex)]

ext-act-ex
ex ⊳ ẽx

[ŝ, (en, ex)]≺
1
[ŝ, (en, ẽx)]

Figure 4.1: One-Step Extension Relation ≺
1

one-step
s≺

1
s′

s ≺ s′
reflexivity s ∈ SC

s ≺ s
transitivity

s ≺ s′, s′ ≺ s′′ s, s′, s′′ ∈ SC

s ≺ s′′

Figure 4.2: Extension Relation ≺

used in the case study of Chapter 8 where we use the extension relation as a specification
tool. The following functions are defined 1:

1
→֒ denotes a partial function
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• ext-and : (SCB ∪ SCA)× SCB →֒ SCA,

ext-and([ŝ], s′) := [ŝ, (s′)] if ŝ′ 6= ŝ

ext-and([ŝ, (s1,..,sn)], s
′) := [ŝ, (s1,..,sn, s

′)] if ŝi 6= ŝ′ ∀i ∧ ŝ′ 6= ŝ

• inside-and : SCA × SC× SC →֒ SCA,

inside-and([ŝ, (s1, .., sn)], si, s
′
i) := [ŝ, (s1, .., sn)[si/s′i]]

if si≺1
s′i ∧ ŝ′i 6= ŝj ∀j=1..i−1,i+1..n

• ext-or : (SCB ∪ SCO)× SCB →֒ SCO,

ext-or([ŝ], s′) := [ŝ, (s′), 1, 1, ∅] if ŝ′ 6= ŝ

ext-or([ŝ, (s1,..,sn), d, l, T ], s
′) := [ŝ, (s1,..,sn, s

′), d, l, T ] if ŝi 6= ŝ′ ∀i ∧ ŝ′ 6= ŝ

• inside-or : SCO × SC× SC →֒ SCO,

inside-or([ŝ, (s1, .., sn), d, l, T ], si, s
′
i) := [ŝ, (s1, .., sn)[si/s′i], d, l, T ]

if si≺1
s′i ∧ ŝ′i 6= ŝj ∀j=1..i−1,i+1..n

• add-trans : SCO × T →֒ SCO,

add-trans([ŝ, (s1, ..., sn), d, l, T ], t) := [ŝ, (s1, ..., sn), d, l, T ∪ {t}]
if wf-tran({s1, .., sn}, t)

• ext-act-trans-a : SCO × T× A → SCO, Let t = 〈t̂,i,Sr,e,α,Td,j,ht〉 ∈ T ,

ext-act-trans-a([ŝ, (s1,..,sn), d, l, T ], t, a) := [ŝ, (s1,..,sn), d, l, T[t/t′]]
where t′ = 〈t̂,i,Sr,e,α::a,Td,j,ht〉

equivalently, ext-act-trans-p : SCO × T × A → SCO prepends the action a to the
sequence α.

• ext-act-en-a : SC× E → SC,

ext-act-en-a([ŝ, (en, ex)], e) := [ŝ, (en::e, ex)]

equivalently, ext-act-en-p : SC× E → SC prepends the event e to the sequence en.

• ext-act-ex-a : SC× E → SC,

ext-act-ex-a([ŝ, (en, ex)], e) := [ŝ, (en, ex::e)]

equivalently, ext-act-ex-p : SC× E → SC prepends the event e to the sequence ex.

In figure 4.3 some examples of the extension function are shown.

4.2 UML Statecharts Union

Given a statechart, it can be extended in several ways. The question is whether there
is a way to combine different extensions into an integral new statechart. Formally, given
r1, r2 ∈ SC such that

∃s∈SC. s ≺ r1 ∧ s ≺ r2

the idea is to define a new statechart r1∪r2 such that

r1 ≺ r1∪r2 and r2 ≺ r1∪r2
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Figure 4.3: add-trans, ext-or and ext-and extension function examples

Moreover, a minimum amount of extending steps as possible is desired, i.e.,

∀r3∈SC. (r1 ≺ r3 ∧ r2 ≺ r3) ⇒ r1∪r2 ≺ r3

It is not possible to define the union of two statecharts in all the cases, even if they are
both extensions of the same statechart (consider, for instance, s to be a basic statechart
which is extended parallelly on the one hand and sequentially on the other). Therefore, it
is needed to handle inconsistent statecharts. For the sake of completeness, a new statechart
is added to the syntax defined in section 3.1: ⊤ will stand for the overspecified element
of the set SC, as well as for any statechart having it as a component. Regarding the ≺
relation, ⊤ is a extension of any statechart. Formally,

∀s∈SC. s ≺ ⊤

The definition of ∪ is simple but quite extensive, since all the pairs r1, r2 such that r1
and r2 can be extensions of the same statechart s, according to the definition given in figure
4.1 must be taken into account. It basically consists of carrying out both extensions on the
original statechart, whenever this is possible. In this definition, the current active state
and the default initial substate of an Or-Statechart play no role because they contain only
dynamic information. Note that, given s1, s2 ∈ SC, such that name(s1) = name(s2) = ŝ,
then there always exists s ∈ SC such that s ≺ s1 ∧ s ≺ s2, for instance s can be [ŝ, (〈〉, 〈〉)].

Definition 1. Let r1, r2 ∈ SC such that ∃s∈SC. s ≺ r1 ∧ s ≺ r2, then r1∪r2 is defined by
induction on s ≺ r1.

Since ≺ is the reflexo-transitive closure of ≺
1
, we consider all the rules of ≺

1
plus

reflexivity and transitivity.
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Extension ext-and1:
Let s=[ŝ,(en,ex)] and r1=[ŝ, (s′), (en, ex)], where s′∈SCB

2:

ea1a
r2=[ŝ, (s′′)], s′′∈SCB

r1∪r2 = [ŝ, (s′, s′′)]
(ŝ′ 6=ŝ′′) ea1b

r2=[ŝ, (s′′)], s′′∈SCB

r1∪r2 = [ŝ, (s′∪s′′)]
(ŝ′=ŝ′′) ea1c

r2=[ŝ, (s′′), ∅], s′′∈SCB

r1∪r2 = ⊤

ea1d
r2=[ŝ, (ẽn, ex)], en ⊳ ẽn

r1∪r2 = [ŝ, (s′), (ẽn, ex)]
ea1e

r2=[ŝ, (en, ẽx)], ex ⊳ ẽx

r1∪r2 = [ŝ, (s′), (en, ẽx)]

Extension ext-and2:
Let s=[ŝ,(s1,..,sn),(en,ex)] and r1=[ŝ, (s1,..,sn, s

′), (en, ex)], where s′∈SCB :

ea2a
r2=[ŝ, (s1,..,sn, s

′′)], s′′∈SCB

r1∪r2 = [ŝ, (s1,..,sn, s
′, s′′)]

(ŝ′ 6=ŝ′′) ea2b
r2=[ŝ, (s1,..,sn, s

′′)], s′′∈SCB

r1∪r2 = [ŝ, (s1,..,sn, s
′∪s′′)]

(ŝ′=ŝ′′)

ea2c
r2=[ŝ, (s1, .., si, .., sn)] si ≺ s̃i

r1∪r2 = [ŝ, (s1, .., s̃i, .., sn, s
′)]

ea2d
r2=[ŝ, (s1,..,sn), (ẽn, ex)], en ⊳ ẽn

r1∪r2 = [ŝ, (s1,..,sn, s
′), (ẽn, ex)]

ea2e
r2=[ŝ, (s1,..,sn), (en, ẽx)], ex ⊳ ẽx

r1∪r2 = [ŝ, (s1,..,sn, s
′), (en, ẽx)]

Extension inside-and:
Let s=[ŝ, (s1, .., si, .., sn), (en, ex)] and r1=[ŝ, (s1, .., s̃i, .., sn), (en, ex)], where si ≺ s̃i

iaa
si ≺ s̃i, r2=[ŝ, (s1,..,sn, s

′)], s′∈SCB

r1∪r2 = [ŝ, (s1, .., s̃i, .., sn, s
′)]

iab
si ≺ s̃i, r2=[ŝ, (s1, .., s̃j , .., sn)], sj ≺ s̃j

r1∪r2 = [ŝ, (s1, .., s̃i∪s̃j , .., sn)]
(i = j)

iac
si ≺ s̃i, r2=[ŝ, (s1, .., s̃j , .., sn)], sj ≺ s̃j

r1∪r2 = [ŝ, (s1, .., s̃i, .., s̃j , .., sn)]
(i 6= j)

iad
si ≺ s̃i, r2=[ŝ, (s1,..,sn), (ẽn, ex)], en ⊳ ẽn

r1∪r2 = [ŝ, (s1, .., s̃i, .., sn), (ẽn, ex)]

iae
si ≺ s̃i, r2=[ŝ, (s1,..,sn), (en, ẽx)], ex ⊳ ẽx

r1∪r2 = [ŝ, (s1, .., s̃i, .., sn), (en, ẽx)]

Extension ext-or1:
Let s=[ŝ,(en,ex)] and r1=[ŝ, (s′), ∅, (en, ex)], where s′∈SCB .

eo1a
r2=[ŝ, (s′′)], s′′∈SCB

r1∪r2 = ⊤
eo1b

r2=[ŝ, (s′′), ∅], s′′∈SCB

r1∪r2 = [ŝ, (s′, s′′), ∅]
(ŝ′ 6=ŝ′′) eo1c

r2=[ŝ, (s′′), ∅], s′′∈SCB

r1∪r2 = [ŝ, (s′∪s′′), ∅]
(ŝ′=ŝ′′)

eo1d
r2=[ŝ, (s′), ∅, (ẽn, ex)], en ⊳ ẽn

r1∪r2 = [ŝ, (s′), ∅, (ẽn, ex)]
eo1e

r2=[ŝ, (s′), ∅, (en, ẽx)], ex ⊳ ẽx

r1∪r2 = [ŝ, (s′), ∅, (en, ẽx)]

Extension ext-or2:
Let s=[ŝ, (s1,..,sn), T, (en, ex)] and r1=[ŝ, (s1,..,sn, s

′), T, (en, ex)], where s′∈SCB .

eo2a
r2=[ŝ, (s1,..,sn, s

′′), T ], s′′∈SCB

r1∪r2 = [ŝ, (s1,..,sn, s
′, s′′), T ]

(ŝ′ 6=ŝ′′) eo2b
r2=[ŝ, (s1,..,sn, s

′′), T ], s′′∈SCB

r1∪r2 = [ŝ, (s1,..,sn, s
′∪s′′), T ]

(ŝ′=ŝ′′)

2s and r1 are hypotesis for all the rules included in this definition, so for the sake of symplicity,
we define them once. The same for all the following definitions.
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eo2c
r2=[ŝ, (s1, .., si, .., sn), T ], si ≺ s̃i

r1∪r2 = [ŝ, (s1, .., s̃i, .., sn, s
′), T ]

eo2d
r2=[ŝ, (s1,..,sn), T

′], T ′=T ∪ {t}

r1∪r2 = [ŝ, (s1,..,sn, s
′), T ′]

eo2e
r2=[ŝ, (s1,..,sn), T

′], T ′=T[t/t′], t∈T, t′∈T, t ⊳ t′

r1∪r2 = [ŝ, (s1,..,sn, s
′), T ′]

eo2f
r2=[ŝ, (s1,..,sn), T, (ẽn, ex)], en ⊳ ẽn

r1∪r2 = [ŝ, (s1,..,sn, s
′), T, (ẽn, ex)]

eo2g
r2=[ŝ, (s1,..,sn), T, (en, ẽx)], ex ⊳ ẽx

r1∪r2 = [ŝ, (s1,..,sn, s
′), T, (en, ẽx)]

Extension inside-or:
Let s=[ŝ, (s1, .., si, .., sn), T, (en, ex)] and r1=[ŝ, (s1, .., s̃i, .., sn), T, (en, ex)] with si ≺ s̃i

ioa
r2=[ŝ, (s1,..,sn, s

′), T ], s′∈SCB

r1∪r2 = [ŝ, (s1, .., s̃i, .., sn, s
′), T ]

iob
r2=[ŝ, (s1, .., s̃j , .., sn), T ], sj ≺ s̃j

r1∪r2 = [ŝ, (s1, .., s̃i∪s̃j , .., sn), T ]
(i = j)

ioc
r2=[ŝ, (s1, .., s̃j , .., sn), T ], sj ≺ s̃j

r1∪r2 = [ŝ, (s1, .., s̃i, .., s̃j , .., sn), T ]
(i 6= j)

iod
r2=[ŝ, (s1,..,sn), T

′], T ′ = T ∪ {t}

r1∪r2 = [ŝ, (s1, .., s̃i, .., sn), T
′]

ioe
r2=[ŝ, (s1,..,sn), T

′], T ′=T[t/t′], t∈T, t′∈T, t ⊳ t′

r1∪r2 = [ŝ, (s1, .., s̃i, .., sn), T
′]

iof
r2=[ŝ, (s1,..,sn), T, (ẽn, ex)], en ⊳ ẽn

r1∪r2 = [ŝ, (s1, .., s̃i, .., sn), T, (ẽn, ex)]
iog

r2=[ŝ, (s1,..,sn), (en, ẽx)], ex ⊳ ẽx

r1∪r2 = [ŝ, (s1, .., s̃i, .., sn), T, (en, ẽx)]

Extension ext-trans:
Let s=[ŝ, (s1,..,sn), T, (en, ex)] and r1=[ŝ, (s1,..,sn), T

′, (en, ex)] with T ′=T ∪ {t}

eta
r2=[ŝ, (s1,..,sn, s

′), T ], s′∈SCB

r1∪r2 = [ŝ, (s1,..,sn, s
′), T ′]

etb
r2=[ŝ, (s1, .., s̃i, .., sn), T ], si ≺ s̃i

r1∪r2 = [ŝ, (s1, .., s̃i, .., sn), T
′]

etc
r2=[ŝ, (s1,..,sn), T

′′], T ′′=T ∪ {t′}

r1∪r2 = [ŝ, (s1,..,sn), T
′∪{t′}]

(t̂ 6= t̂′)

etd
r2=[ŝ, (s1,..,sn), T

′′, (en, ex)], T ′′=T ∪ {t′}

r1∪r2 = ⊤
(t̂ = t̂′)

ete
r2=[ŝ, (s1,..,sn), T

′′], T ′′=T[t′/t′′], t′∈T, t′′∈T, t′ ⊳ t′′

r1∪r2 = [ŝ, (s1,..,sn), T
′′∪{t}]

etf
r2=[ŝ, (s1,..,sn), T, (ẽn, ex)], en ⊳ ẽn

r1∪r2 = [ŝ, (s1,..,sn), T
′, (ẽn, ex)]

etg
r2=[ŝ, (s1,..,sn), T, (en, ẽx)], ex ⊳ ẽx

r1∪r2 = [ŝ, (s1,..,sn), T
′, (en, ẽx)]

Extension ext-act-trans:
Let s=[ŝ, (s1,..,sn), T, (en, ex)] and r1=[ŝ, (s1,..,sn), T

′, (en, ex)] with T ′=T[t/t′] and t ⊳ t′

eata
r2=[ŝ, (s1,..,sn, s

′), T ], s′∈SCB

r1∪r2 = [ŝ, (s1,..,sn, s
′), T ′]

eatb
r2=[ŝ, (s1, .., s̃i, .., sn), T ], si ≺ s̃i

r1∪r2 = [ŝ, (s1, .., s̃i, .., sn), T
′]

eatc
r2=[ŝ, (s1,..,sn), T

′′], T ′′=T ∪ {t′′}

r1∪r2 = [ŝ, (s1,..,sn), T
′∪{t′′}]
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eatd
r2=[ŝ, (s1,..,sn), T

′′], T ′′=T[t′′/t′′′], t′′∈T, t′′′∈T, t′′ ⊳ t′′′

r1∪r2 = [ŝ, (s1,..,sn, s
′), T ′

[t′′/t′′′]]
(t̂ 6= t̂′′)

eate
r2=[ŝ, (s1,..,sn), T

′′], T ′′=T[t′′/t′′′], t′′∈T, t′′′∈T, t′′ ⊳ t′′′

r1∪r2 = ⊤
(t̂ = t̂′′)

eatf
r2=[ŝ, (s1,..,sn), T, (ẽn, ex)], en ⊳ ẽn

r1∪r2 = [ŝ, (s1,..,sn), T
′, (ẽn, ex)]

eatg
r2=[ŝ, (s1,..,sn), T, (en, ẽx)], ex ⊳ ẽx

r1∪r2 = [ŝ, (s1,..,sn), T
′, (en, ẽx)]

Extension ext-act-en:
Let s=[ŝ, (en, ex)], r1=[ŝ, (ẽn, ex)] with en ⊳ ẽn then,

eaea
r2=[ŝ, (s′), (en, ex)], s′∈SCB

r1∪r2 = [ŝ, (s′), (ẽn, ex)]
eaeb

r2=[ŝ, (s′), ∅, (en, ex)], s′∈SCB

r1∪r2 = [ŝ, (s′), ∅, (ẽn, ex)]
eaec

r2=[ŝ, (ẽn′, ex)]

r1∪r2 = [ŝ, (ẽn, ex)]
(ẽn′ ⊳ ẽn)

eaed
r2=[ŝ, (ẽn′, ex)]

r1∪r2 = [ŝ, (ẽn′, ex)]
(ẽn ⊳ ẽn′) eaee

r2=[ŝ, (en, ẽx)]

r1∪r2 = [ŝ, (ẽn, ẽx)]

Let s=[ŝ, (s1,..,sn), (en, ex)], r1=[ŝ, (s1,..,sn), (ẽn, ex)] with en ⊳ ẽn then,

eaef
r2=[ŝ, (s1,..,sn, s

′), (en, ex)], s′∈SCB

r1∪r2 = [ŝ, (s1,..,sn, s
′), (ẽn, ex)]

eaeg
r2=[ŝ, (s1, .., s̃i, .., sn), (en, ex)], si ≺ s̃i

r1∪r2 = [ŝ, (s1, .., s̃i, .., sn), (ẽn, ex)]

eaeh
r2=[ŝ, (s1,..,sn), (ẽn

′, ex)]

r1∪r2 = [ŝ, (s1,..,sn), (ẽn, ex)]
(ẽn′ ⊳ ẽn) eaei

r2=[ŝ, (s1,..,sn), (ẽn
′, ex)]

r1∪r2 = [ŝ, (s1,..,sn), (ẽn
′, ex)]

(ẽn ⊳ ẽn′)

eaej
r2=[ŝ, (s1,..,sn), (en, ẽx)], ex ⊳ ẽx

r1∪r2 = [ŝ, (s1,..,sn), (ẽn, ẽx)]

Let s=[ŝ, (s1,..,sn), T, (en, ex)], r1=[ŝ, (s1,..,sn), T, (ẽn, ex)] with en ⊳ ẽn then,

eaek
r2=[ŝ, (s1,..,sn, s

′), T, (en, ex)], s′∈SCB

r1∪r2 = [ŝ, (s1,..,sn, s
′), T, (ẽn, ex)]

eael
r2=[ŝ, (s1, .., s̃i, .., sn), T, (en, ex)], si ≺ s̃i

r1∪r2 = [ŝ, (s1, .., s
′
i, .., sn), T, (ẽn, ex)]

eaem
r2=[ŝ, (s1,..,sn), T

′, (en, ex)], T ′=T ∪ {t}

r1∪r2 = [ŝ, (s1,..,sn), T
′, (ẽn, ex)]

eaen
r2=[ŝ, (s1,..,sn), T

′, (en, ex)], T ′=T[t/t′], t∈T, t′∈T, t ⊳ t′

r1∪r2 = [ŝ, (s1,..,sn), T
′, (ẽn, ex)]

eaeo
r2=[ŝ, (s1,..,sn), T, (ẽn

′, ex)], en ⊳ ẽn′

r1∪r2 = [ŝ, (s1,..,sn), (ẽn, ex)]
(ẽn′ ⊳ ẽn)

eaep
r2=[ŝ, (s1,..,sn), T, (ẽn

′, ex)], en ⊳ ẽn′

r1∪r2 = [ŝ, (s1,..,sn), (ẽn
′, ex)]

(ẽn ⊳ ẽn′)

eaeq
r2=[ŝ, (s1,..,sn), T, (en, ẽx)], ex ⊳ ẽx

r1∪r2 = [ŝ, (s1,..,sn), T, (ẽn, ẽx)]

Extension ext-act-ex: analogous to ext-act-en.

reflexivity:

reflexivity s = r1, r2∈SC
r1∪r2 = r2

(s ≺ r2)

transitivity:

transitivity
s ≺ r′, r′ ≺ r1, r2∈SC

r1∪r2 = r1∪(r
′∪r2)

(s ≺ r2)
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4.2.1 Properties of the Union

In this section we present four properties of the union. These properties show that indeed
it can be considered as a join, in a lattice theory context. Note that, by definition, for all
s ∈ SC, s∪s = s and for all s ∈ SC, s∪⊤ = ⊤.

Property 1 (Commutativity of ∪). For all s, r1, r2 ∈ SC such that s ≺ r1 and s ≺ r2,
r1∪r2 = r2∪r1, up to the order of the substates.

Proof sketch. By induction on ∪ rules. For each extension, we briefly analyze the rules
where union differs from ⊤ and is not trivially commutative by definition. Extension
ext-and1: Rule ea1a is commutative up to the order of the substates and in rule ea1b com-
mutativity holds by induction hypothesis. Extension ext-and2: Rule ea2a is commutative
up to the order of the substates, in rule ea2b commutativity holds by induction hypothe-
sis, and rule ea2c is symmetric with respect to rule iaa of extension inside-and. Extension
inside-and: In rule iab commutativity holds by induction hypothesis, and in rule iac com-
mutativity comes from the fact that i 6= j. Extension ext-or1: Rule eo1b is commutative
up to the order of the substates and in rule eo1c commutativity holds by induction hy-
pothesis. Extension ext-or2: Rule eo1b is commutative up to the order of the substates, in
rule eo1c commutativity holds by induction hypothesis, and rule eo2c is symmetric with
respect to rule ioa of extension inside-or, rule eo2d is symmetric with respect to rule eta of
extension ext-trans and rule eo2e is symmetric with respect to rule eata of extension ext-

act-trans. Extension inside-or: In rule iob commutativity holds by induction hypothesis,
rule iod is symmetric with respect to rule etb of extension ext-trans and rule ioe is sym-
metric with respect to rule eatb of extension ext-act-trans. Extension ext-trans: Rule ete is
symmetric with respect to rule eatc of extension ext-act-trans. Extension ext-act-trans: All
rules are either symmetric to anther already mentioned, or trivially commutative. Exten-
sions ext-act-en and ext-act-ex are trivially commutative. Finally, extensions reflexivity and
transitivity commutes by definition.

Property 2 (Associativity of ∪). For all s, r1, r2, r3 ∈ SC such that s ≺ r1, s ≺ r2 and
s ≺ r3, (r1∪r2)∪r3 = r1∪(r2∪r3), up to the order of the substates.

Proof. The proof is straightforward because the order on which the rules are applied does
not matter.

Property 3 (Existence of meets). For all s, r1, r2 ∈ SC such that s ≺ r1 and s ≺ r2, then
r1 ≺ r1∪r2 and r2 ≺ r1∪r2.

Proof sketch. The property holds directly in all cases of the definition of ∪ by construction,
since r1∪r2 is always defined as an extension of both s1 and s2. The only non trivial case
is the transitivity one: if s ≺ r′ ≺ r1 and s ≺ r2 then r1∪r2 is defined as r1∪(r

′∪r2). This
is well defined, since from s ≺ r′ and s ≺ r2, r

′∪r2 is defined by induction hypothesis, and
r′ ≺ r′∪r2, r2 ≺ r′∪r2. Then, again by induction hypothesis, from r′ ≺ r1, it can be seen
that r1∪(r

′∪r2) is defined and r1 ≺ r1∪(r
′∪r2), r2 ≺ r1∪(r

′∪r2).

Property 4 (Existence of meets). For all s, r1, r2, r3 ∈ SC such that s ≺ r1 and s ≺ r2, if
(r1 ≺ r3 ∧ r2 ≺ r3), then r1∪r2 ≺ r3.

Proof sketch. The property holds directly in all cases of the definition of ∪, since the
least possible extension to both statecharts is always performed. The only non trivial
case is the transitivity one: if s ≺ r′ ≺ r1 and s ≺ r2, then r1∪r2 = r1∪(r

′∪r2). Let
r1 ≺ r3 and r2 ≺ r3. Then, by r′ ≺ r1 we have r′ ≺ r3 and hence r′∪r2 ≺ r3 by r2 ≺ r3
and induction hypothesis. Finally, from r1 ≺ r3 and induction hypothesis, r1∪(r

′∪r2) ≺ r3
is obtained.



29 Chapter 4. Extension and Union of UML Statecharts

4.2.2 Example

Now, an example of the computation of the union is shown. Given r1, r2 ∈ SC, both
extensions of some s ∈ SC, the method for computing r1∪r2 is to perform single steps of
extensions. The transitivity case for the definition of ∪ and the properties stated above
ensure confluence, i.e., no matter the order in which the extensions are done, it is always
possible to obtain a unique “diamond” with s at the top and r1∪r2 at the bottom.
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Figure 4.4: Example of the computation of the union

In figure 4.4 the union is computed for two statecharts that are extensions of
[ŝ1, ([ŝ11]]), 1, ∅, ((), ())]:

r1 = [ŝ1, ([ŝ11], [ŝ12]), 1, {〈t̂1,ŝ11,∅,e,(),∅,ŝ12,none〉}, ((), ())]

and
r2 = [ŝ1, ([ŝ11], [ŝ13]), 1, {〈t̂2,ŝ11,∅,e,(),∅,ŝ13,none〉}, ((), ())]





Chapter 5

Variability Modeling

In this chapter, the main concepts and definitions for formal variability modeling are pre-
sented. First, we define a formal syntax of Feature Diagrams. We use Feature Diagrams are
used in combination with UML Statecharts in order to represent the common and variant
functionalities of a family of products. Then, in order to define a particular product of a
family, the condept of configuration is introduced. Finally, in order to define the behavior
of a whole family, the effect that each feature has on the product in which it is present is
determined, raising the definition of UML Statecharts with variabilities.

5.1 Feature Diagrams

Feature Diagrams are used to document features. A feature is a property of a system
that directly affects end users, which can be either human or other systems. The main
purpose of a Feature Diagram is to define concisely the legal configurations (generally called
products) of some (usually software) artefact. In the case of software product lines, the
main goal of a feature diagram is to specify commonalities and differences amongst the
products of the line. In this context, a feature is a distinctive characteristic of a product.

Czarnecki et al [Cza98, CHE05a] propose three types of features, namely mandatory,
optional and alternative. Additionally, there is a consists of relation among features, mean-
ing that a feature comprises one or more other features. In this work, the composed feature
is called parent feature and its components are called children or subfeatures of the parent
feature. Moreover, a set of constraints over features can be defined. A constraint is a
proposition over the set of features.

In order to define a particular product of a line a feature diagram can be configured,
by choosing which features are present in the product, complying with the following inter-
dependency rules: mandatory features must always be present in a product if their parent
feature is present, optional features may or may not be present in a product if their par-
ent feature is present, and exactly one of the alternative subfeatures must be present in a
product when their parent feature is present.

A Feature Diagram can naturally be represented as a tree, where the nodes represent
the features and the arcs represent the consists of relation between them.

5.1.1 Feature Diagrams Syntax

Given F a set of feature names, a Feature Diagram is defined as a 6-tuple

Υ = 〈L,N,NC,RM,RO,RA〉
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where: L ∈ F , is the product line name (the root of the tree1); N ⊆ F is the set of features,
(L 6∈ N); NC ⊆ C is the set of constraints over features, where C are the propositional
calculus formulas with variables fi ∈ F and connectives ∧, ∨ and ¬; RM,RO ⊆ {L}∪N×N,
are the mandatory and optional consists of relations respectively; and RA ⊆ {L}∪N×P(N)
is the alternative consists of relation. In addition, the union of the relations RM, RO and
RA must constitute a tree with nodes in F and root L. FDF is the set of feature diagrams
with features in F .

Basic functions on Feature Diagrams

First, the projection functions for Feature Diagrams are defined as: M,O and A: FDF → F
are the set of mandatory, optional and alternative features, defined respectively as

M(〈L,N,NC,RM,RO,RA〉) := {f∈F | ∃〈f ′,f〉∈RM},

O(〈L,N,NC,RM,RO,RA〉) := {f∈F | ∃〈f ′,f〉∈RO},

A(〈L,N,NC,RM,RO,RA〉):={f∈F | ∃〈f ′,A〉∈RA. f∈A}.

For Υ ∈ FDF , the result of applying this function to Υ will be written as MΥ, OΥ and
AΥ, i.e., with the feature diagram argument written as a subscript. The same convention
also applies to the projection functions LΥ, NΥ, NCΥ, RMΥ, ROΥ and RAΥ that denote the
components of a Feature Diagram Υ = 〈L,N,NC,RM,RO,RA〉.

Also, the following functions and relations are defined:

• chld ⊆ FDF×F×F is the child relation:

chldΥ(f
′,f) iff 〈f,f ′〉∈RMΥ∪ROΥ ∨ ∃A⊆NΥ. (〈f,A〉∈RAΥ∧f

′∈A)

• fts: FDF → P(F) defines the set of features of a given Feature Diagram:

ftsΥ := MΥ∪OΥ∪AΥ

• subft ⊆ FDF×F×F is the transitive closure of the subfeature relation in a Feature
Diagram:

subftΥ(f
′,f) iff chldΥ(f

′,f) ∨ ∃f ′′∈NΥ. (chldΥ(f
′,f ′′) ∧ subftΥ(f

′′,f))

• subfts: FDF×F → P(F) defines the set of subfeatures of a given feature in a Feature
Diagram:

subftsΥ(f) := {f ′∈ftsΥ | subftΥ(f
′,f)}

• Subfts: FDF×P(F) → P(F) defines the set of all the subfeatures of the members of
a given set of features in a Feature Diagram, including the set itself:

SubftsΥ(F ) := F ∪
⋃

f∈F

subftsΥ(f)

Graphically, optional features are marked with a black dot, and alternatives features
with a line across alternative group.

Example

The following diagram
is denoted by

Υ1=〈P, {f1, f2, f3, f4, f5, f6}, ∅, {〈P ,f1〉, 〈f2,f3〉}, {〈P ,f2〉, 〈f2,f4〉}, {〈f3,{f5, f6}〉}〉∈FDF ,

where F = {P, f1, f2, f3, f4, f5, f6}.

1Following [Cza98], the root of the tree is not a feature but a concept, thus satisfying the
condition that every feature has a parent. For the sake of homogeneity, in this work it will be
considered as a feature.
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5.1.2 Feature Diagram Configurations

Feature Diagrams describe the common and variant functionalities of products in a product
line. In order to obtain specific products of a line defined by a Feature Diagram Υ, the
possible configurations of Υ are defined as the instances of the tree that are consistent with
the relations amongst its features and the constraints of Υ. Configurations are represented
as trees of features, where all the features become mandatory. Formally, given a set of
feature names F , a configuration of Υ is a 3-tuple

Φ = 〈P,Y,R〉

where: P ∈ F , is the product name (the root of the tree); Y ⊆ F , is the set of features of
the product (P 6∈ Y); and R ⊆ {P}∪Y×Y is the consists of relation. Additionally, config-
urations must be trees under the relation R, with root P. CSF is the set of configurations
in F .

A configuration of a Feature Diagram is determined by the set of optional and alter-
native features that are selected for the product. The function

conf: FDF × P(F) →֒ CSF ,

builds a configuration from a Feature Diagram Υ and a set F of chosen features. In
fact, for a Feature Diagram Υ = 〈L,N,NC,RM,RO,RA〉 and C ⊆ F , the function confΥ(C) is
determined by the elements of C that are optional and alternative features of F .

So, in the definition of conf the features in C that are not in OΥ∪AΥ are not taken into
account. For the alternative features, exactly one child can be chosen from each parent.
So confΥ(C) is defined iff for every chosen feature exactly one of its alternative children is
chosen in the result. Additionally, all formulas in NC must be satisfied by the configuration.

Basically, the function conf “erases” from Υ all optional and alternative features that
are not in C as well as the subtrees that have those features as roots: So, let

F ′ = SubftsΥ(OΥ∪AΥ\C),

Y = MΥ∪OΥ∪AΥ\F
′

and

R = (RMΥ∪ROΥ∪{〈f,f
′〉| ∃A⊆N. 〈f ′,A〉∈RAΥ∧f∈A})∩(Y ∪ {P}×Y ∪ {P})

Besides, all the formulae in NC must be satisfied for the features present in the configuration.
So, if for all α ∈ NC, Y ∪ Y¬ |= α, then

confΥ(C):=〈L,Y,R〉

otherwise confΥ(C) is undefined (where Y¬={¬fi | fi∈F
′}).

The set of all possible configurations of a Feature Diagram is given by the function
Confs: FDF → P(CSF), defined as

ConfsΥ :=
⋃

C⊆ftsΥ

{confΥ(C)∈CSF | confΥ(C) not undefined}



Chapter 5. Variability Modeling 34

Example

For the Υ1 of the last example, some possible configurations are the following:
confΥ1

(∅) = 〈P ,{f1},{〈P ,f1〉}〉
confΥ1

({f2, f5}) = 〈P, {f1, f2, f3, f5}, {〈P ,f1〉, 〈P ,f2〉, 〈f2,f3〉, 〈f3,f5〉}〉
confΥ1

({f2, f4, f6}) = 〈P, {f1, f2, f3, f4, f6}, {〈P ,f1〉, 〈P ,f2〉, 〈f2,f3〉, 〈f2,f4〉, 〈f3,f6〉}〉
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Figure 5.1: FD configurations for Υ1. Left: confΥ1
(∅), Center: confΥ1

({f2, f5}),
Right: confΥ1

({f2, f4, f6})

5.2 UML Statecharts with Variabilities

In section 5.1 Feature Diagrams were introduced as the means to represent the common and
variant functionalities of the products of a software product line. Basically, they consist of
sets of features organized under certain hierarchy represented as relations. Given a feature
diagram Υ, each set of chosen features determines a particular configuration C, which
represents the features present in a particular product of the line. Statecharts are used to
describe the behavior of a system.

5.2.1 Set of UML Statecharts with Variabilities SC*

In order to define the behavior of a whole product line, it is needed to describe the effect
that each feature has on the products in which it is present. For this, the set SC* of
statecharts with variabilities is defined:

Definition 2. Given a Feature Diagram Υ=〈L,N,NC,RM,RO,RA〉∈FD, a SC* for Υ is a
function

Ψ: N∪{L} → SC

that associates each feature of Υ with a statechart. In order to guarantee that the hierarchy
of features represented by the relations RM, RO and RA is reflected by the statecharts that
implement the features, it is further required that:

∀〈f,f ′〉∈chldΥ. Ψ(f) ≺ Ψ(f ′) (5.1)

With restriction 5.1, observe that the image of the set of features ftsΥ under Ψ (i.e.,
Ψ(ftsΥ) ⊆ P(SC)) has the same tree structure as the feature diagram Υ, where the parent-
child relation between statecharts is the extension relation ≺.

5.2.2 Product Configuration

Given a Feature Diagram Υ=〈L,N,NC,RM,RO,RA〉∈FD, a SC* for Υ shows how each feature
affects the behavior of the lines. Then, given a configuration C = 〈P,Y,R〉 of Υ, in order
to obtain the statechart that implements all the features present in Y, the union of all the
statecharts in the image of Y under Ψ (i.e., Ψ(Y)) must be taken.
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Note that, by the definition of configuration and observation above, if 〈f,f ′〉 ∈ chldΥ,
then Ψ(f) ≺ Ψ(f ′) and (by the definitions given in 4.2), Ψ(f)∪Ψ(f ′) = Ψ(f ′). So, instead
of calculating the union of all the statecharts in Ψ(Y), it is enough to consider the union
of the leaves of the tree (i.e., of those features in Y such that there is no 〈f,f ′〉 in R). It is
important to recall that this property greatly simplyfies the calculation of the statechart
that implements all the given features.

Taking the example of section 5.1.1, and assuming there exist statecharts s, s1, ..s6, a
possible SC* Ψ for Υ1 could be defined as Ψ(P )=s, Ψ(fi)=si (i=1, ..6), and the following
relations must hold between the statecharts: s ≺ s1, s2, s2 ≺ s3, s4, and s3 ≺ s5, s6 (see
figure 5.2).
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Figure 5.2: SC* example

Then, for the configuration C1=confΥ1
({f2, f5}), Ψ(C1) is the set {s, s1, s2, s3, s5}, with

the structure shown in figure 5.3.
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Figure 5.3: Configuration example

The statechart that specifies the product corresponding to the configuration C1 is ob-
tained by just calculating s1∪s5. A case study can be found on section 8.

Although the union of two statecharts may be overspecified, this is not a problem,
because some configurations may produce inconsistent behavior of the system, and it is
the designer’s responsibility to deal with that fact. To consider this possibility, the following
is defined:

Definition 3. Given Υ = 〈L,N,NC,RM,RO,RA〉 ∈ FD, Ψ an SC* for Υ and a configuration
C ∈ ConfsΥ, Ψ covers C iff

⋃

f∈ftsC

Ψ(f) 6= ⊤
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Definition 4. Given Υ = 〈L,N,NC,RM,RO,RA〉 ∈ FD and Ψ, an SC* for Υ, Ψ covers Υ if
Ψ covers each possible configuration C of Υ:

∀C ∈ ConfsΥ.
⋃

f∈ftsC

Ψ(f) 6= ⊤

Finally, a comment regarding the possibility of including the definition of SC* in other
FD formalisms found in the literature is given. In [SHT06, SHTB07] the authors define the
Free Feature Diagrams (FFDs) as a parametric construction that generalizes the syntax
of many FD variants. Each FD approach can be obtained by simply providing values for
these parameters. The FFD definition on [SHTB07] can be augmented with the function
Ψ: N ∪ r → SC, where r is the root of the FD and N is the set of nodes2, which associates
each node (feature) of the FD with a statechart. Finally, whenever the restriction 5.1 3 is
included in the definition of valid model for an FD [SHTB07] pg. 466, their work can be
extended to include the present approach of SC*.

2author’s notation
3 every “child” (“son”) node refines its parent



Chapter 6

Behavioral Refinements

In this chapter it is proved that the extension relation can indeed be considered as a refine-
ment, in the sense that it preserves the semantic transitions defined in the SO semantics
(section 3.4), obtaining that every reachable semantic state in a statechart is still reachable
once the statechart is extended. In order to achieve that, a proof that the extension rela-
tion at least preserves the set of all possible configurations of a statechart is given. Once
the space of all possible configurations is preserved, a key proof is presented: the func-
tion next (which computes the next state after a UML statechart transition is executed) is
monotone (isotone or order-preserving) with respect to the extension relation. Moreover,
in order to handle the fact that not every extension preserves the semantics, a working
definition of safe semantic transition is given, in accordance with the UML mechanism for
executing transitions. Then, the main result of this work follows: a theorem which states
that the extension relation is indeed a behavioral refinement in the sense that the safely
extended statecharts preserve all the reachable states of the original one. Finally, a theo-
rem that proves that the set of possible actions generated by a statechart are preserved by
the refinement is given.

6.1 Extension Relation and Configurations

In order to prove the main result of this work, that is, that the reachable semantic states
of a given UML statechart are preserved by the extension relation, it is needed that the set
of all possible configurations of a statechart are maintained. The following lemmas prove
that the extension relation preserves the set of all possible configurations of a statechart.
Moreover, in this section it will become clear the need of extending the conf-all definition
in order to include partial parallel configurations.

Lemma 1. For all s, s̃ ∈ SC, if s≺
1
s̃ then conf(s) ⊆ conf(s̃)

Proof. By induction on s≺
1
s̃. The main idea of the proof is the following. First, assume

the form of s, then according to the extension rule applied, deduce the form of s̃. Finally,
check that conf(s) ⊆ conf(s̃).

• ext-and1. Assume s = [ŝ]. Then [ŝ]≺
1
[ŝ, (s′)], where s′ ∈ SCB . Finally, conf([ŝ]) =

{ŝ} ⊆ conf([ŝ, (s′)]) = {ŝ, ŝ′}.

• ext-and2. Assume s = [ŝ, (s1..k)]. Then [ŝ, (s1..k)]≺1
[ŝ, (s1..k, s

′)], where s′ ∈ SCB .

Finally, conf([ŝ, (s1..k)]) = {ŝ} ∪
⋃k

i=1 conf(si) ⊆ conf([ŝ, (s1..k, s
′)]) = {ŝ, ŝ′} ∪

⋃k
i=1 conf(si).

• inside-and. Assume s = [ŝ, (s1..k)]. Then [ŝ, (s1..k)]≺1
[ŝ, (s1..k)[si/s̃i]], where si≺1

s̃i.
Here the inductive hypothesis is applied, that is, conf(si) ⊆ conf(s̃i) since si≺1

s̃i.
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Now,

conf([ŝ, (s1..k)]) = {ŝ} ∪
⋃

j=1..i−1,i+1..k

conf(sj) ∪ conf(si)

conf([ŝ, (s1..k)[si/s̃i]]) = {ŝ} ∪
⋃

j=1..i−1,i+1..k

conf(sj) ∪ conf(s̃i)

Finally, conf([ŝ, (s1..k)]) ⊆ conf([ŝ, (s1..k)[si/s̃i]]).

• ext-or1. Assume s = [ŝ]. Then [ŝ]≺
1
[ŝ, (s′), 1, 1, ∅], where s′ ∈ SCB . Finally, conf([ŝ]) ⊆

conf([ŝ, (s′), 1, 1, ∅]).

• ext-or2. Assume s = [ŝ, (s1..k), l, T ]. Then [ŝ, (s1..k), l, T ]≺1
[ŝ, (s1..k, s

′), l, T ], where
s′ ∈ SCB . Finally,

conf([ŝ, (s1..k), l, T ]) = {ŝ} ∪ conf(sl)

= conf([ŝ, (s1..k, s
′), l, T ])

• inside-or. Assume s = [ŝ, (s1..k), l, T ]. Then [ŝ, (s1..k), l, T ]≺1
[ŝ, (s1..k)[si/s̃i], l, T ], where

si≺1
s̃i. Here the inductive hypothesis is applied, that is, conf(si) ⊆ conf(s̃i) since

si≺1
s̃i. Two cases must be taken into account,

1. When i = l,

conf([ŝ, (s1..k), l, T ]) = {ŝ, conf(si)}

conf([ŝ, (s1..k)[si/s̃i], l, T ]) = {ŝ, conf(s̃i)}

then conf([ŝ, (s1..k), l, T ]) ⊆ conf([ŝ, (s1..k)[si/s̃i], l, T ]).

2. When i 6= l,

conf([ŝ, (s1..k), l, T ]) = {ŝ, conf(sl)}

= conf([ŝ, (s1..k)[si/s̃i], l, T ])

• The cases add-trans, ext-act-en, ext-act-ex and ext-act-trans are trivial because the state
structure is not modified, so the current configuration is preserved.

Please note that s≺
1
s̃ not necessarily implies that conf-all(s) ⊆ conf-all(s̃), because of

the rule ext-and2. For example, s = [ŝ, (s1, s2)], where s1, s2 ∈ SCB . Then, conf-all(s) =
{{ŝ}, {ŝ, ŝ1, ŝ2}}. If rule ext-and2 is applied, resulting in s̃ = [ŝ, (s1, s2, s

′)], where s′ ∈ SCB ,
clearly conf-all(s̃) = {{ŝ}, {ŝ, ŝ1, ŝ2, ŝ

′}} 6⊆ conf-all(s). In the next lemma, the extended set
of configurations ec-all (defined in section 3.2) is needed.

Lemma 2. For all s, s̃ ∈ SC, if s≺
1
s̃ then ec-all(s) ⊆ ec-all(s̃)

Proof. By induction on s≺
1
s̃. The main idea of the proof is the following. First, assume

the form of s, then according to the extension rule applied, deduce the form of s̃. Finally,
check that ec-all(s) ⊆ ec-all(s̃).

• ext-and1. Assume s = [ŝ]. Then [ŝ]≺
1
[ŝ, (s′)], where s′ ∈ SCB . Finally, ec-all([ŝ]) =

{{ŝ}} ⊆ ec-all([ŝ, (s′)]) = {{ŝ, ŝ′}, {ŝ}}
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• ext-and2. Assume s = [ŝ, (s1..k)]. Then [ŝ, (s1..k)]≺1
[ŝ, (s1..k, s

′)], where s′ ∈ SCB .
Finally,

ec-all([ŝ, (s1..k)]) = {{ŝ} ∪
⋃

i⊆{1,..,k}

ci |ci ∈ ec-all(si)} ∪ {{ŝ}}

ec-all([ŝ, (s1..k, s
′)]) = {{ŝ} ∪

⋃

i⊆{1,..,n}

ci |ci ∈ ec-all(si)} ∪ {{ŝ}}

∪ {{ŝ} ∪
⋃

i⊆{1,..,n}

ci ∪ {ŝ′} |ci ∈ ec-all(si)}

that is, by definition it is possible to split the set of configurations into two: one,
those in which s′ is not “selected” and the other, those in which s′ is indeed selected.

• inside-and. Assume s = [ŝ, (s1..k)]. Then [ŝ, (s1..k)]≺1
[ŝ, (s1..k)[si/s̃i]], where si≺1

s̃i.
Here the inductive hypothesis is used, that is, ec-all(si) ⊆ ec-all(s̃i), since si≺1

s̃i.
Now,

ec-all([ŝ, (s1..k)]) = {{ŝ} ∪
⋃

j⊆{1,..,n}

cj |cj ∈ ec-all(sj)} ∪ {{ŝ}}

= {{ŝ ∪
⋃

j⊆({1,..,k}−{i})

cj ∪ c |cj ∈ ec-all(sj), c ∈ ec-all(si)}}

ec-all([ŝ, (s1..k)[si/s̃i]]) = {{ŝ} ∪
⋃

j⊆{1,..,n}

cj |cj ∈ ec-all(s̃j)} ∪ {{ŝ}}

= {{ŝ ∪
⋃

j⊆({1,..,k}−{i}

cj ∪ c |cj ∈ ec-all(sj), c ∈ ec-all(si)}}

∪ {{ŝ}∪
⋃

j⊆({1,..,k}−{i})

cj ∪ c′|cj∈ec-all(sj), c
′∈(ec-all(s̃i)−ec-all(si))}

∪ {{ŝ}}

Finally, ec-all([ŝ, (s1..k)]) ⊆ ec-all([ŝ, (s1..k)[si/s̃i]]).

• ext-or1. Assume s = [ŝ]. Then [ŝ]≺
1
[ŝ, (s′), 1, 1, ∅], where s′ ∈ SCB . Finally,

ec-all([ŝ]) = {{ŝ}}

ec-all([ŝ, (s′), 1, 1, ∅]) = {{ŝ, ŝ′}, {ŝ}}, since conf-all(s′) = {{ŝ′}}

• ext-or2. Assume s = [ŝ, (s1..k), l, T ]. Then [ŝ, (s1..k), l, T ]≺1
[ŝ, (s1..k, s

′), l, T ], where
s′ ∈ SCB . Finally,

ec-all([ŝ, (s1..k), l, T ]) = {{ŝ} ∪ c|∃i ∈ {1..k}.c ∈ ec-all(si)} ∪ {{ŝ}}

= {{ŝ} ∪ c|c ∈ ec-all(s1)} ∪ . . . ∪ {{ŝ} ∪ c|c ∈ ec-all(sk)}

∪ {{ŝ}}

ec-all([ŝ, (s1..k, s
′), l, T ]) = {{ŝ} ∪ c|∃i ∈ {1..k}.c ∈ ec-all(si) ∨ c ∈ ec-all(s′)} ∪ {{ŝ}}

now using the fact that ec-all(s′) = {{ŝ′}},

= {{ŝ} ∪ c|c ∈ ec-all(s1)} ∪ . . . ∪ {{ŝ} ∪ c|c ∈ ec-all(sk)}

∪ {{ŝ, ŝ′}} ∪ {{ŝ}}

so ec-all([ŝ, (s1..k), l, T ]) ⊆ ec-all([ŝ, (s1..k, s
′), l, T ]).

• inside-or. Assume s = [ŝ, (s1..k), l, T ]. Then [ŝ, (s1..k), l, T ]≺1
[ŝ, (s1..k)[si/s̃i], l, T ], where

si≺1
s̃i. Here the inductive hypothesis is used, that is, ec-all(si) ⊆ ec-all(s̃i), since
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si≺1
s̃i. Now,

ec-all([ŝ, (s1..k), l, T ]) = {{ŝ} ∪ c|c ∈ ec-all(s1)} ∪ . . . ∪ {{ŝ} ∪ c|c ∈ ec-all(si)}

∪ . . . ∪ {{ŝ} ∪ c|c ∈ ec-all(sk)} ∪ {{ŝ}}

ec-all([ŝ, (s1..k)[si/s̃i], l, T ]) = {{ŝ} ∪ c|c ∈ ec-all(s1)} ∪ . . . ∪ {{ŝ} ∪ c|c ∈ ec-all(s̃i)}

∪ . . . ∪ {{ŝ} ∪ c|c ∈ ec-all(sk)} ∪ {{ŝ}}

Finally, ec-all([ŝ, (s1..k), l, T ]) ⊆ ec-all([ŝ, (s1..k)[si/s̃i], l, T ]).

• The cases add-trans, ext-act-en, ext-act-ex and ext-act-trans are trivial because the state
structure is not modified, so the set of possible configurations is the same.

6.1.1 Monotonicity of next Function

In this section, a proof that the function next applied to a extended state computes a state
which indeed is an extension of the next state computed before the extension is given.
That is, the function next is monotone with respect to the extension relation. This result
is proven in lemma 5. In order to achieve that, two additional lemmas, showing that the
functions def and next-stop are also monotone (lemmas 3 and 4 respectively), are presented.

Lemma 3. For all s, s̃ ∈ SC, if s≺
1
s̃ then def(s)≺

1
def(s̃)

Proof. By induction on s≺
1
s̃. The main idea of the proof is the following. First, assume

the form of s, then according to the extension rule applied, deduce the form of s̃. Then,
compute def(s) and def(s̃) and check that def(s)≺

1
def(s̃).

• ext-and1. Assume s = [ŝ]. Then [ŝ]≺
1
[ŝ, (s′)], where s′ ∈ SCB . Now def([ŝ, (s′)]) =

[ŝ, (def(s′))] = [ŝ, (s′)], since s′ ∈ SCB , which indeed is a one step refinement through
ext-and1 of def([ŝ]) = [ŝ].

• ext-and2. Assume s = [ŝ, (s1, .., sk)]. Then [ŝ, (s1, .., sk)]≺1
[ŝ, (s1, .., sk, s

′)], where s′ ∈
SCB . Now def([ŝ, (s1, .., sk, s

′)]) = [ŝ, (def(s1), .., def(sk), def(s
′))] = [ŝ, (def(s1), .., def(sk), s

′)],
since s′ ∈ SCB , which indeed is a one step refinement through ext-and2 of def([ŝ, (s1, .., sk)]) =
[ŝ, (def(s1), .., def(sk))].

• inside-and. Assume s = [ŝ, (s1..k)]. Then [ŝ, (s1..k)]≺1
[ŝ, (s1..k)[si/s̃i]], where si≺1

s̃i.
Here the inductive hypothesis is applied, that is, def(si)≺1

def(s̃i) since si≺1
s̃i. Then,

def([ŝ, (s1..k)[si/s̃i]]) = [ŝ, (def(s1), .., def(s̃i), ..def(sk))], which indeed is a one step
refinement through inside-and of def([ŝ, (s1..k)]) = [ŝ, (def(s1), .., def(si), .., def(sk))]
by the inductive hypothesis.

• ext-or1. Assume s = [ŝ]. Then [ŝ]≺
1
[ŝ, (s′), 1, 1, ∅] , where s′ ∈ SCB . Now def([ŝ, (s′), 1, 1, ∅]) =

[ŝ, (s′)
[s′/def(s′)], 1, 1, ∅] = [ŝ, (s′), 1, 1, ∅] since s′ ∈ SCB , which indeed is a one step

refinement of def([ŝ]) = [ŝ] through ext-or1.

• ext-or2. Assume s = [ŝ, (s1..k), d, l, T ]. Then [ŝ, (s1..k), d, l, T ]≺1
[ŝ, (s1..k, s

′), d, l, T ],
where s′ ∈ SCB . Now def([ŝ, (s1..k, s

′), d, l, T ]) = [ŝ, (s1..k, s
′)
[sd/def(sd)], d, d, T ],

which indeed is a one step refinement of

def([ŝ, (s1..k), d, l, T ]) = [ŝ, (s1..k)[sd/def(sd)], d, d, T ].

• inside-or. Assume s = [ŝ, (s1..k), l, T ]. Then [ŝ, (s1..k), l, T ]≺1
[ŝ, (s1..k)[si/s̃i], l, T ], where

si≺1
s̃i. Here the inductive hypothesis is applied, that is, def(si)≺1

def(s̃i), since
si≺1

s̃i. Two cases must be taken into account,
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1. If i 6= d, then def([ŝ, (s1..k)[si/s̃i], l, T ]) = [ŝ, (s1..k)[si/s̃i][sd/def(sd)], d, T ]

= [ŝ, (s1..k)[sd/def(sd)][si/s̃i], d, T ], which indeed is a one step refinement of

def([ŝ, (s1..k), l, T ]) = [ŝ, (s1..k)[sd/def(sd)], d, T ].

2. If i = d, then def([ŝ, (s1..k)[si/s̃i], l, T ]) = [ŝ, (s1..k)[sd/s̃d][s̃d/def(s̃d)], d, T ]

= [ŝ, (s1..k)[sd/def(s̃d)], d, T ], which indeed is a one step refinement of

def([ŝ, (s1..k)[sd/def(sd)], d, T ]) by the inductive hypothesis.

• Extensions add-trans, ext-act-en, ext-act-ex and ext-act-trans are trivial because def does
not depend on the set of transitions T nor exit nor entry actions.

Lemma 4. For all s, s̃ ∈ SC, if s≺
1
s̃ then next-stop(ht, s)≺

1
next-stop(ht, s̃), ∀ht∈HT

Proof. By induction on s≺
1
s̃. The main idea of the proof is analogous to the previous one.

Please note that s̃ ∈ SCO, because s ∈ SCO by hypothesis. Then only OR rules apply,

• ext-or2. Assume s = [ŝ, (s1..k), d, l, T ]. Then [ŝ, (s1..k), d, l, T ]≺1
[ŝ, (s1..k, s

′), d, l, T ],
where s′ ∈ SCB . In each case, next-stop(ht, s̃) is indeed a one step refinement of
next-stop(ht, s), through rule ext-or2, as follows.

next-stop(ht,[ŝ, (s1..k, s
′), d, l, T ])

=







[ŝ, (s1..k, s
′), d, l, T ] if ht = deep

[ŝ, (s1..k, s
′)[sd/def(sd)], d, d, T ] if ht = none, d ∈ {1..k}

[ŝ, (s1..k, s
′)[sl/def(sl)], d, l, T ] if ht = shallow, l ∈ {1..k}

• inside-or. Assume s = [ŝ, (s1..k), d, l, T ]. Then [ŝ, (s1..k), d, l, T ]≺1
[ŝ, (s1..k)[si/s̃i], d, l, T ],

where si≺1
s̃i. In each case, next-stop(ht, s̃) is indeed a one step refinement, through

rule inside-or, as follows.

next-stop(ht,[ŝ, (s1..k)[si/s̃i], d, l, T ])

=











[ŝ, (s1..k)[si/s̃i], d, l, T ] if ht = deep

[ŝ, (s1..k)[si/s̃i][sd/def(sd)], d, d, T ] if ht = none

[ŝ, (s1..k)[si/s̃i][sl/def(sl)], d, l, T ] if ht = shallow

The second and third cases require some explanation. In the second one, there are
two subcases:

• i 6= d. Since [ŝ, (s1..k)[si/s̃i][sd/def(sd)], d, d, T ]=[ŝ, (s1..k)[sd/def(sd)][si/s̃i], d, d, T ],

then [ŝ, (s1..k)[sd/def(sd)], d, d, T ]≺1
[ŝ, (s1..k)[sd/def(sd)][si/s̃i], d, d, T ] through rule inside-

or.

• i = d. It is easy to see that [ŝ, (s1..k)[si/s̃i][s̃d/def(s̃d)], d, d, T ]

=[ŝ, (s1..k)[sd/s̃d][s̃d/def(s̃d)], d, d, T ] = [ŝ, (s1..k)[sd/def(s̃d)], d, d, T ].

Now, by lemma 3, [ŝ, (s1..k)[sd/def(sd)], d, d, T ]≺1
[ŝ, (s1..k)[sd/def(s̃d)], d, d, T ] through

rule inside-or. In the third case, there are two subcases:

• i 6= l. Since [ŝ, (s1..k)[si/s̃i][sl/def(sl)], l, T ] = [ŝ, (s1..k)[sl/def(sl)][si/s̃i], l, T ], then

[ŝ, (s1..k)[sl/def(sl)], l, T ]≺1
[ŝ, (s1..k)[sl/def(sl)][si/s̃i], l, T ] through rule inside-or.

• i = l. It is easy to see that [ŝ, (s1..k)[si/s̃i][sl/def(sl)], l, T ]

=[ŝ, (s1..k)[sl/s̃l][sl/def(sl)], l, T ] = [ŝ, (s1..k)[sl/def(s̃l)], l, T ].

Now, by lemma 3, [ŝ, (s1..k)[sl/def(sl)], l, T ]≺1
[ŝ, (s1..k)[sl/def(s̃l)], l, T ] through rule

inside-or.
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• add-trans. Assume s = [ŝ, (s1..k), l, T ]. Then, [ŝ, (s1..k), l, T ]≺1
[ŝ, (s1..k), l, T ∪ {t∗}],

where t∗ ∈ T. This case is analogous to ext-or2 case, but the refinement is through
rule add-trans.

• Extensions ext-act-en, ext-act-ex and ext-act-trans are trivial because next-stop does not
depend on the set of transitions T nor exit nor entry actions.

Lemma 5. For all s, s̃ ∈ SC, if s≺
1
s̃ then next(ht, Td, s)≺1

next(ht, Td, s̃), ∀ Td∈ec-all(s),
∀ ht∈HT

Proof. First note that Td ∈ ec-all(s) ⇒ Td ∈ ec-all(s̃) by lemma 2. Then, use induction on
s≺

1
s̃.

• ext-and1. Assume s = [ŝ]. Then [ŝ]≺
1
[ŝ, (s′)], where s′ ∈ SCB . Now

next(ht, Td, [ŝ, (s
′)]) = [ŝ, (next(ht, Td, s

′))] = [ŝ, (s′)] because s′ ∈ SCB , which indeed
is a one step refinement of next(ht, Td, s) through ext-and1.

• ext-and2. Assume s = [ŝ, (s1, .., sk)]. Then [ŝ, (s1, .., sk)]≺1
[ŝ, (s1, .., sk, s

′)], where
s′ ∈ SCB .
Now next(ht, Td, [ŝ, (s1, .., sk, s

′)]) = [ŝ, (next(ht, Td, s1), .., next(ht, Td, sk), s
′)] because

s′ ∈ SCB , which indeed is a one step refinement of
[ŝ, (next(ht, Td, s1), .., next(ht, Td, sk))] through ext-and2.

• inside-and. Assume s = [ŝ, (s1..k)]. Then [ŝ, (s1..k)]≺1
[ŝ, (s1..k)[si/s̃i]], where si≺1

s̃i.
Here the inductive hypothesis is applied, that is,
next(ht, Td, si)≺1

next(ht, Td, s̃i), since si≺1
s̃i and lemma 2. Finally,

[ŝ, (next(ht, Td, s1), .., next(ht, Td, si), .., next(ht, Td, sk))]
≺

1
[ŝ, (next(ht, Td, s1), .., next(ht, Td, s̃i), .., next(ht, Td, sk))] through inside-and.

• ext-or1. Assume s = [ŝ]. Then [ŝ]≺
1
[ŝ, (s′), 1, 1, ∅] , where s′ ∈ SCB . Two cases must

be taken into account,

1. If ∃ν ∈ Td.ν = ŝ′, then next(ht, Td, [ŝ, (s
′), 1, 1, ∅]) = [ŝ, (s′)[s′/next(ht,Td,s′)], 1, 1, ∅]

= [ŝ, (s′), 1, 1, ∅] because s′ ∈ SCB , which indeed is a one step refinement of s through
ext-or1.

2. Otherwise, next(ht, Td, [ŝ]) = next-stop(ht, [ŝ]). Then, by lemma 4,
next(ht, Td, [ŝ]) ≺1

next(ht, Td, [ŝ, (s
′), 1, 1, ∅]).

• ext-or2. Assume s = [ŝ, (s1..k), l, T ]. Then [ŝ, (s1..k), l, T ]≺1
[ŝ, (s1..k, s

′), l, T ], where
s′ ∈ SCB . Two cases must be taken into account,

1. If ∃ν ∈ Td.ν = ŝj , then next(ht, Td, [ŝ, (s1..k, s
′), l, T ])

= [ŝ, (s1..k, s
′)[sj/next(ht,Td,sj)], j, T ], and since j ∈ {1..k}, it is a one step refinement

of [ŝ, (s1..k)[sj/next(ht,Td,sj)], j, T ] through ext-or2.

2. Otherwise, next(ht, Td, [ŝ, (s1..k), l, T ]) = next-stop(ht, [ŝ, (s1..k), l, T ]). Then by
lemma 4, next(ht, Td, [ŝ, (s1..k), l, T ])≺1

next(ht, Td, [ŝ, (s1..k, s
′), l, T ]).

• inside-or. Assume s = [ŝ, (s1..k), l, T ]. Then [ŝ, (s1..k), l, T ]≺1
[ŝ, (s1..k)[si/s̃i], l, T ], where

si≺1
s̃i. Here the inductive hypothesis is applied, that is,

next(ht, Td, si)≺1
next(ht, Td, s̃i), since si≺1

s̃i. Two cases must be taken into account,
1. If ∃ν ∈ Td.ν = ŝj , then two subcases must be taken into account:

(a) If i 6= j, then next(ht, Td, [ŝ, (s1..k)[si/s̃i], l, T ]) = [ŝ, (s1..k)[si/s̃i][sj/next(ht,Td,sj)]
, j, T ]

= [ŝ, (s1..k)[sj/next(ht,Td,sj)][si/s̃i]
, j, T ], which is a one step refinement of

[ŝ, (s1..k)[sj/next(ht,Td,sj)]
, j, T ] through inside-or.
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(b) If i = j, then next(ht, Td, [ŝ, (s1..k)[si/s̃i], l, T ]) = [ŝ, (s1..k)[si/s̃i][sj/next(ht,Td,sj)]
, j, T ]

= [ŝ, (s1..k)[sj/s̃j ][s̃j/next(ht,Td,s̃j)]
, j, T ] = [ŝ, (s1..k)[sj/next(ht,Td,s̃j)]

, j, T ]. Then, by

inductive hypothesis, [ŝ, (s1..k)[sj/next(ht,Td,s̃j)]
, j, T ] is a one step refinement of

[ŝ, (s1..k)[sj/next(ht,Td,sj)]
, j, T ].

2. Otherwise, next(ht, Td, [ŝ, (s1..k), l, T ]) = next-stop(ht, [ŝ, (s1..k), l, T ]). Then by
lemma 4, next(ht, Td, [ŝ, (s1..k), l, T ])≺1

next(ht, Td, [ŝ, (s1..k)[si/s̃i], l, T ]).

• Extensions add-trans, ext-act-en, ext-act-ex and ext-act-trans are trivial because next

does not depend on the set of transitions T nor exit nor entry actions.

6.2 Extension Relation as a Behavioral Refinement

Due to the priority mechanism for transitions specified by UML, it cannot be expected
that every extension preserves the semantics. The conflict arises when an inner transition
with the same triggering event as an existing outer transition is added to a statechart. As
the inner transition has priority over the outer one, the semantics are not preserved, since
the outer transition will not take place in the extended statechart. For that reason, we
must introduce the concept of safe extension: an extension is defined to be safe if no inner
transitions are added with the same event as an existing outer transition. Formally:

Definition 5. Let s = [ŝ, (s1..k), l, T ], s̃ = [ŝ, (s1..k)[si/s̃i], l, T ], si≺1
s̃i. s≺

1
s̃ is a safe

extension iff

∀e ∈ E : (∃s′∈SC. (s
e
−→

1

s′ ∧ si 6
e
−→

1

) ⇒ s̃i 6
e
−→

1

)

From now on, all extensions are required to be safe. The main result of this work
follows:

Theorem 1. For all s, s′, t ∈ SC, e ∈ E, if s
e
−→

1

s′ and s≺
1
t, then ∃t′ such that t

e
−→

1

t′ and
s′≺

1
t′.

This theorem states that the extension relation is indeed a behavioral refinement, since
the extended statechart preserves all the reachable states of the original one. Graphically,

s
e

−−−→
1

s′

≺
1

≺
1

t
e

−−−→
1

∃ t′

Note that the theorem assumes that the stuttering flag is equal to 1. Since a statechart
transition takes place when the stuttering flag is equal to 1, idle steps (f=0) are not taken
into account. As mentioned previously, the stuttering flag is needed to assure that idle
steps can only occur if no non-idle step is possible. Basically, it allows the semantics to
fullfill the maximality condition of statecharts, since when no statechart transition can be
taken, a stuttering step (loop) can be done. It is important to remark again that statechart
transitions are different from semantic transitions.

Proof of theorem 1. By induction on s≺
1
t.

• ext-and1. Let [ŝ]≺
1
[ŝ, (s̃)], where s̃ ∈ SCB . Then [ŝ]

e
−→

0

[ŝ] because the only rule that
can be applied to a BASIC state is BAS. Then, the hypothesis of the theorem does
not hold, because there is a transition with flag equal to 0.
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• ext-and2. Let [ŝ, (s1, .., sk)]≺1
[ŝ, (s1, .., sk, s̃)], where s̃ ∈ SCB and assume that there is

at least one substate that performs a transition with f = 1 (otherwise the hypothesis
of the theorem does not hold), that is, ∃ j.fj = 1:

∀j∈{1,...,k}.sj
e
−→

fj
s′j

[ŝ, (s1..k)]
e
−→

1
[ŝ, (s′1..k)] = s′

AND

Since s̃ ∈ SCB , then [ˆ̃s]
e
−→

0

[ˆ̃s]. Now

∀j∈{1,...,k}.sj
e
−→

fj
s′j s̃

e
−→

0
s̃

[ŝ, (s1..k, s̃)]
e
−→

1
[ŝ, (s′1..k, s̃)]=t′

AND

Then t′ is indeed a refinement of s′, by rule ext-and2.

• inside-and. Let [ŝ, (s1..k)]≺1
[ŝ, (s1..k)[si/s̃i]], where si≺1

s̃i.

Let [ŝ, (s1..k)]
e
−→

f

[ŝ, (s′1..k)]=s′ with sj
e
−→

fj
s′j ∀j=1, .., k. By inductive hypothesis: if

si
e
−→

1

s′i and si≺1
s̃i then ∃s̃′i such that s̃i

e
−→

1

s̃′i and s′i≺1
s̃′i. Then,

∀j=1..i−1,i+1..k.sj
e
−→

fj
s′j ,

si
e
−→

1
s′i, si≺1

s̃i

s̃i
e
−→

1
s̃′i

I.H.

t = [ŝ, (s1..k)[si/s̃i]]
e
−→

1
[ŝ, (s′1..k)[s′i/s̃′i]] = t′

AND

And [ŝ, (s′1..k)]≺1
[ŝ, (s′1..k)[s′i/s̃′i]] by inside-and.

• ext-or1. Let [ŝ]≺
1
[ŝ, (s̃), 1, 1, ∅] , where s̃ ∈ SCB . Then [ŝ]

e
−→

0

[ŝ] because the only rule
that can be applied to a BASIC state is BAS. Then, the hypothesis of the theorem
does not hold.

• ext-or2. Let [ŝ, (s1..k), l, T ]≺1
[ŝ, (s1..k, s̃), l, T ], where s̃∈SCB . Three rules can be applied

in this case:

OR-1 rule: Let [ŝ, (s1..k), l, T ]
e
−→

1

[ŝ, (s1..k)[sp/next(ht,Td,sp)]
, p, T ]=s′ by OR-1 rule, where

〈t̂,l, ,e, ,Td,p,ht〉 ∈ T . Since the extension adds a new state, it cannot be the current
active one. Then t′ = [ŝ, (s1..k[sp/next(ht,Td,sp)], s̃), t, T ] is chosen. By rule OR-1, the
state t′ can be reached from t = [ŝ, (s1..k, s̃), l, T ]. That is,

〈t̂,l,Sr,e,α,Td,p,ht〉 ∈ T, Sr ⊆ conf(sl), sl 6
e
−→

1

t=[ŝ, (s1..k, s̃), l, T ]
e
−→

1
[ŝ, (s1..k[sp/next(ht,Td,sp)], s̃), p, T ]=t′

OR-1

And [ŝ, (s1..k)[sp/next(ht,Td,sp)]
, p, T ]≺

1
[ŝ, (s1..k[sp/next(ht,Td,sp)], s̃), p, T ] by ext-or2.

OR-2 rule: Let [ŝ, (s1..k), l, T ]
e
−→

1

[ŝ, (s1..k)[sl/s′l], l, T ]=s′, when sl
e
−→

1

s′l. Then,

sl
e
−→

1
s′l

t=[ŝ, (s1..k, s̃), l, T ]
e
−→

1
[ŝ, (s1..k[sl/s′l], s̃), l, T ]=t′

OR-2

And [ŝ, (s1..k)[sl/s′l], l, T ]≺1
[ŝ, (s1..k[sl/s′l], s̃), l, T ] by ext-or2.

OR-3 rule: Let [ŝ, (s1..k), l, T ]
e
−→

0

[ŝ, (s1..k), l, T ], when [ŝ, (s1..k), l, T ] 6
e
−→

1
. Then, the

hypothesis of the theorem does not hold.
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• add-trans. Let [ŝ, (s1..k), l, T ]≺1
[ŝ, (s1..k), l, T ∪ {t∗}], where t∗∈T. Again, three rules

can be applied:

OR-1 rule: Let [ŝ, (s1..k), l, T ]
e
−→

1

[ŝ, (s1..k)[sm/next(ht,Td,sm)],m, T ]=s′ by OR-1 rule,

where 〈t̂,l, ,e, ,Td,m,ht〉 6= t∗∈T . Then,

〈t̂,l,Sr,e, ,Td,m,ht〉 ∈ T, Sr ⊆ conf(sl), sl 6
e
−→

1

t=[ŝ, (s1..k), l, T ∪ {t∗}]
e
−→

1
[ŝ, (s1..k)[sm/next(ht,Td,sm)],m, T ∪ {t∗}]=t′

OR-1

So [ŝ, (s1..k)[sm/next(ht,Td,sm)],m, T ]≺
1
[ŝ, (s1..k)[sm/next(ht,Td,sm)],m, T∪{t∗}] by add-trans.

OR-2 rule: Let [ŝ, (s1..k), l, T ]
e
−→

1

[ŝ, (s1..k)[sl/s′l], l, T ]=s′, when sl
e
−→

1

s′l. Then,

sl
e
−→

1
s′l

t = [ŝ, (s1..k), l, T ∪ {t∗}]
e
−→

1
[ŝ, (s1..k)[sl/s′l], l, T ∪ {t∗}] = t′

OR-2

Here [ŝ, (s1..k)[sl/s′l], l, T ]≺1
[ŝ, (s1..k)[sl/s′l], l, T ∪ {t∗}] by add-trans.

OR-3 rule: Let [ŝ, (s1..k), l, T ]
e
−→

0

[ŝ, (s1..k), l, T ], when [ŝ, (s1..k), l, T ] 6
e
−→

1

. Then, the
hypothesis of the theorem does not hold.

• inside-or. Here, [ŝ, (s1..k), l, T ]≺1
[ŝ, (s1..k)[si/s̃i], l, T

′], where si≺1
s̃i. For the sake of

clarity, two cases are considered:

1. When i 6= l.

OR-1 rule: Let [ŝ, (s1..k), l, T ]
e
−→

1

[ŝ, (s1..k)[sm/next(ht,Td,sm)],m, T ]=s′, where 〈t̂,l, , , ,Td,m,ht〉 ∈
T . Here two subcases are taken into account:

(a) When i 6= m.

〈t̂,l,Sr,e, ,Td,m,ht〉 ∈ T, Sr ⊆ conf(sl), sl 6
e
−→

1

t=[ŝ, (s1..k)[si/s̃i], l, T ]
e
−→

1
[ŝ, (s1..k)[si/s̃i][sm/next(ht,Td,sm)],m, T ]=t′

OR-1

Here [ŝ, (s1..k)[sm/next(ht,Td,sm)],m, T ]≺
1
[ŝ, (s1..k)[si/s̃i][sm/next(ht,Td,sm)],m, T ] by inside-or.

(b) When i = m.

〈t̂,l,Sr,e, ,Td,m,ht〉 ∈ T, Sr ⊆ conf(sl), sl 6
e
−→

1

t = [ŝ, (s1..k)[si/s̃i], l, T ]
e
−→

1
[ŝ, (s1..k)[si/s̃i][s̃m/next(ht,Td,s̃m)],m, T ] = t′

OR-1

Here [ŝ, (s1..k)[sm/next(ht,Td,sm)],m, T ]≺
1
[ŝ, (s1..k)[si/s̃i][s̃m/next(ht,Td,s̃m)],m, T ] by inside-or,

since next(ht, Td, sm)≺
1
next(ht, Td, s̃m), by lemma 5.

OR-2 rule: Let [ŝ, (s1..k), l, T ]
e
−→

1

[ŝ, (s1..k)[sl/s′l], l, T ]=s′, when sl
e
−→

1

s′l. Then,

sl
e
−→

1
s′l

t = [ŝ, (s1..k)[si/s̃i], l, T ]
e
−→

1
[ŝ, (s1..k)[si/s̃i][sl/s′l], l, T ] = t′

OR-2

Since i 6=l, [ŝ, (s1..k)[sl/s′l], l, T ]≺1
[ŝ, (s1..k)[si/s̃i][sl/s′l], l, T ] by inside-or.

OR-3 rule: The hypothesis of the theorem does not hold.

2. When i = l. Note that if si 6
e
−→

1

then s̃i 6
e
−→

1

, because the extensions are safe.
Three OR rules apply:
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OR-1 rule: Let [ŝ, (s1..k), i, T ]
e
−→

1

[ŝ, (s1..k)[sm/next(ht,Td,sm)],m, T ]=s′,

where 〈t̂,i,Sr,e, ,Td,m,ht〉 ∈ T . Two subcases must be taken into account:

(a) When i 6= m.

〈t̂,i,Sr,e, ,Td,m,ht〉 ∈ T, Sr ⊆ conf(s̃i), s̃i 6
e
−→

1

t=[ŝ, (s1..k)[si/s̃i], i, T ]
e
−→

1
[ŝ, (s1..k)[si/s̃i][sm/next(ht,Td,sm)],m, T ]=t′

OR-1

And [ŝ, (s1..k)[sm/next(ht,Td,sm)],m, T ]≺
1
[ŝ, (s1..k)[si/s̃i][sm/next(ht,Td,sm)],m, T ] by inside-or.

Note that Sr ⊆ conf(si) ⇒ Sr ⊆ conf(s̃i) holds by lemma 1.

(b) When i = m.

〈t̂,i,Sr,e, ,Td,m,ht〉 ∈ T, Sr ⊆ conf(s̃i), s̃i 6
e
−→

1

t=[ŝ, (s1..k)[si/s̃i], i, T ]
e
−→

1
[ŝ, (s1..k)[si/s̃i][s̃m/next(ht,Td,s̃m)],m, T ]=t′

OR-1

And [ŝ, (s1..k)[sm/next(ht,Td,sm)],m, T ]≺
1
[ŝ, (s1..k)[si/s̃i][s̃m/next(ht,Td,s̃m)],m, T ] by inside-or,

since next(ht, Td, sm)≺
1
next(ht, Td, s̃m) by lemma 5.

OR-2 rule: Let [ŝ, (s1..k), i, T ]
e
−→

1

[ŝ, (s1..k)[si/s′i], i, T ]=s′, when sl
e
−→

1

s′l. Then,

si
e
−→

1
s′i, si≺1

s̃i

s̃i
e
−→

1
s̃′i

I.H.

t = [ŝ, (s1..k)[si/s̃i], i, T ]
e
−→

1
[ŝ, (s1..k)[si/s̃i][s̃i/s̃′i], i, T ] = t′

OR-2

Here [ŝ, (s1..k)[si/s′i], i, T ]≺1
[ŝ, (s1..k)[si/s̃i][s̃i/s̃′i], i, T ] by inside-or.

OR-3 rule: Then, the hypothesis of the theorem does not hold.

• ext-act-en, ext-act-ex and ext-act-trans are trivial: In those cases, the same refinement
applied to s′ is applied to s in order to obtain t′.

6.3 On the Actions Generated by the SO Semantics

In Theorem 1 it is proved that the extension relation preserves the transitions defined in
the SO semantics, and thus it can be considered as a behavioral refinement. The next step
is to assure that the set of actions generated by a statechart is preserved in an extended
statechart. In this section a theorem is proved, together with two auxiliary lemmas, which
take into account the actions generated by the SO semantics. That theorem proves that
the set of possible actions generated by a statechart are preserved by the refinement.

Lemma 6. For all s, s̃ ∈ SC. if s≺
1
s̃ then ∀α ∈ exit(s). ∃α̃ ∈ exit(s̃). α ⊳ α̃

Proof. By induction on s≺
1
s̃. The main idea of the proof is the following. First, assume

the form of s, then according to the extension rule applied, deduce the form of s̃. Then
compute the sets exit(s) and exit(s̃). Finally, for each element of exit(s) check that there
exists the associated one in exit(s̃), such that this is a substring of the former one.

• ext-and1. Assume s = [ŝ]. Then [ŝ]≺
1
[ŝ, (s′)], where s′ ∈ SCB . Then, exit([ŝ]) = {ex}

and exit([ŝ, (s′)]) = {ex′::ex} where ex′ = exit(s′). The thesis holds because {ex} is
a suffix of {ex′::ex}.
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• ext-and2. Assume s = [ŝ, (s1..k)]. Then [ŝ, (s1..k)]≺1
[ŝ, (s1..k, s

′)] = s̃, where s′ ∈
SCB . So exit(s) = {m1::..::mk::ex | ∃p:{1..k}↔{1..k}.mi ∈ exit(sp(i))∀i}. Let pi be
one bijecton (permutation) pi = p(i) such that exit(s)pi

= {m1::..::mk::ex | mi ∈
exit(spi

)∀i}. Now, exit(s)pi
is the set of all possible combinations of mi ∈ exit(spi

).
Now define, exit(s̃)pi

= {m1::..::mk::ex
′::ex | mi ∈ exit(spi

)∀i, ex
′ = exit(s′)}. It is

easy to see that for all α ∈ exit(s)pi
exists one α̃ ∈ exit(s̃pi

) s.t. α ⊳ α̃.

• inside-and. Assume s = [ŝ, (s1..k)]. Then [ŝ, (s1..k)]≺1
[ŝ, (s1..k)[si/s̃i]], where si≺1

s̃i.
Then, exit(s) = {m1::..::mk::ex | ∃p:{1..k}↔{1..k}.mi ∈ exit(sp(i))∀i}. Let pi be
one bijecton (permutation) pi = p(i) such that exit(s)pi

= {m1::..::mk::ex | mi ∈
exit(spi

)∀i}. Now, exit(s) is the set of all possible combinations of mi ∈ exit(spi
). Let

p−1 = r be the inverse of p, such that r(pi) = i. Take j = pi (note that rj = i) and
using the inductive hypothesis, that is, (∀mrj ∈ exit(sj), ∃m̃rj ∈ exit(s̃j)). mrj ⊳m̃rj ,
the string m̃i is obtained. Now, the stringm1::..::mi::..::mk⊳m1::..::m̃i::..::mk because
it is a subsequence. Since the reasoning is valid for any permutation, the thesis holds.

• ext-or1. Assume s = [ŝ]. Then [ŝ]≺
1
[ŝ, (s′), 1, ∅], where s′ ∈ SCB . Finally, exit(s) = {ex}

and exit(s̃) = {ex′::ex | ex′ ∈ exit(s′)} = {ex′::ex} because s′ ∈ SCB .

• ext-or2. Assume s = [ŝ, (s1..k), l, T ]. Then [ŝ, (s1..k), l, T ]≺1
[ŝ, (s1..k, s

′), l, T ], where
s′ ∈ SCB . Finally, exit(s) = {ex′::ex | ex′ ∈ exit(sl)} = exit(s̃), because l ∈ {1..k}.

• inside-or. Assume s = [ŝ, (s1..k), l, T ]. Then [ŝ, (s1..k), l, T ]≺1
[ŝ, (s1..k)[si/s̃i], l, T ], where

si≺1
s̃i. Two cases must be taken into account,

1. If i 6= l. Then, exit(s) = {ex′::ex | ex′ ∈ exit(sl)} = exit(s̃).

2. If i = l. Apply the inductive hypothesis, that is, (∀mi ∈ exit(sl), ∃m̃l ∈ exit(s̃l)).
ml ⊳ m̃l. Then m1::..::ml::..::mk ⊳ m1::..::m̃l::..::mk.

• ext-act-ex. Three cases must be taken into account,

1. Assume s = [ŝ, (en, ex)]. Then [ŝ, (en, ex)]≺
1
[ŝ, (en, ẽx)], where ex ⊳ ẽx. Finally,

exit(s) = {ex} and exit(s̃) = {ẽx}.

2. Assume s = [ŝ, (s1..k), l, T, (en, ex)]. Then [ŝ, (s1..k), l, T, (en, ex)] ≺1

[ŝ, (s1..k), l, T, (en, ẽx)], where ex ⊳ ẽx. Finally, exit(s) = exit(s) = {ex′::ex | ex′ ∈
exit(sl)} and exit(s̃) = exit(s) = {ex′::ẽx | ex′ ∈ exit(sl)}.

3. Assume s = [ŝ, (s1..k), (en, ex)]. Then [ŝ, (s1..k), (en, ex)]≺1
[ŝ, (s1..k), (en, ẽx)],

where ex⊳ẽx. Finally, exit(s) = {m1::..::mk::ex | ∃p:{1..k}↔{1..k}.mi ∈ exit(sp(i))∀i}
and exit(s̃) = {m1::..::mk::ẽx | ∃p:{1..k}↔{1..k}.mi ∈ exit(sp(i))∀i}.

• Extensions add-trans, ext-act-en and ext-act-trans are trivial because exit does not depend
on the set of transitions T nor entry actions.

Lemma 7. For all s, s̃ ∈ SC. if s≺
1
s̃ then ∀α ∈ entry(si). ∃α̃ ∈ entry(s̃′i). α ⊳ α̃

Proof. By induction on s≺
1
s̃. Analogous to lemma 6.

Theorem 2. Let s, s′, t, t′ ∈ SC where theorem 1 holds and s →α s′, t →α′ t′ then α ⊳ α′.

Proof. By induction on s≺
1
t.

• ext-and. Let [ŝ]≺
1
[ŝ, (s1, .., sk)], where s1, .., sk ∈ SCB . The only rule that can be

applied is BAS, then the hypothesis of the theorem does not hold.
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• inside-and. Let [ŝ, (s1..k)]≺1
[ŝ, (s1..k)[si/s̃i]], where si≺1

s̃i. Let [ŝ, (s1..k)]
e
−→

f

α[ŝ, (s
′
1..k)]=s′

with sj
e
−→

fj

αj
s′j ∀j=1, .., k. By inductive hypothesis: if si

e
−→

1

αi
s′i and si≺1

s̃i then ∃s̃′i

such that s̃i
e
−→

1

α′

i
s̃′i and s′i≺1

s̃′i where αi ⊳ α
′
i. Then,

∀j=1..i−1,i+1..k.sj
e
−→

fj
αj

s′j ,

si
e
−→

1

αi
s′i, si≺1

s̃i

s̃i
e
−→

1

α′

i
s̃′i

I.H.

t = [ŝ, (s1..k)[si/s̃i]]
e
−→

1

α′ [ŝ, (s′1..k)[s′i/s̃′i]] = t′
AND

Given a permutation we get α = αp1
::..::αpj

::..::αpk
. Take pj = i, then α1::..::αi::..::αk⊳

α1::..::α
′
i::..::αk = α′.

• ext-or1. Let [ŝ]≺
1
[ŝ, (s̃), 1, ∅] , where s̃ ∈ SCB . The only rule that can be applied is BAS.

Then, the hypothesis of the theorem does not hold.

• ext-or2. Let [ŝ, (s1..k), l, T ]≺1
[ŝ, (s1..k, s̃), l, T ], where s̃∈SCB . Three cases must be taken

into account:

OR-1 rule: Let [ŝ, (s1..k), l, T ]
e
−→

1

ex::γ::en[ŝ, (s1..k)[sp/next(ht,Td,sp)]
, p, T ]=s′ by OR-1 rule,

where 〈t̂,l, ,e,γ,Td,p,ht〉 ∈ T , ex ∈ exit(sl) and en ∈ entry(next(ht, Td, sp)). Since the
extension adds a new state, it cannot be the current active one. Then,

〈t̂,l,Sr,e,γ,Td,p,ht〉 ∈ T, Sr ⊆ conf(sl), sl 6
e
−→

1

t=[ŝ, (s1..k, s̃), l, T ]
e
−→

1

ex::γ::en [ŝ, (s1..k[sp/next(ht,Td,sp)], s̃), p, T ]=t′
OR-1

then the output actions are unchanged.

OR-2 rule: Let [ŝ, (s1..k), l, T ]
e
−→

1

α[ŝ, (s1..k)[sl/s′l], l, T ]=s′, when sl
e
−→

1

αs
′
l. Then,

sl
e
−→

1

α s′l

t=[ŝ, (s1..k, s̃), l, T ]
e
−→

1

α [ŝ, (s1..k[sl/s′l], s̃), l, T ]=t′
OR-2

then the output actions are unchanged.

OR-3 rule: Let [ŝ, (s1..k), l, T ]
e
−→

0

[ŝ, (s1..k), l, T ], when [ŝ, (s1..k), l, T ] 6
e
−→

1
. Then, the

hypothesis of the theorem does not hold.

• add-trans. Let [ŝ, (s1..k), l, T ]≺1
[ŝ, (s1..k), l, T ∪ {t∗}], where t∗∈T. Again, three rules

can be applied:

OR-1 rule: Let [ŝ, (s1..k), l, T ]
e
−→

1

ex::γ::en[ŝ, (s1..k)[sm/next(ht,Td,sm)],m, T ]=s′ by OR-1

rule, where 〈t̂,l, ,e,γ,Td,m,ht〉 6= t∗∈T , ex ∈ exit(sl) and en ∈ entry(next(ht, Td, sm)).
Then,

〈t̂,l,Sr,e,γ,Td,m,ht〉 ∈ T, Sr ⊆ conf(sl), sl 6
e
−→

1

t=[ŝ, (s1..k), l, T ∪ {t∗}]
e
−→

1

ex::γ::en [ŝ, (s1..k)[sm/next(ht,Td,sm)],m, T ∪ {t∗}]=t′
OR-1

then the output actions are unchanged.

OR-2 rule: Let [ŝ, (s1..k), l, T ]
e
−→

1

α[ŝ, (s1..k)[sl/s′l], l, T ]=s′, when sl
e
−→

1

αs
′
l. Then,

sl
e
−→

1

α s′l

t=[ŝ, (s1..k), l, T ∪ {t∗}]
e
−→

1

α [ŝ, (s1..k)[sl/s′l], l, T ∪ {t∗}]=t′
OR-2
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then the output actions are unchanged.

OR-3 rule: Let [ŝ, (s1..k), l, T ]
e
−→

0

[ŝ, (s1..k), l, T ], when [ŝ, (s1..k), l, T ] 6
e
−→

1

. Then, the
hypothesis of the theorem does not hold.

• inside-or. In this case, [ŝ, (s1..k), l, T ]≺1
[ŝ, (s1..k)[si/s̃i], l, T

′], where si≺1
s̃i. For the sake

of clarity, the proof is split in two cases:

1. When i 6= l.

OR-1 rule: Let [ŝ, (s1..k), l, T ]
e
−→

1

ex::γ::en[ŝ, (s1..k)[sm/next(ht,Td,sm)],m, T ]=s′, where

〈t̂,l, , ,γ,Td,m,ht〉 ∈ T , ex ∈ exit(sl) and en ∈ entry(next(ht, Td, sm)). Two cases
must be taken into account:

(a) When i 6= m.

〈t̂,l,Sr,e,γ,Td,m,ht〉 ∈ T, Sr ⊆ conf(sl), sl 6
e
−→

1

t=[ŝ, (s1..k)[si/s̃i], l, T ]
e
−→

1

ex::γ::en [ŝ, (s1..k)[si/s̃i][sm/next(ht,Td,sm)],m, T ]=t′
OR-1

then the output actions are unchanged.

(b) When i = m.

〈t̂,l,Sr,e,γ,Td,m,ht〉 ∈ T, Sr ⊆ conf(sl), sl 6
e
−→

1

t=[ŝ, (s1..k)[si/s̃i], l, T ]
e
−→

1

ex::γ::en′ [ŝ, (s1..k)[si/s̃i][s̃m/next(ht,Td,s̃m)],m, T ]=t′
OR-1

By lemma 7, en ⊳ en′ since next(ht, Td, sm)≺
1
next(ht, Td, s̃m), by lemma 5. Then

ex::γ::en ⊳ ex::γ::en′.

OR-2 rule: Let [ŝ, (s1..k), l, T ]
e
−→

1

α[ŝ, (s1..k)[sl/s′l], l, T ]=s′, when sl
e
−→

1

αs
′
l. Then,

sl
e
−→

1

α s′l

t = [ŝ, (s1..k)[si/s̃i], l, T ]
e
−→

1

α [ŝ, (s1..k)[si/s̃i][sl/s′l], l, T ] = t′
OR-2

then the output actions are unchanged.

OR-3 rule: Then, the hypothesis of the theorem does not hold.

2. When i = l. Note that if si 6
e
−→

1

then s̃i 6
e
−→

1

, because all the extensions are safe.
Three OR rules applies:

OR-1 rule: Let [ŝ, (s1..k), i, T ]
e
−→

1

ex::γ::en[ŝ, (s1..k)[sm/next(ht,Td,sm)],m, T ]=s′, where

〈t̂,i,Sr,e,γ,Td,m,ht〉 ∈ T , ex ∈ exit(sl) and en ∈ entry(next(ht, Td, sm)). Two sub-
cases must be taken into account,

(a) When i 6= m.

〈t̂,i,Sr,e,γ,Td,m,ht〉 ∈ T, Sr ⊆ conf(s̃i), s̃i 6
e
−→

1

t=[ŝ, (s1..k)[si/s̃i], i, T ]
e
−→

1

ex′::γ::en [ŝ, (s1..k)[si/s̃i][sm/next(ht,Td,sm)],m, T ]=t′
OR-1

By lemma 6, ex ⊳ ex′. Then ex::γ::en ⊳ ex′::γ::en. Note that Sr ⊆ conf(si) ⇒ Sr ⊆
conf(s̃i) holds by lemma 1.

(b) When i = m.

〈t̂,i,Sr,e, ,Td,m,ht〉 ∈ T, Sr ⊆ conf(s̃i), s̃i 6
e
−→

1

t=[ŝ, (s1..k)[si/s̃i], i, T ]
e
−→

1

ex′::γ::en′ [ŝ, (s1..k)[si/s̃i][s̃m/next(ht,Td,s̃m)],m, T ]=t′
OR-1
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By lemma 6, ex ⊳ ex′. By lemma 7, en ⊳ en′ since next(ht, Td, sm)≺
1
next(ht, Td, s̃m),

by lemma 5. Then ex::γ::en ⊳ ex′::γ::en′.

OR-2 rule: Let [ŝ, (s1..k), i, T ]
e
−→

1

α[ŝ, (s1..k)[si/s′i], i, T ]=s′, when si
e
−→

1

αi
s′i. Inductive

hypothesis is applied to get,

si
e
−→

1

αi
s′i, si≺1

s̃i

s̃i
e
−→

1

α′

i
s̃′i

I.H.

t=[ŝ, (s1..k)[si/s̃i], i, T ]
e
−→

1

α′ [ŝ, (s1..k)[si/s̃i][s̃i/s̃′i], i, T ]=t′
OR-2

Since αi ⊳ α
′
i by IH, α ⊳ α′.

OR-3 rule: Then, the hypothesis of the theorem does not hold.

• ext-act-trans. Let [ŝ, (s1,..,sn), T ]≺1
[ŝ, (s1,..,sn), T[r/r′]], where r = 〈t̂,l,Sr,e,γ,Td,p,ht〉 ∈

T , r′ = 〈t̂,l,Sr,e,γ̃,Td,p,ht〉 and γ ⊳ γ̃. Three rules can be applied in this case:

OR-1 rule: Let [ŝ, (s1..k), l, T ]
e
−→

1

ex::γ::en[ŝ, (s1..k)[sp/next(ht,Td,sp)]
, p, T ]=s′ by OR-1 rule,

where 〈t̂,l, ,e,γ,Td,p,ht〉 ∈ T , ex ∈ exit(sl) and en ∈ entry(next(ht, Td, sp)). Then,

〈t̂,l,Sr,e,γ̃,Td,p,ht〉 ∈ T, Sr ⊆ conf(sl), sl 6
e
−→

1

t=[ŝ, (s1..k, s̃), l, T ]
e
−→

1

ex::γ̃::en [ŝ, (s1,..,sn), T[r/r′]]=t′
OR-1

then ex::γ::en ⊳ ex::γ̃::en.

OR-2 rule: Let [ŝ, (s1..k), l, T ]
e
−→

1

α[ŝ, (s1..k)[sl/s′l], l, T ]=s′, when sl
e
−→

1

αs
′
l. The output

actions are unchanged.

OR-3 rule: Let [ŝ, (s1..k), l, T ]
e
−→

0

[ŝ, (s1..k), l, T ], when [ŝ, (s1..k), l, T ] 6
e
−→

1
. Then, the

hypothesis of the theorem does not hold.

• ext-act-en and ext-act-ex. These are trivial, because entry and exit actions of the super-
state do not take part in the SOS rules. �



Chapter 7

The SC* Modeler

In this chapter, a prototype implementation of some of the ideas presented in this work is
described. The prototype was constructed basically to check the adequacy of the definitions
and to become the first step in the construction of a software engineering tool for modeling
the behavior of Software Product Lines. This prototype is called “SC* Modeler”. First, a
brief description of the modeling approach implied by the ideas of this work is presented.
Then, the architecture of the prototype is described. Finally, some details on the inference
engine are given.

7.1 Modeling Approach

Formal specifications provide a precise supplement to natural language specifications and
can be rigorously validated and verified, leading to the early detection of ambiguities and
inconsistencies. Although interest in formal methods captured the attention of many re-
search groups, it has been limited within industry[SB06]. In general, designers are reluctant
to the idea of formal methods being used to develop products, and usually UML is preferred
instead. One possibility for overcoming this barrier is to use some kind of “transparent
formality”. This is one of the goals of the SC∗ Modeler, in which the designer can model
the system using a “point and click” tool, and then these designs can be subsequently
refined and even converted into more specific ones, like executable machine code.

A model enable designers to concentrate on the significant system aspects, allowing
to handle more complexity through some form of abstraction. One form of abstraction is
classification, which is the process of identifying types, also known as concepts. Classifica-
tion is the basic form of abstraction found in object-oriented modeling [BG05]. Features
are “a distinguishable characteristic of a concept (e.g., system, component and so on) that
is relevant to some stakeholder of the concept” [SHTB07]. Feature Diagrams (see section
5.1) support this form of abstraction, by describing the capabilities of the product line and
defining the constraints for potential products. Among all the possible combinations of
features, a Feature Diagram configuration describes the selected features for one particu-
lar product, because it no longer contains variability since all configuration decisions have
been made. Moreover, it can be checked for conformity with the Feature Diagram. On the
other hand, a UML statechart describes the elements used in the behavior implementation
of the products. Finally, given a configuration, the SC* determines which statecharts have
been selected for a particular product.

This method is based on a stepwise refinement and decomposition of a problem. After
the initial specification of behavioral requirements, an abstraction is made in order to cap-
ture the most essential behavioral properties of the modeled system. Then, more detail is
added to this specification in small steps of two types. First, the specification is decom-
posed into subsystems through the use of features, and second by refining the statecharts
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which are used to represent the behavior associated with each feature.

7.2 Architecture

The architecture of the prototype is divided in three layers: i) User Interface, ii) Metamodel
and iii) Inference Engine, as can be seen in figure 7.1. Each layer comprises a group of
functionalities. The main benefit of this architecture is the separation between the user
interface and the system kernel (metamodel and inference engine), in such a way that
it is possible to completely reuse the inference engine, which is the main deliverable of
this prototype. The ultimate goal is to implement it as an Eclipse plug-in using Eclipse
Modeling Framework [SBPM08], which is a common platform used to implement modeling
tools.

Figure 7.1: SC* Modeler architecture

User Interface

This layer allows the interaction between the system and the user, which is assumed to be
a software engineer (or designer). The user interface helps the user in the construction of
statecharts, feature diagrams and statecharts with variabilities.

Metamodel

This layer allows the abstraction of the Inference Engine from the User Interface.

Inference Engine

In this layer reside the main modules of the prototype, which basically perform the compu-
tation of the union of two statecharts (see section 4.2), in order to compute the statechart
which implements a given product of the line. The language used to implement it is Pro-
log1. In Prolog, program logic is expressed in terms of relations, and a computation is
initiated by running a query over these relations. Relations and queries are constructed
using Prolog’s main data type, the term. Given a query, the Prolog engine attempts to
find a resolution refutation of the negated query. If the negated query can be refuted,
i.e., an instantiation for all free variables is found that makes the union of clauses and
the singleton set consisting of the negated query false, it follows that the original query,
with the found instantiation applied, is a logical consequence of the program. For more
references to programming in logic the reader is referred to [SS94, Kow79, Llo87]. The
features fully implemented in this prototype are the verification of the extension relation
and the calculation of the union.

1In particular, SWI-PROLOG [Wie09]
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Figure 7.2: Constructing a Feature
Diagram

Figure 7.3: Configuring a Feature
Diagram

Languages and Technologies Used

The prototype was constructed using Microsoft’s .NET framework. A framework is a
special case of software library, whose main distinguishing feature is that it can be extended
by the user. In particular, the key benefit of this framework are its Rapid Application
Development (RAD) capabilities, which allowed us an early validation of the inference
engine.

As previously mentioned, the inference engine is implemented in Prolog. The two main
reasons for this are:

1. Allows a direct implementation of the definitions presented in chapters 3, 4, and 5.

2. Allows non deterministic programming, needed for computing the union (section
4.2).

Moreover, the inference engine can be compiled for .NET, using P# [Coo] and for Java,
using PrologCafe system [BT].

7.2.1 User Interface

The user interface is structured as follows:

• Construction of Feature Diagrams: Allows the construction of a Feature Dia-
gram with mandatory, optional and alternative features (figure 7.2).

• Configuration of Feature Diagrams: Allows the selection of features of a Feature
Diagram (optional and alternativeso), that is, a configuration (figure 7.3).

• Construction and extension of statecharts: Allows the construction of Ba-
sic, And and Or statecharts as well as the extension of an already constructed one
(figure7.4).

• Construction of statecharts with variabilities: Allows the user to associate
statecharts and features Features (figure 7.5).

• Statechart derivation: Allows the user to obtain the statechart determined by a
specific Feature Diagram configuration (product), as described in section 5.2.



Chapter 7. The SC* Modeler 54

Figure 7.4: Constructing an Or stat-
echart

Figure 7.5: Constructing a state-
chart with variabilities

Its simplified metamodel is shown in figure 7.6.

Figure 7.6: User interface diagram

7.2.2 Metamodel

Feature Diagrams

In section 5.1 the set of Feature Diagrams is defined. Its simplified metamodel is shown in
figure 7.7. As before, the constraints that are not reflected in the metamodel are validated
at the inference engine layer.
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Figure 7.7: Feature Diagrams metamodel

Statecharts

In section 3.1 the set SC is inductively defined. Its simplified metamodel is shown in figure
7.8. Observe that, from the structural point of view, an Or statechart can be modeled as
an And statechart but adding more components (the set of transitions, for example). The
same happens between an And statechart and a basic one. The constraints that are not
reflected in the metamodel are validated at the inference engine layer (for example, given
the And statechart [ŝ, (s1, ..sn)], the following constraint must hold: ŝ 6= ŝi ∀i=1..n).

Figure 7.8: Statecharts metamodel
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7.2.3 Inference Engine

The inference engine implements the intelligence of the system. The syntax used to rep-
resent statecharts is the same as the abstract syntax used in the previous section. For in-
stance, the basic statechart [ŝ, (en, ex)] is represented by the Prolog term basic(St,(En,Ex)).

The main predicates implemented are:

• 1-step Extension relation and its closure (n-step).

• Statechart union.

We define a predicate for each rule of the definition in figure 4.1. We show some examples.

1-step extension relation

Using Prolog, it is straightforward to implement the definitions of ≺
1
and ∪. A possible

extension of a Basic statechart is adding to it a Basic substate, and then obtain an And
statechart:

s′ ∈ SCB , ŝ′ 6= ŝ

[ŝ]≺
1
[ŝ, (s′)]

ext-and1

This is implemented in Prolog with the rule:

addp(basic(St, (En,Ex)), Sp, and(St, [Sp], (En,Ex))) :- is_state(Sp),

sname(Sp, Stp),

St \== Stp.

Another possible extension of an And statechart is extending a substate:

si≺1
s′i, ŝ′i 6= ŝj ∀j=1..i−1,i+1,..n

[ŝ, (s1, .., sn), l, T ]≺1
[ŝ, (s1, .., sn)[si/s′i], l, T ]

inside-or

This is implemented in Prolog with the rule:

adds(or(St, Ss, Ts, (En,Ex)), Sip, or(St, Ss2, Ts, (En,Ex)))

:- is_state(Sip),

my_select(Si, Ss, Ss1),

extends(Si, Sip),

my_select(Sip, Ss2, Ss1).

1-step union

We define the predicate union/4 to calculate the union of two statecharts. As an example,
one possible case for the union between the And statecharts is: if s = [ŝ,(s1,..,sn),(en,ex)],

r1 = [ŝ, (s1, .., s̃i, .., sn), (en, ex)] with si ≺ s̃i, r2 = [ŝ, (s1,..,sn, s
′), (en, ex)]

⇒ r1∪r2 := [ŝ, (s1, .., s̃i, .., sn, s
′), (en, ex)]

This is implemented in Prolog with the rule:

union(and(St, Ss, (En,Ex)), and(St, Ss1, (En,Ex)),

and(St, Ss2, (En,Ex)),

and(St, SsR, (En,Ex)))

:- my_select(Sp, Ss1, Ss),

my_select(Si, Ss, SsT),

my_select(Sip, Ss2, SsT),

extends(Si, Sip),

disj_names(Sip, Sp),

my_select(Sp, SsR, SsTT),

extends(Si, Sip),

my_select(Sip, SsTT, SsT).
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N-step relations

N-step relations are implemented using a general problem solving strategy called “state
space search” [SS94, Llo87, Bra00]. A state space is represented with a graph whose
vertices correspond to problem states, and the solution of a given problem is reduced to
finding a path in this graph. In this case, vertices correspond to statecharts and the edges
are induced by the extension relation. The search strategy used is a depth-first search
(DFS). This implementation of the algorithm takes time O(|V |+|E|), that is, linear in the
size of the graph. It also uses space O(|V |) in the worst case to store the stack of vertices
on the current search path as well as the set of already-visited vertices.

For example, given s, s̃ ∈ SC, the designer wants to determine if s≺
1
s̃. The predicate

extends tests if the concrete statechart S2 is a refinement of S1. For this to hold, first,
they should have the same name, then the predicate extends returns in Es one possible
sequence of refinements in order to reach S2 from S1. Basically, the idea is to start from
S1 and generate all the possible extensions to it until reach S2, or the state is “too big” to
be S2 (for example if s is an or-state with 2 substates, s̃ cannot have 3 substates). In some
sense, those are “prune” rules.

extends(S1, S2, Es) :- is_state(S1),

is_state(S2),

sname(S1, N),

sname(S2, N),

extends_(S1, S2, Es).

extends_(S1, S2, [reflexive]) :- eq_states(S1, S2).

extends_(Sc, Sf, [E|Es]) :- next_state(Sc, Sf, Sn, E),

extends_(Sn, Sf, Es).

The DFS is more amenable to the recursive style of programming in Prolog. The reason
for this is that Prolog itself, when executing goals, explores alternatives in a DFS fashion.
The predicate next state generates a possible extension of Sc, taking into account that
the target state is Sf. The target state is needed in order to stop making extensions on Sc

once it is determined that it is not possible to reach Sf.





Chapter 8

Case study

The formalism presented in the previous chapters, together with the prototype imple-
mented, follow a stepwise refinement approach to software design, allowing the user to
start form a simple specification of the kernel features of the product line, and to progres-
sively add new ones to the line, specifying how each feature contributes to the behavior of
the whole line. Analyzing the proposal from a practical point of view is of most importance
for a fine-tuning and a careful utilization of it. In this chapter, a case study for a product
line of microwave oven systems, adapted from [Gom05]1, is presented. First, the formal
description of the involved statecharts are given together with the Feature Diagram of the
product line. The impact of each feature in the product line is analyzed and the UML
statechart with variabilities is given. Finallly, specific products for the line are defined.

8.1 Problem Description

The basic microwave oven system has input buttons for selecting Cooking Time, Start, and
Cancel, as well as a numeric keypad. It also has a display to show the cooking time left.
In addition, the oven has a microwave heating element for cooking the food, a door sensor
to sense when the door is open, and a weight sensor to detect if there is an object in the
oven. Cooking is possible only when the door is closed and when there is something inside
the oven.

Options available for more advanced ovens are: a beeper to indicate when cooking is
finished, a light that is switched on when the door is open and when food is being cooked,
and a turntable that turns during cooking. The microwave oven displays messages to
the user such as prompts and warning messages. The basic oven has a one-line display;
more-advanced ovens can have multi-line displays.

The top-of-the-line oven has a recipe cooking feature, which needs an analog weight
sensor in place of the basic boolean weight sensor, the multi-line display feature, and a
multi-level power feature (high, medium, low) in place of the basic on/off power feature.

The example is adapted from [Gom05]. Some features are removed for space reasons
but main complexity is mantained.

8.2 Use Cases

In the use case approach, functional requirements are defined in terms of actors, which are
users of the system, and use cases. An actor participates in a use case. A use case defines
a sequence of interactions between one or more actors and the system. The use case model

1This reference is the first book on modeling Software Product Lines with UML.
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describes the interactions between the actor(s) and the system in a narrative form consisting
of user inputs and system responses. Each use case defines the functional behavior of one
part of the system without revealing its internal structure [Gom05]. In this example,
commonality can be captured by two use cases, Cook Food and Cook Food with Recipe, as
follows:

Use case name: Cook Food.

Summary: User puts food in oven, and microwave oven cooks food.

Actors: User (primary), Timer (secondary).

Precondition: Microwave oven is idle.

Description: 1. User opens the door, puts food in the oven, and closes the door.

2. User presses Cooking Time button.

3. System prompts for cooking time.

4. User enters the cooking time on the numeric keypad and presses Start.

5. System starts cooking the food.

6. System continually displays the cooking time remaining.

7. Timer elapses and notifies the system.

8. System stops cooking the food and displays the end message.

9. User opens the door, removes the food from the oven, and closes the door.

10. System clears the display.

Alternatives: 4. User presses Start when the door is closed and the cooking time is
equal to zero. System does not start cooking.

6. User opens door during cooking. System stops cooking. User removes food
and presses Cancel, or user closes door and presses Start to resume cooking.

6. User presses Cancel. System stops cooking. User may press Start to resume
cooking. Alternatively, user may press Cancel again; system then cancels timer
and clears display.

Postcondition: Microwave oven has cooked the food.

The Recipe feature has a major impact, and is described in the Cook Food with Recipe

use case, as follows:

Use case name: Cook Food with Recipe.

Summary: User puts food in microwave oven and cooks food, using recipe.

Actors: User (primary), Timer (secondary).

Precondition: Microwave oven is idle.

Description: 1. User opens the door, puts food in the oven, and closes the door.

2. User presses the desired recipe button from the recipe buttons on the keypad.

3. System displays the recipe name. Recipe has name, power level (p), fixed time
(t1), and time per unit weight (t2).

4. User presses the Start button.

5. System starts cooking the food for a time given by the following equation:
CookingT ime = t1 + w t2, where t1 and t2 are times specified in the recipe
and w is the weight of the item, and the power level p is specified in the recipe.
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6. System continually displays the cooking time remaining.

7. Timer elapses and notifies the system.

8. System stops cooking the food and displays the end message.

9. User opens the door, removes the food from the oven, and closes the door.

10. System clears the display.

Alternatives: 2. User presses Start when the door is closed and a recipe has not been
chosen. System does not start cooking.

4. User presses Cancel. System cancels recipe and clears display.

6. User opens the door during cooking. System stops cooking. User removes food
and presses Cancel, or user closes the door and presses Start to resume cooking.

6. User presses Cancel. System stops cooking. User may press Start to resume
cooking. Alternatively, user may press Cancel again; system then cancels the
recipe and clears the display.

7. If the recipe has more than one step, system completes one step, cooking food
for the computed time and specified power level, and then proceeds to the next
step.

8.3 Formal Description

In this section the Feature Diagram and the associated statecharts in order to formally
describe the system are presented. The first one describes the variability of the product
line in terms of its features, and then, for each feature, the statechart which models its
behavior is defined.

8.3.1 Features

The name of the product line: P = Microwave oven

Its features are2:

• fmp = Minute Plus

• fl = Light3

• flr̄ = Light w/o Recipe

• flr = Light w Recipe

• ft = Turntable

• fb = Beeper

• fdm = Display Unit

• fmld = Multi-line Display

• fold = One-line Display

• fws = Weight Sensor

• fbw = Boolean Weight

• faw = Analog Weight

2Parameterized features in the original example are modeled as alternative features. Features
with more than one parent are modeled as new feature with certain constraints over features.

3The impact of this feature depends on the presence of feature fr. Each case is reflected in two
optional features, flr̄ and flr.
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• fhe = Heating Element

• foh = One-level Heating

• fmh = Multi-level Heating

• fpl = Power Level

• fr = Recipe

F = {P, fmp, fl, flr̄, flr, ft, fb, fdm, fmld, fold, fws, fbw, faw, fhe, foh, fmh, fpl, fr}

Υ = 〈P,F − {P},
{(¬fr ∧ flr̄) ∨ (fr ∧ flr ∧ faw ∧ fmld ∧ fmh))},
{〈P ,fdm〉, 〈P ,fws〉, 〈P ,fhe〉},
{〈P ,fmp〉, 〈P ,fl〉, 〈P ,ft〉, 〈P ,fb〉, 〈P ,fr〉, 〈fmld,f511〉, 〈fmh,fpl〉},
{〈fl,{flr̄, flr}〉, 〈fdm,{fmld, fold}〉, 〈fws,{fbw, faw}〉, 〈fhe,{foh, fmh}〉}〉

Note that the first constraint in the feature diagram reflects the fact that the recipe feature
needs an analog weight sensor, a multi-line display feature and a multi-level power feature.
The second one reflects the fact that the impact of the feature fl depends on the presence
of the feature fr.

Graphically:
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Figure 8.1: Feature Diagram Microwave oven

8.3.2 Statecharts

The statecharts describing the behavior of the microwave oven system are defined by the
following:

A = { UpdateCookingTime, ClearCookingTime, CookingTimeEntered, DisplayCookingTime,
ClearDisplay, CookingTimeSelected, PromptForTime, TimerExpired, StartTimer, StopTimer,
CancelTimer, Start, Cancel, DoorOpened, DoorClosed, ItemPlaced, ItemRemoved,
DoorClosedAndTimeRemaining, DoorClosedAndZeroTime, StartCooking, StopCooking }

E = A−{ StartTimer, CancelTimer, StopTimer, StartCooking, StopCooking, PromptForTime,
ClearDisplay, DisplayCookingTime, ClearCookingTime }

S = { MicrowaveOvenControl, MicrowaveOvenSequencing, CookingTimeCondition, ZeroTime,
TimeRemaining, DoorShut, DoorOpen, DoorOpenWithItem, Cooking,
DoorShutWithItem, WaitingUser, WaitingCookingTime,
ReadyToCook} = {moc,mos, ctc, zt, tr, ds, do, doi, c, dsi, wu,wct, rc}
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T = 4 { ˆtzUCT
, ˆttrTE

, ˆttrCT
, ˆtdsC , ˆtdsDO

, ˆtdoDC
, ˆtdoIP , ˆtdoiIR , ˆtdoiDCTR

, ˆtrcDO
, ˆtdoiDCZT

,
ˆtdsiDO

, ˆtcDO
, ˆtdsiCTE

, ˆtcTE
, ˆtrcC , ˆtcC , ˆtrcS , ˆtrcCTE

, ˆtwuCTS
, ˆtwctC }

The core statechart of the product line is:

moc := [MicrowaveOvenControl, (mos, ctc), ((), ())]

ctc := [CookingTimeCondition, (zt, tr), 1, 1, Tctc, ((), ())] where

Tctc = { 〈 ˆtztUCT
,zt,∅,UpdateCookingTime,(),∅,tr,none〉,

〈 ˆttrTE
,tr,∅,TimerExpired,(),∅,zt,none〉,

〈 ˆttrCT
,tr,∅,CancelTimer,ClearDisplay::ClearCookingTime,∅,zt,none〉 }

mos := [MicrowaveOvenSequencing, (ds, do, doi, c, dsi, rc), 1, 1, Tmos, ((), ())] where

Tmos = { 〈 ˆtdsC ,ds,∅,Cancel,CancelTimer,∅,ds,none〉,
〈 ˆtdsDO

,ds,∅,DoorOpened,(),∅,do,none〉,
〈 ˆtdoDC

,do,∅,DoorClosed,(),∅,ds,none〉,
〈 ˆtdoIP ,do,∅,ItemPlaced,(),∅,doi,none〉,
〈 ˆtdoiIR ,doi,∅,ItemRemoved,(),∅,do,none〉,
〈 ˆtdoiDCTR

,doi,∅,DoorClosedAndTimeRemaining,(),∅,rc,none〉,
〈 ˆtrcDO

,rc,∅,DoorOpened,(),∅,doi,none〉,
〈 ˆtdoiDCZT

,doi,∅,DoorClosedAndZeroTime,(),∅,dsi,shallow〉,
〈 ˆtdsiDO

,dsi,∅,DoorOpened,(),∅,doi,none〉,
〈 ˆtcDO

,c,∅,DoorOpened,StopTimer,∅,doi,none〉,
〈 ˆtdsiCTE

,dsi,{ŵct},CookingTimeEntered,DisplayCookingTime,∅,rc,none〉,
〈 ˆtcTE

,c,∅,TimerExpired,(),{ŵu},dsi,none〉,
〈 ˆtrcC ,rc,∅,Cancel,TimerExpired,{ŵu},dsi,none〉,
〈 ˆtcC ,c,∅,Cancel,StopTimer,∅,rc,none〉,
〈 ˆtrcS ,rc,∅,Start,StartTimer,∅,c,none〉,
〈 ˆtrcCTE

,rc,∅,CookingTimeEntered,DisplayCookingTime,∅,rc,none〉 }

ds := [DoorShut, ((), ())]

do := [DoorOpen, ((), ())]

doi := [DoorOpenWithItem, ((), ())]

c := [Cooking, (StartCooking, StopCooking)]

dsi := [DoorShutWithItem, (wu,wct), 1, 1, Tdsi, ((), ())] with

Tdsi = { 〈 ˆtwuCTS
,wu,∅,CookingTimeSelected,PromptForTime,∅,wct,none〉,

〈 ˆtwctC ,wct,∅,Cancel,ClearDisplay,∅,wu,none〉 }

rc := [ReadyToCook, ((), ())]

In figures 8.2 and 8.3 the core statechart is shown.

8.3.3 Feature Impact Description

In this section, the impact of the features on moc statechart is described. It can be seen
that it is easy to unambiguously describe the impact of the features in the product line
using the present formalism.

Minute Plus: If Minute Plus is pressed after cooking has started, then the cooking time
is updated. If Minute Plus is pressed before cooking has started, then the cooking time is
updated and cooking is started (assuming that the oven is ready to start cooking). This
feature adds two new transitions to mos: from Cooking to Cooking and from WaitingUser

to Cooking. Formally:

4The following name convention is used for transitions: The transition which has source state
DoorShut, and event StartTimer will be named ˆtdsST

. This transition is represented as tdsST
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Microwave oven control

Microwave oven sequencing

Cooking time condition

Zero time

Time remaining

Update Cooking Time/()

Timer Expired/()

Cancel Timer/

Clear Display::

Clear Cooking Time

Figure 8.2: Microwave oven statechart

mp1 = add-trans(mos,〈 ˆtdsiMP
,dsi,{ŵu},MinutePlus,StartMinute,∅,c,none〉)

mp2 = add-trans(mos,〈 ˆtcMP
,c,∅,MinutePlus,AddMinute,∅,c,none〉)

the result is mp = inside-and(moc,mos,mp1 ∪mp2)

Light: The lamp is switched on whenever the door is opened or food is cooking. It is
switched off whenever the door is closed or cooking stopped. This feature adds SwitchOn

and SwitchOff actions in cooking states. Formally:

mosl = inside-or(mos, c, ext-act-en-a(c,SwitchOn))

l1 = ext-act-trans-a(mosl,tdsDO
,SwitchOn)

l2 = ext-act-trans-a(mosl,trcDO
,SwitchOn)

l3 = ext-act-trans-a(mosl,tdsiDO
,SwitchOn)

l4 = ext-act-trans-a(mosl,tdoDC
,SwitchOff)

l5 = ext-act-trans-a(mosl,tdoiDCZT
,SwitchOff)

l6 = ext-act-trans-a(mosl,tcTE
,SwitchOff)

l7 = ext-act-trans-a(mosl,tcC ,SwitchOff)

l8 = ext-act-trans-a(mosl,tdoiDCTR
,SwitchOff)

the result is l = inside-or(moc,mos, lr), where lr = l1∪l2∪...∪l8

in the case that the recipe feature is present (see below), the result is
lr = inside-and(moc,mos, lr∪ext-act-trans-a(mosl,trTE

,SwitchOff))

Turntable: The turntable needs to turn when food is cooking and to be stationary when
food is not cooking. This feature adds StartTurning and StopTurning actions. Formally:

t1 = ext-act-en-p(c,StartTurning)

t2 = ext-act-ex-a(c,StopTurning)

the result is t = inside-and(moc,mos, inside-or(mos, c, t1∪t2))
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Figure 8.3: Microwave oven sequencing statechart

Beeper: The beeper is switched on when cooking has finished. This feature adds Beep

exit action in cooking state. Formally:

the result is b = inside-and(moc,mos, inside-or(mos, c, ext-act-ex-a(c,Beep)))

Power Level: This feature allows the user to select the power level. The impact of this
feature is to add a new substate in DoorShutWithItem called WaitingUserAfterPL. The new
substate is entered when the PLSelected event is received during the WaitingUser state.
The actions are UpdatePL and DisplayPL. Formally:

p1 = ext-or(dsi,wupl), where wupl := [WaitingUserAfterPL, ((), ())]

p2 = add-trans(p1,〈 ˆtwuplPLS
,wupl,∅,PLSelected,UpdatePL::DisplayPL,∅,wupl,none〉)

p3 = add-trans(p1,〈 ˆtwuPLS
,wu,∅,PLSelected,UpdatePL::DisplayPL,∅,wupl,none〉)
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p4 = add-trans(p1,〈 ˆtwuplCD
,wupl,∅,ClearDisplay,ClearPL,∅,wu,none〉)

p5 = add-trans(p1,〈 ˆtwuplCTS
,wupl,∅,CookingTimeSelected,PromptForTime,∅,wtc,none〉)

p6 = ext-act-trans-a(p1,twuCTS
,SetDefaultPower)

p7 = ext-act-trans-p(mos,trcC ,ClearPL)

p8 = inside-or(mos, dsi, p2∪...∪p6)

the result is pl = inside-and(moc,mos, p7∪p8)

Recipe: This feature adds a new substate in mos. Formally:

r1 = ext-or(mos,r), where r := [Recipe, ((), ())]

r2 = add-trans(r1,〈 ˆtdsiRE
,dsi,∅,RecipeEntered,SelectRecipe::DisplayRecipe,∅,r,none〉)

r3 = add-trans(r1,〈 ˆtrC ,r,∅,Cancel,CancelRecipe::DisplayRecipeCanceled,∅,dsi,none〉)

r4 = add-trans(r1,〈 ˆtrTE
,r,∅,TimerExpired,ClearRecipe,∅,dsi,none〉), in the case that light

feature is present: r4 = add-trans(r1,〈 ˆtrTE
,r,∅,TimerExpired,ClearRecipe::SwitchOff,∅,dsi,none〉)

r5 = add-trans(r1,〈 ˆtrIR ,r,∅,ItemRemoved,CancelRecipe::DisplayRecipeCanceled,∅,do,none〉)

the result is r = inside-and(moc,mos, r2∪...∪r5)

8.3.4 Statechart with Variabilities

Now, the formal description of the example will be completed. In section 5.2, the set SC*
of statecharts with variabilities is defined, given a Feature Diagram Υ=〈L,N,NC,RM,RO,RA〉,
as a function Ψ: N∪{L} → SC that associates each feature of Υ with a statechart. In this
example we have: Ψ(P ) = moc5; Ψ(fmp) = mp; Ψ(fl) = Ψ(flr̄) = l; Ψ(flr) = lr; Ψ(ft) = t;
Ψ(fb) = b; Ψ(fpl) = pl and Ψ(fr) = r.

8.3.5 Examples of Products

In order to obtain specific products of the line defined the Feature Diagram Υ, the possible
configurations of Υ are defined as the instances of the tree that are consistent with the
relations amongst its features and the constraints of Υ. Feature Diagram configurations
are defined in section 5.1.2. A configuration of a Feature Diagram is determined by the set
of optional and alternative features that are selected for the product. Two possible valid
configurations of Υ are:

C1 = confΥ({fmp, flr, fmld, faw, fmh, fr})

= 〈P, {fmp, flr, fmld, faw, fmh, fr}, {〈P ,fmp〉, 〈P ,fl〉, 〈fl,flr〉, 〈P ,fdm〉, 〈fdm,fmld〉,

〈P ,fws〉, 〈fws,faw〉, 〈P ,f7〉, 〈fhe,fmh〉, 〈P ,fr〉}〉

and

C2 = confΥ({flr̄, f3, f4, fold, fbw, fpl})

= 〈P, {flr̄, f3, f4, fold, fbw, fpl}, {〈P ,fl〉, 〈fl,flr̄〉, 〈P ,f3〉, 〈P ,f4〉, 〈P ,fdm〉,

〈fdm,fold〉, 〈P ,f6〉, 〈fws,fbw〉, 〈P ,f7〉, 〈fhe,fmh〉, 〈fmh,fpl〉}〉

The statechart that specifies the product corresponding to the configuration C1 (Mi-
crowave with Recipe and Minute Plus, shown in figure 8.4) is moc∪mp∪lr∪r, that is,

5the same applies for fdm, fmld, fold, fws, fbw, faw, fhe, foh, fmh, since those features do not
affect any statechart.
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moc := [MicrowaveOvenControl, (mos, ctc), ((), ())]

ctc remains unchanged.

mos := [MicrowaveOvenSequencing, (ds, do, doi, c, dsi, rc, r), 1, 1, Tmos, ((), ())] where

Tmos = { 〈 ˆtdsC ,ds,∅,Cancel,CancelTimer,∅,ds,none〉,
〈 ˆtdsDO

,ds,∅,DoorOpened,SwitchOn,∅,do,none〉,
〈 ˆtdoDC

,do,∅,DoorClosed,SwitchOff,∅,ds,none〉,
〈 ˆtdoIP ,do,∅,ItemPlaced,(),∅,doi,none〉,
〈 ˆtdoiIR ,doi,∅,ItemRemoved,(),∅,do,none〉,
〈 ˆtdoiDCTR

,doi,∅,DoorClosedAndTimeRemaining,SwitchOff,∅,rc,none〉,
〈 ˆtrcDO

,rc,∅,DoorOpened,SwitchOn,∅,doi,none〉,
〈 ˆtdoiDCZT

,doi,∅,DoorClosedAndZeroTime,SwitchOff,∅,dsi,shallow〉,
〈 ˆtdsiDO

,dsi,∅,DoorOpened,SwitchOn,∅,doi,none〉,
〈 ˆtcDO

,c,∅,DoorOpened,StopTimer,∅,doi,none〉,
〈 ˆtdsiCTE

,dsi,{ŵct},CookingTimeEntered,DisplayCookingTime,∅,rc,none〉,
〈 ˆtcTE

,c,∅,TimerExpired,SwitchOff,{ŵu},dsi,none〉,
〈 ˆtrcC ,rc,∅,Cancel,TimerExpired,{ŵu},dsi,none〉,
〈 ˆtcC ,c,∅,Cancel,StopTimer::SwitchOff,∅,rc,none〉,
〈 ˆtrcS ,rc,∅,Start,StartTimer,∅,c,none〉,
〈 ˆtrcCTE

,rc,∅,CookingTimeEntered,DisplayCookingTime,∅,rc,none〉,
〈 ˆtdsiMP

,dsi,{ŵu},MinutePlus,StartMinute,∅,c,none〉,
〈 ˆtcMP

,c,∅,MinutePlus,AddMinute,∅,c,none〉,
〈 ˆtdsiRE

,dsi,∅,RecipeEntered,SelectRecipe::DisplayRecipe,∅,r,none〉,
〈 ˆtrC ,r,∅,Cancel,CancelRecipe::DisplayRecipeCanceled,∅,dsi,none〉,
〈 ˆtrTE

,r,∅,TimerExpired,ClearRecipe::SwitchOff,∅,dsi,none〉,
〈 ˆtrIR ,r,∅,ItemRemoved,CancelRecipe::DisplayRecipeCanceled,∅,do,none〉 }

where

ds remains unchanged.

do remains unchanged.

doi remains unchanged.

c := [Cooking, (StartCooking::SwitchOn, StopCooking)]

dsi remains unchanged.

rc remains unchanged.

r := [Recipe, ((), ())]

and the corresponding to the configuration C2 (Microwave with Turntable and Power
Level, shown in figure 8.5) is moc∪l∪t∪b∪pl, that is,

moc := [MicrowaveOvenControl, (mos, ctc), ((), ())]

ctc remains unchanged.

mos := [MicrowaveOvenSequencing, (ds, do, doi, c, dsi, rc), 1, 1, Tmos, ((), ())] where

Tmos = { 〈 ˆtdsC ,ds,∅,Cancel,CancelTimer,∅,ds,none〉,
〈 ˆtdsDO

,ds,∅,DoorOpened,SwitchOn,∅,do,none〉,
〈 ˆtdoDC

,do,∅,DoorClosed,SwitchOff,∅,ds,none〉,
〈 ˆtdoIP ,do,∅,ItemPlaced,(),∅,doi,none〉,
〈 ˆtdoiIR ,doi,∅,ItemRemoved,(),∅,do,none〉,
〈 ˆtdoiDCTR

,doi,∅,DoorClosedAndTimeRemaining,SwitchOff,∅,rc,none〉,
〈 ˆtrcDO

,rc,∅,DoorOpened,SwitchOn,∅,doi,none〉,
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Figure 8.4: Microwave oven sequencing with Recipe and Minute Plus product
statechart

〈 ˆtdoiDCZT
,doi,∅,DoorClosedAndZeroTime,SwitchOff,∅,dsi,shallow〉,

〈 ˆtdsiDO
,dsi,∅,DoorOpened,SwitchOn,∅,doi,none〉,

〈 ˆtcDO
,c,∅,DoorOpened,StopTimer,∅,doi,none〉,

〈 ˆtdsiCTE
,dsi,{ŵct},CookingTimeEntered,DisplayCookingTime,∅,rc,none〉,

〈 ˆtcTE
,c,∅,TimerExpired,SwitchOff,{ŵu},dsi,none〉,

〈 ˆtrcC ,rc,∅,Cancel,ClearPL::TimerExpired,{ŵu},dsi,none〉,
〈 ˆtcC ,c,∅,Cancel,StopTimer::SwitchOff,∅,rc,none〉,
〈 ˆtrcS ,rc,∅,Start,StartTimer,∅,c,none〉,
〈 ˆtrcCTE

,rc,∅,CookingTimeEntered,DisplayCookingTime,∅,rc,none〉 }

ds remains unchanged.

do remains unchanged.
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doi remains unchanged.

c := [Cooking, (StartTurning::StartCooking::SwitchOn, StopCooking::StopTurning::Beep)]

dsi := [DoorShutWithItem, (wu,wct), 1, 1, Tdsi, ((), ())] with

Tdsi = { 〈 ˆtwuCTS
,wu,∅,CookingTimeSelected,PromptForTime::SetDefaultPower,∅,wct,none〉,

〈 ˆtwctC ,wct,∅,Cancel,ClearDisplay,∅,wu,none〉,
〈 ˆtwuplPLS

,wupl,∅,PLSelected,UpdatePL::DisplayPL,∅,wupl,none〉,
〈 ˆtwuPLS

,wu,∅,PLSelected,UpdatePL::DisplayPL,∅,wupl,none〉,
〈 ˆtwuplCD

,wupl,∅,ClearDisplay,ClearPL,∅,wu,none〉,
〈 ˆtwuplCTS

,wupl,∅,CookingTimeSelected,PromptForTime,∅,wtc,none〉 }

rc remains unchanged.

wupl := [WaitingUserAfterPL, ((), ())]

This case study shows that the extension relation and the union operation constitute
a simple and precise notation useful to specify the behavior of a product of the line.
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Figure 8.5: Microwave oven sequencing with Turntable and Power Level product
statechart



Chapter 9

Conclusions and Further Work

In this work an extension for an UML Statecharts semantics was developed, together with
an extensive analysis of their properties from a formal and practical point of view, including
an implementation of the main ideas. In this chapter, the main results and conclusions are
presented in section 9.1 and then future work is outlined in section 9.2.

9.1 Summary and Conclusions

The main achievement of this work is the advance of the state of the art towards a complete
formal semantics of UML Statecharts with Variabilities, applied to a Software Product
Line context. In particular, it shows that the structured operational semantics for UML
Statecharts presented in [vdB02], can be extended to define the semantics of a family
of systems. The extension of the semantics is realized in several steps. First, a partial
order relation ≺ between statecharts is defined, in such a way that s1 ≺ s2 means that s2
enriches syntactically the substates or transitions of s1. This determines a natural way of
incremental design. Using the formalism presented in the previous chapters, the software
engineer or designer can apply a stepwise refinement approach to software design. The
idea is to start form a simple specification of the kernel features of the product line, and
then progressively add new ones, specifying how each feature contributes to the behavior
of the whole line.

The behavioral description of the kernel features of a given line is given by a root
statechart. Then, in order to obtain the description of a particular product, a specification
of the contribution of each additional feature must be formally described. The application
of the rules of ≺, provides this formalism. Each rule specifies how each feature contributes
to the behavior of the whole line. This kind of transformational approach is of most
importance in Model-Driven Development approaches, because they aim at reducing design
complexity by focusing on modeling than implementation. In MDD, an initial system model
is incrementally refined by adding relevant details.

An important property of the aformentioned extension relation is that it does not
permit any inconsistency within the statecharts during the extension process. We consider
this formalization as a genuine contribution. Once a relation is defined among the set
of statecharts, we need to combine the structure of two different extensions of a given
statechart, in a union type operation. Then, given the two statecharts s1 and s2 that
are extensions of the same statechart s (i.e., s ≺ s1, s ≺ s2), the union computes a new
statechart s1∪s2 such that s1 ≺ s1∪s2 and s2 ≺ s1∪s2. Moreover, a minimum amount of
extending steps as possible is desired, i.e., ∀s3∈SC. (s1 ≺ s3 ∧ s2 ≺ s3) ⇒ s1∪s2 ≺ s3. As
it is not possible to maintain consistency in all cases, it is needed to handle inconsistent
statecharts, for which the concept of an overspecified statechart ⊤, is introduced.
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The next step is now relate this process of statechart extension with the common and
variant functionalities of a family of products. In this work, Feature Diagrams (FDs) are
used to model these, presenting a formal syntax for Feature Diagrams and their configu-
rations. With these notions, and given the description of a family of products as a FD,
an UML Statecharts with Variabilities is defined as a function that associates each feature
of the FD with a statechart. The mapping must comply with the hierarchical structure
and the feature restrictions, i.e., the more features a product has, the richer the statechart
that models it must be. In this way, it is possible to describe the effect that each feature
has on the products in which it is present. This definition provides a very simple and
flexible way to obtain the specification of the behavior of any configuration of the product
line as the combination of the statecharts that implement all the features present in that
product. We consider both the extension relation and the definition of UML Statecharts
with variabilities authentic contributions.

Then, it is proved that, when a UML statechart is extended, it is still possible to
perform the same semantic transitions on it as before. As a consequence of this fact, the
extension relation can be considered as a behavioral refinement, thus allowing the represen-
tation of the common and variant functionalities of a family of products in conjunction with
Feature Diagrams as an incremental process of statechart structure enrichment. Moreover,
it is also proved that the set of actions generated by the SO semantics of a given state-
chart is preserved with any possible extension of it. We also consider this as a genuine
contribution.

Finally, the practical point of view of this proposal is addressed, through the construc-
tion of a tool prototype, and the application of the formalism to a case study taken from
the SPL literature.

9.2 Further work

In a more abstract perspective, in this work we deal essentially with sets of modeling
elements and relations between them. For example, let [ŝ, (s1, ..., sn), ŝd, ŝl, T, (en, ex)] ∈
SCO. In this case the modeling elements are ŝ, s, s1, .., sn, ŝd, ŝl, T, en, ex. Some relations
already defined are name(s) = ŝ, act-en(s) = en, act-ex(s) = ex. The rest can be simply
represented by (s, s1), ..., (s, sn), (s, ŝd), (s, ŝl), and (s, T ). T is in turn a relation (possibly
labeled) among the substates s1, ..., s2. Then, we focus into ways of extending those models
and relations, under certain conditions. The possible extensions are: i) modify an element,
ii) add a new element, iii) remove an element, iv) add a new relation, v) remove a relation.
In this work we did not take into account extensions of type iii) and v), and left them
for future work. The relation ≺ can be interpreted as an extension operation that only
allows extensions of type i), ii) and iv). Together with ≺, a complementary operation ∪ is
defined, which “glues” different extensions of the models and relations. On the other hand,
in order to model variability, features (modeling elements) are structured in a Feature
Diagram (relation between features). Furthermore, the definition of SC∗ relates features
and statecharts. Finally, an FD can be configured into valid combinations of features.

Summarizing, we have modeling elements, relations between them, an extension opera-
tion which modifies those models and relations (under certain conditions), a join operation
which is able to combine those different extensions, and finally configurations, i.e., a rule
for choosing which modeling elements and relations implement a certain product of the
line. We think that those ideas can be further generalized into a formal variability model-
ing framework which could include more UML languages for modeling behaviour, such as
Use Cases, Activities, and Interactions.

Additionally, there are three more lines of further work: The first one involves extend-
ing the syntax and semantics of UML Statecharts in order to fully cover the UML 2.0
specification. Secondly, exploring the advantages that can be obtained from the relation-
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ship between our formalism and lattice theory. Finally, evolve the SC∗ Modeler prototype
into an Integrated Development Environment (IDE) plugin.

9.2.1 UML enrichments

In this section possible extensions of the syntax and semantics presented in chapter 3 are
discussed. As already mentioned, the work presented is based on von der Beeck’s [vdB02]
semantics, which provides a reasonable coverage of UML 1.4 statecharts features. Some of
the features of UML1.4 are not covered, and for obvious reasons, none of the UML 2.0.

do actions

According to the UML specification[Gro05], “do activity” is performed as long as the state
that contains it is active or until the computation specified by the expression is completed.
In the semantics of this work, a state can execute do actions of active states, or can dispatch
an event from the queue. In order to take account of do activity, the complete semantics
(see section 3.5) is modified adding the rule:

s
e
−→
α f

s′

(s, ǫ) =⇒ (s′, ǫ′)
GD (∃(s′, e) ∈ sel-act(s), ∃(α, ǫ, ǫ′) ∈ join)

Where:

• sel-act: SC →֒ P((SC×A)) models the separation of a do action from a given state-
chart.

• join ⊆ (A∗ ×A∗)×A∗, composes 2 sequence of events.

Note that do actions will not change auxiliary semantics. This can be seen as an
optional queue of events to execute.

Final Pseudostates

According to UML specification [Gro05], when the final pseudostate is entered, its contain-
ing region is completed, which means that it satisfies the completion condition. If the region
is directly contained in a state machine and all other regions in the state machine also are
completed, then it means that the entire state machine is completed. Final pseudostates
cannot have exit transitions, and no entry, exit, or do actions. Intralevel transitions to final
pseudostates are not allowed. For modeling this, the set of SC statecharts is augmented
with a new state representing a final pseudostate, denoted with ♦. The transition space
should be modified to allow a final state only in the target field. Then, the definition of
SC is modified in order to only allow an or-state to have a final pseudostate. Then, in each
corresponding definition a new case is added:

• conf(♦) := ∅ defined in section 3.2

• ec-all(♦) := {∅} defined in section 3.2

• next( , ,♦) := ♦ defined in section 3.2

• def(♦) := ♦ defined in section 3.2

• entry(♦) := {〈〉} defined in section 3.2

• exit(♦) := {〈〉} defined in section 3.2

In principle, there is no need to change any semantic rule.
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Entry/Exit Pseudostates

Entry and exit pseudostates (points) can be modeled as a new component into an or-
statechart. Entry points have only one outgoing transition. If a transition enters a com-
posite state through an entry point, then the entry behavior is executed before the action
associated with the internal transition emanating from the entry point. In the exit from
a composite state occurs throught an exit point the exit behavior of the composite state
occurs after the behavior associated with the transition incoming to the exit point. In
order to model that, the rule OR-1 from the SO semantics (section 3.4) must be modified.
Since entry and exit pseudostates are not allowed in intralevel transitions, the transition
space must be modified too. In principle, there is no need to modify any semantic rule.

9.2.2 Relations with Lattice Theory

Since it can be shown that (SC,∪,≺) is a join-semilattice with respect to the root name
of the containing statechart, a plethora of theorems from this vast research area can be
explored in order to find relevant applications to variability modeling [Bly10, Rom10]. For
example, using the duality principle we can assert that to every statement that concerns an
order on a set SC there is a dual statement that concerns the corresponding dual order on
SC. Using this important theorem, we can consider for example the removal of transitions
or substates from a given statechart.

9.2.3 SC* Modeler and Integrated Development Environments

As it is well known, the availability of a certain modeling technique in an Integrated
Development Environment significantly increases the likelihood that software engineers
integrates them into their daily work. In the case of complex software systems as Software
Product Lines, the advantages of automating different analysis tasks are obvious. For UML
Statecharts, several analyses can be found in the literature [CD05], for example, Syntax
checking (well formedness), Consistency Checking (i.e., verifying whether a given statechart
satisfies assertions on its related class diagram) and Model Checking (i.e., determining
whether certain properties hold for all executions of a given statechart). Those kinds of
analysis already have tool support, but they were not investigated in this work.

As is mentioned in chapter 7, the current prototype allows the construction of state-
charts, feature diagrams and statecharts with variabilities. Also, it is possible to configure
a Feature Diagram and then obtain the statechart that implements it. Since the layered
architecture of the prototype allows to completely reuse the inference engine, the next step
is to implement it as an Eclipse plug-in [SBPM08], which is a modular IDE commonly used
to implement modeling tools. Although the User Interface needs to be rebuilded in order
to use the graphical capabilities of the Eclipse IDE, none of the core computing modules
need to be rebuilt.
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Maŕıa Victoria Cengarle, Eduardo B. Fernandez, Bernhard Rumpe, and
Robert Sandner, eds.), Technische Universität München, Institut für Infor-
matik, 2002, p. 1.

[MLG06] Mieke Massink, Diego Latella, and Stefania Gnesi, On testing uml statecharts,
Journal of Logic and Algebraic Programming 69 (2006), no. 1-2, 1 – 74.

[MMM95] Hafedh Mili, Fatma Mili, and Ali Mili, Reusing Software: Issues and Research
Directions, Software Engineering 21 (1995), no. 6, 528–562.
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