35 research outputs found

    A Note on Iterated Rounding for the Survivable Network Design Problem

    Get PDF
    In this note we consider the survivable network design problem (SNDP) in undirected graphs. We make two contributions. The first is a new counting argument in the iterated rounding based 2-approximation for edge-connectivity SNDP (EC-SNDP) originally due to Jain. The second contribution is to make some connections between hypergraphic version of SNDP (Hypergraph-SNDP) introduced by Zhao, Nagamochi and Ibaraki, and edge and node-weighted versions of EC-SNDP and element-connectivity SNDP (Elem-SNDP). One useful consequence is a 2-approximation for Elem-SNDP that avoids the use of set-pair based relaxation and analysis

    Non-Uniform Robust Network Design in Planar Graphs

    Get PDF
    Robust optimization is concerned with constructing solutions that remain feasible also when a limited number of resources is removed from the solution. Most studies of robust combinatorial optimization to date made the assumption that every resource is equally vulnerable, and that the set of scenarios is implicitly given by a single budget constraint. This paper studies a robustness model of a different kind. We focus on \textbf{bulk-robustness}, a model recently introduced~\cite{bulk} for addressing the need to model non-uniform failure patterns in systems. We significantly extend the techniques used in~\cite{bulk} to design approximation algorithm for bulk-robust network design problems in planar graphs. Our techniques use an augmentation framework, combined with linear programming (LP) rounding that depends on a planar embedding of the input graph. A connection to cut covering problems and the dominating set problem in circle graphs is established. Our methods use few of the specifics of bulk-robust optimization, hence it is conceivable that they can be adapted to solve other robust network design problems.Comment: 17 pages, 2 figure

    A push–relabel approximation algorithm for approximating the minimum-degree MST problem and its generalization to matroids

    Get PDF
    AbstractIn the minimum-degree minimum spanning tree (MDMST) problem, we are given a graph G, and the goal is to find a minimum spanning tree (MST) T, such that the maximum degree of T is as small as possible. This problem is NP-hard and generalizes the Hamiltonian path problem. We give an algorithm that outputs an MST of degree at most 2Δopt (G)+o(Δopt (G)), where Δopt (G) denotes the degree of the optimal tree. This result improves on a previous result of Fischer [T. Fischer, Optimizing the degree of minimum weight spanning trees. Technical Report 14853, Dept. of Computer Science, Cornell University, Ithaca, NY, 1993] that finds an MST of degree at most bΔopt (G)+logbn, for any b>1.The MDMST problem is a special case of the following problem: given a k-ary hypergraph G=(V,E) and weighted matroid M with E as its ground set, find a minimum-cost basis (MCB) T of M such that the degree of T in G is as small as possible. Our algorithm immediately generalizes to this problem, finding an MCB of degree at most k2Δopt (G,M)+O(kkΔopt (G,M)).We use the push–relabel framework developed by Goldberg [A. V. Goldberg, A new max-flow algorithm, Technical Report MIT/LCS/TM-291, Massachusetts Institute of Technology, 1985 (Technical Report)] for the maximum-flow problem. To our knowledge, this is the first use of the push–relabel technique in an approximation algorithm for an NP-hard problem.The MDMST problem is closely connected to the bounded-degree minimum spanning tree (BDMST) problem. Given a graph G and degree bound B on its nodes, the BDMST problem is to find a minimum cost spanning tree among the spanning trees with maximum degree B. Previous algorithms for this problem by Könemann and Ravi [J. Könemann, R. Ravi, A matter of degree: Improved approximation algorithms for degree-bounded minimum spanning trees, SIAM Journal on Computing 31(6) (2002) 1783–1793; J. Könemann, R. Ravi, Primal-dual meets local search: Approximating MST’s with nonuniform degree bounds, in: Proceedings of the Thirty-Fifth ACM Symposium on Theory of Computing, 2003, pp. 389–395] and by Chaudhuri et al. [K. Chaudhuri, S. Rao, S. Riesenfeld, K. Talwar, What would Edmonds do? Augmenting paths and witnesses for bounded degree MSTs, in: Proceedings of APPROX/RANDOM, 2005, pp. 26–39] incur a near-logarithmic additive error in the degree. We give the first BDMST algorithm that approximates both the degree and the cost to within a constant factor of the optimum. These results generalize to the case of nonuniform degree bounds

    LDRD final report : combinatorial optimization with demands.

    Full text link

    Linear Programming Tools and Approximation Algorithms for Combinatorial Optimization

    Get PDF
    We study techniques, approximation algorithms, structural properties and lower bounds related to applications of linear programs in combinatorial optimization. The following "Steiner tree problem" is central: given a graph with a distinguished subset of required vertices, and costs for each edge, find a minimum-cost subgraph that connects the required vertices. We also investigate the areas of network design, multicommodity flows, and packing/covering integer programs. All of these problems are NP-complete so it is natural to seek approximation algorithms with the best provable approximation ratio. Overall, we show some new techniques that enhance the already-substantial corpus of LP-based approximation methods, and we also look for limitations of these techniques. The first half of the thesis deals with linear programming relaxations for the Steiner tree problem. The crux of our work deals with hypergraphic relaxations obtained via the well-known full component decomposition of Steiner trees; explicitly, in this view the fundamental building blocks are not edges, but hyperedges containing two or more required vertices. We introduce a new hypergraphic LP based on partitions. We show the new LP has the same value as several previously-studied hypergraphic ones; when no Steiner nodes are adjacent, we show that the value of the well-known bidirected cut relaxation is also the same. A new partition uncrossing technique is used to demonstrate these equivalences, and to show that extreme points of the new LP are well-structured. We improve the best known integrality gap on these LPs in some special cases. We show that several approximation algorithms from the literature on Steiner trees can be re-interpreted through linear programs, in particular our hypergraphic relaxation yields a new view of the Robins-Zelikovsky 1.55-approximation algorithm for the Steiner tree problem. The second half of the thesis deals with a variety of fundamental problems in combinatorial optimization. We show how to apply the iterated LP relaxation framework to the problem of multicommodity integral flow in a tree, to get an approximation ratio that is asymptotically optimal in terms of the minimum capacity. Iterated relaxation gives an infeasible solution, so we need to finesse it back to feasibility without losing too much value. Iterated LP relaxation similarly gives an O(k^2)-approximation algorithm for packing integer programs with at most k occurrences of each variable; new LP rounding techniques give a k-approximation algorithm for covering integer programs with at most k variable per constraint. We study extreme points of the standard LP relaxation for the traveling salesperson problem and show that they can be much more complex than was previously known. The k-edge-connected spanning multi-subgraph problem has the same LP and we prove a lower bound and conjecture an upper bound on the approximability of variants of this problem. Finally, we show that for packing/covering integer programs with a bounded number of constraints, for any epsilon > 0, there is an LP with integrality gap at most 1 + epsilon

    Covering points with axis parallel lines

    Get PDF
    In this thesis, we study the problem of covering points with axis parallel lines. We named it as the point cover problem. Given a set of the n points in d dimensional space, the goal is to cover the points with minimum number of axis parallel lines. We use the iterative rounding approach which gives an integral solution to the problem. We also propose a combinatorial algorithm by using the branch and bound technique which gives an optimal integral solution to the point cover problem. Later we implemented another approximation algorithm based on primal-dual and iterative rounding approaches. Finally we show the comparative analysis between the two iterative rounding algorithms

    Isolating Cuts, (Bi-)Submodularity, and Faster Algorithms for Connectivity

    Get PDF
    Li and Panigrahi [Jason Li and Debmalya Panigrahi, 2020], in recent work, obtained the first deterministic algorithm for the global minimum cut of a weighted undirected graph that runs in time o(mn). They introduced an elegant and powerful technique to find isolating cuts for a terminal set in a graph via a small number of s-t minimum cut computations. In this paper we generalize their isolating cut approach to the abstract setting of symmetric bisubmodular functions (which also capture symmetric submodular functions). Our generalization to bisubmodularity is motivated by applications to element connectivity and vertex connectivity. Utilizing the general framework and other ideas we obtain significantly faster randomized algorithms for computing global (and subset) connectivity in a number of settings including hypergraphs, element connectivity and vertex connectivity in graphs, and for symmetric submodular functions
    corecore