15,677 research outputs found

    Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science

    Full text link
    As the field of data science continues to grow, there will be an ever-increasing demand for tools that make machine learning accessible to non-experts. In this paper, we introduce the concept of tree-based pipeline optimization for automating one of the most tedious parts of machine learning---pipeline design. We implement an open source Tree-based Pipeline Optimization Tool (TPOT) in Python and demonstrate its effectiveness on a series of simulated and real-world benchmark data sets. In particular, we show that TPOT can design machine learning pipelines that provide a significant improvement over a basic machine learning analysis while requiring little to no input nor prior knowledge from the user. We also address the tendency for TPOT to design overly complex pipelines by integrating Pareto optimization, which produces compact pipelines without sacrificing classification accuracy. As such, this work represents an important step toward fully automating machine learning pipeline design.Comment: 8 pages, 5 figures, preprint to appear in GECCO 2016, edits not yet made from reviewer comment

    An ADMM Based Framework for AutoML Pipeline Configuration

    Full text link
    We study the AutoML problem of automatically configuring machine learning pipelines by jointly selecting algorithms and their appropriate hyper-parameters for all steps in supervised learning pipelines. This black-box (gradient-free) optimization with mixed integer & continuous variables is a challenging problem. We propose a novel AutoML scheme by leveraging the alternating direction method of multipliers (ADMM). The proposed framework is able to (i) decompose the optimization problem into easier sub-problems that have a reduced number of variables and circumvent the challenge of mixed variable categories, and (ii) incorporate black-box constraints along-side the black-box optimization objective. We empirically evaluate the flexibility (in utilizing existing AutoML techniques), effectiveness (against open source AutoML toolkits),and unique capability (of executing AutoML with practically motivated black-box constraints) of our proposed scheme on a collection of binary classification data sets from UCI ML& OpenML repositories. We observe that on an average our framework provides significant gains in comparison to other AutoML frameworks (Auto-sklearn & TPOT), highlighting the practical advantages of this framework

    Treebank-based acquisition of LFG parsing resources for French

    Get PDF
    Motivated by the expense in time and other resources to produce hand-crafted grammars, there has been increased interest in automatically obtained wide-coverage grammars from treebanks for natural language processing. In particular, recent years have seen the growth in interest in automatically obtained deep resources that can represent information absent from simple CFG-type structured treebanks and which are considered to produce more language-neutral linguistic representations, such as dependency syntactic trees. As is often the case in early pioneering work on natural language processing, English has provided the focus of first efforts towards acquiring deep-grammar resources, followed by successful treatments of, for example, German, Japanese, Chinese and Spanish. However, no comparable large-scale automatically acquired deep-grammar resources have been obtained for French to date. The goal of this paper is to present the application of treebank-based language acquisition to the case of French. We show that with modest changes to the established parsing architectures, encouraging results can be obtained for French, with a best dependency structure f-score of 86.73%

    Automatic Machine Learning by Pipeline Synthesis using Model-Based Reinforcement Learning and a Grammar

    Get PDF
    Automatic machine learning is an important problem in the forefront of machine learning. The strongest AutoML systems are based on neural networks, evolutionary algorithms, and Bayesian optimization. Recently AlphaD3M reached state-of-the-art results with an order of magnitude speedup using reinforcement learning with self-play. In this work we extend AlphaD3M by using a pipeline grammar and a pre-trained model which generalizes from many different datasets and similar tasks. Our results demonstrate improved performance compared with our earlier work and existing methods on AutoML benchmark datasets for classification and regression tasks. In the spirit of reproducible research we make our data, models, and code publicly available.Comment: ICML Workshop on Automated Machine Learnin
    corecore