366 research outputs found

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    Adaptive Segregation-Based MAC Protocol for Real-Time Multimedia Traffic in WLANs

    Get PDF
    Wireless local area networks (WLANs) have become very popular both in private and public sectors. Despite the fast expansion of WLANs in various environments, quality of service (QoS) issues for multimedia applications in WLANs are not yet resolved. Multimedia applications contain traffic that are sensitive to delay and jitter and therefore a best-effort protocol such as the legacy IEEE 802.11 is not suitable. The 802.11e protocol provides prioritization and classification of traffic to offer better QoS for real-time services. However, it leaves the design and implementation of many important optimization features to vendors. In this paper we introduce a mechanism to improve the delay and jitter of real-time traffic in WLAN nodes supporting multimedia applications. In our proposed mechanism, we segregate voice and video traffic from the best-effort traffic. We create a scheduler that schedules the access of real-time traffic and non real-time traffic to the medium with centralized polling and distributed contention respectively. We show that our proposed protocol performs better in terms of delay and jitter than the legacy 802.11 and 802.11e in a scenario where all wireless nodes carry multimedia traffic simultaneously

    A quality of service architecture for WLAN-wired networks to enhance multimedia support

    Get PDF
    Includes abstract.Includes bibliographical references (leaves 77-84).The use of WLAN for the provision of IP multimedia services faces a number of challenges which include quality of service (QoS). Because WLAN users access multimedia services usually over a wired backbone, attention must be paid to QoS over the integrated WLAN-wired network. This research focuses on the provision of QoS to WLAN users accessing multimedia services over a wired backbone. In this thesis, the IEEE 802.11-2007 enhanced data channel access (EDCA) mechanism is used to provide prioritized QoS on the WLAN media access control (MAC) layer, while weighted round robin (WRR) queue scheduling is used to provide prioritized QoS at the IP layer. The inter-working of the EDCA scheme in the WLAN and the WRR scheduling scheme in the wired network provides end-to-end QoS on a WLAN-wired IP network. A mapping module is introduced to enable the inter-working of the EDCA and WRR mechanisms

    Modeling and performance analysis of an alternative to IEEE 802.11e Hybrid Control Function

    Get PDF
    Modern wireless networks are offering a wide range of applications that require the efficient integration of multimedia and traditional data traffic along with QoS provision. The IEEE 802.11e workgroup has standardized a new QoS enhanced access scheme for wireless LANs, namely Hybrid Control Function (HCF). HCF consists of the Enhanced Distributed Channel Access (EDCA) and the Hybrid Control Channel Access (HCCA) protocols which manage to ensure QoS support. However, they exhibit specific weaknesses that limit network performance. This work analyzes an alternative protocol, called Priority Oriented Adaptive Polling (POAP). POAP is an integrated channel access mechanism, is collision free, it employs priorities to differentiate traffic in a proportional way, it provides fairness, and generally supports QoS for all types of multimedia applications, while efficiently serving background data traffic. POAP is compared to HCF in order to examine the wireless network performance when serving integrated traffic

    PERFORMANCE EVALUATION OF CROSS-LAYER DESIGN WITH DISTRIBUTED AND SEQUENTIAL MAPPING SCHEME FOR VIDEO APPLICATION OVER IEEE 802.11E

    Get PDF
    The rapid development of wireless communication imposes several challenges to support QoS for real-time multimedia applications such as video stream applications. Researchers tackled these challenges from different points of view including the semantics of the video to achieve better QoS requirements. The main goal of this research is to design a UDP protocol to realize a distributed sequential mapping scheme (DSM) with a cross-layer design and evaluate its accuracy under different network conditions. In DSM, the perceived quality of a multi-layer video is addressed by mapping each video layer into channel resources represented as queues or access categories (ACs) existing in IEEE 802.11e MAC layer. This research work further investigates the efficiency of this scheme with actual implementation and thorough simulation experiments. The experiments reported the efficiency of this scheme with the presence of different composite traffic models covering most known traffic scenarios using Expected Reconstructed Video Layers (ERVL) and packet loss rate as accuracy measures. This research work also investigates the accuracy of calculating the ERVL compared to its value using actual readings of layers drop rate. The effect of changing the ACs queue size on the ERVL is studied. The use of this scheme shows zero-drop in the base layer in almost all scenarios where no ongoing traffic is presented except that the testing video sessions between nodes. In these experiments, the ERVL continuously reported high values for the number of expected reconstructed video layers. While these values dramatically vary when introducing ongoing different composite traffic models together with the testing video sessions between nodes. Finally, a 40% increase in the ACs queue size shows significant improvement on ERVL while an increase of the queue size beyond this value has very little significance on ERVL
    corecore