8 research outputs found

    A factor graph description of deep temporal active inference

    Get PDF
    Active inference is a corollary of the Free Energy Principle that prescribes how self-organizing biological agents interact with their environment. The study of active inference processes relies on the definition of a generative probabilistic model and a description of how a free energy functional is minimized by neuronal message passing under thatmodel. This paper presents a tutorial introduction to specifying active inference processes by Forney-style factor graphs (FFG). The FFG framework provides both an insightful representation of the probabilistic model and a biologically plausible inference scheme that, in principle, can be automatically executed in a computer simulation. As an illustrative example, we present an FFG for a deep temporal active inference process. The graph clearly shows how policy selection by expected free energy minimization results from free energy minimization per se, in an appropriate generative policy model

    The Anatomy of Inference: Generative Models and Brain Structure

    Get PDF
    To infer the causes of its sensations, the brain must call on a generative (predictive) model. This necessitates passing local messages between populations of neurons to update beliefs about hidden variables in the world beyond its sensory samples. It also entails inferences about how we will act. Active inference is a principled framework that frames perception and action as approximate Bayesian inference. This has been successful in accounting for a wide range of physiological and behavioral phenomena. Recently, a process theory has emerged that attempts to relate inferences to their neurobiological substrates. In this paper, we review and develop the anatomical aspects of this process theory. We argue that the form of the generative models required for inference constrains the way in which brain regions connect to one another. Specifically, neuronal populations representing beliefs about a variable must receive input from populations representing the Markov blanket of that variable. We illustrate this idea in four different domains: perception, planning, attention, and movement. In doing so, we attempt to show how appealing to generative models enables us to account for anatomical brain architectures. Ultimately, committing to an anatomical theory of inference ensures we can form empirical hypotheses that can be tested using neuroimaging, neuropsychological, and electrophysiological experiments

    The computational neurology of active vision

    Get PDF
    In this thesis, we appeal to recent developments in theoretical neurobiology – namely, active inference – to understand the active visual system and its disorders. Chapter 1 reviews the neurobiology of active vision. This introduces some of the key conceptual themes around attention and inference that recur through subsequent chapters. Chapter 2 provides a technical overview of active inference, and its interpretation in terms of message passing between populations of neurons. Chapter 3 applies the material in Chapter 2 to provide a computational characterisation of the oculomotor system. This deals with two key challenges in active vision: deciding where to look, and working out how to look there. The homology between this message passing and the brain networks solving these inference problems provide a basis for in silico lesion experiments, and an account of the aberrant neural computations that give rise to clinical oculomotor signs (including internuclear ophthalmoplegia). Chapter 4 picks up on the role of uncertainty resolution in deciding where to look, and examines the role of beliefs about the quality (or precision) of data in perceptual inference. We illustrate how abnormal prior beliefs influence inferences about uncertainty and give rise to neuromodulatory changes and visual hallucinatory phenomena (of the sort associated with synucleinopathies). We then demonstrate how synthetic pharmacological perturbations that alter these neuromodulatory systems give rise to the oculomotor changes associated with drugs acting upon these systems. Chapter 5 develops a model of visual neglect, using an oculomotor version of a line cancellation task. We then test a prediction of this model using magnetoencephalography and dynamic causal modelling. Chapter 6 concludes by situating the work in this thesis in the context of computational neurology. This illustrates how the variational principles used here to characterise the active visual system may be generalised to other sensorimotor systems and their disorders

    A probabilistic modeling approach to hearing loss compensation

    No full text
    Hearing Aid (HA) algorithms need to be tuned (“fitted”) to match the impairment of each specific patient. The lack of a fundamental HA fitting theory is a strong contributing factor to an unsatisfying sound experience for about 20% of HA patients. This paper proposes a probabilistic modeling approach to the design of HA algorithms. The proposed method relies on a generative probabilistic model for the hearing loss problem and provides for automated inference of the corresponding (1) signal processing algorithm, (2) the fitting solution as well as (3) a principled performance evaluation metric. All three tasks are realized as message passing algorithms in a factor graph representation of the generative model, which in principle allows for fast implementation on HA or mobile device hardware. The methods are theoretically worked out and simulated with a custom-built factor graph toolbox for a specific hearing loss model

    A Probabilistic Modeling Approach to Hearing Loss Compensation

    No full text
    corecore