22,451 research outputs found

    Autonomous resource-aware scheduling of large-scale media workflows

    Get PDF
    The media processing and distribution industry generally requires considerable resources to be able to execute the various tasks and workflows that constitute their business processes. The latter processes are often tied to critical constraints such as strict deadlines. A key issue herein is how to efficiently use the available computational, storage and network resources to be able to cope with the high work load. Optimizing resource usage is not only vital to scalability, but also to the level of QoS (e.g. responsiveness or prioritization) that can be provided. We designed an autonomous platform for scheduling and workflow-to-resource assignment, taking into account the different requirements and constraints. This paper presents the workflow scheduling algorithms, which consider the state and characteristics of the resources (computational, network and storage). The performance of these algorithms is presented in detail in the context of a European media processing and distribution use-case

    A review of parallel computing for large-scale remote sensing image mosaicking

    Get PDF
    Interest in image mosaicking has been spurred by a wide variety of research and management needs. However, for large-scale applications, remote sensing image mosaicking usually requires significant computational capabilities. Several studies have attempted to apply parallel computing to improve image mosaicking algorithms and to speed up calculation process. The state of the art of this field has not yet been summarized, which is, however, essential for a better understanding and for further research of image mosaicking parallelism on a large scale. This paper provides a perspective on the current state of image mosaicking parallelization for large scale applications. We firstly introduce the motivation of image mosaicking parallel for large scale application, and analyze the difficulty and problem of parallel image mosaicking at large scale such as scheduling with huge number of dependent tasks, programming with multiple-step procedure, dealing with frequent I/O operation. Then we summarize the existing studies of parallel computing in image mosaicking for large scale applications with respect to problem decomposition and parallel strategy, parallel architecture, task schedule strategy and implementation of image mosaicking parallelization. Finally, the key problems and future potential research directions for image mosaicking are addressed

    Managing Uncertainty: A Case for Probabilistic Grid Scheduling

    Get PDF
    The Grid technology is evolving into a global, service-orientated architecture, a universal platform for delivering future high demand computational services. Strong adoption of the Grid and the utility computing concept is leading to an increasing number of Grid installations running a wide range of applications of different size and complexity. In this paper we address the problem of elivering deadline/economy based scheduling in a heterogeneous application environment using statistical properties of job historical executions and its associated meta-data. This approach is motivated by a study of six-month computational load generated by Grid applications in a multi-purpose Grid cluster serving a community of twenty e-Science projects. The observed job statistics, resource utilisation and user behaviour is discussed in the context of management approaches and models most suitable for supporting a probabilistic and autonomous scheduling architecture
    • …
    corecore