123 research outputs found

    Entropic Geometry from Logic

    Get PDF
    We produce a probabilistic space from logic, both classical and quantum, which is in addition partially ordered in such a way that entropy is monotone. In particular do we establish the following equation: Quantitative Probability = Logic + Partiality of Knowledge + Entropy. That is: 1. A finitary probability space \Delta^n (=all probability measures on {1,...,n}) can be fully and faithfully represented by the pair consisting of the abstraction D^n (=the object up to isomorphism) of a partially ordered set (\Delta^n,\sqsubseteq), and, Shannon entropy; 2. D^n itself can be obtained via a systematic purely order-theoretic procedure (which embodies introduction of partiality of knowledge) on an (algebraic) logic. This procedure applies to any poset A; D_A\cong(\Delta^n,\sqsubseteq) when A is the n-element powerset and D_A\cong(\Omega^n,\sqsubseteq), the domain of mixed quantum states, when A is the lattice of subspaces of a Hilbert space. (We refer to http://web.comlab.ox.ac.uk/oucl/publications/tr/rr-02-07.html for a domain-theoretic context providing the notions of approximation and content.)Comment: 19 pages, 8 figure

    A localic theory of lower and upper integrals

    Get PDF
    An account of lower and upper integration is given. It is constructive in the sense of geometric logic. If the integrand takes its values in the non-negative lower reals, then its lower integral with respect to a valuation is a lower real. If the integrand takes its values in the non-negative upper reals,then its upper integral with respect to a covaluation and with domain of integration bounded by a compact subspace is an upper real. Spaces of valuations and of covaluations are defined. Riemann and Choquet integrals can be calculated in terms of these lower and upper integrals

    Classical Control, Quantum Circuits and Linear Logic in Enriched Category Theory

    Full text link
    We describe categorical models of a circuit-based (quantum) functional programming language. We show that enriched categories play a crucial role. Following earlier work on QWire by Paykin et al., we consider both a simple first-order linear language for circuits, and a more powerful host language, such that the circuit language is embedded inside the host language. Our categorical semantics for the host language is standard, and involves cartesian closed categories and monads. We interpret the circuit language not in an ordinary category, but in a category that is enriched in the host category. We show that this structure is also related to linear/non-linear models. As an extended example, we recall an earlier result that the category of W*-algebras is dcpo-enriched, and we use this model to extend the circuit language with some recursive types
    corecore