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Abstract

In this thesis, we study the problem of covering points with axis parallel lines. We named

it as the point cover problem. Given a set of the n points in d dimensional space, the goal

is to cover the points with minimum number of axis parallel lines. We use the iterative

rounding approach which gives an integral solution to the problem. We also propose a

combinatorial algorithm by using the branch and bound technique which gives an optimal

integral solution to the point cover problem. Later we implemented another approximation

algorithm based on primal-dual and iterative rounding approaches. Finally we show the

comparative analysis between the two iterative rounding algorithms.
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Chapter 1

Introduction

1.1 Introduction

The problem of covering points by axis parallel lines requires that a set of n points (p1,

p2, ....., pn) in d dimensional space has to be covered by the minimum number of axis par-

allel lines. We have named it as the point cover problem.

Covering points of the d dimensional surface by axis parallel lines is a topic of central in-

terest for the researchers throughout the years. Several techniques can be used to hit points,

line segments, objects like disks and rectangular boxes in 2 dimensional space by axis par-

allel lines [3]. Some methods exist to solve the problem of covering points in d dimensional

space [2].

This thesis studies the point cover problem in the 3 dimensional space. When a problem is

analysed in 3d, it becomes more realistic because in real life, our space is 3 dimensional.

There are many real life applications of the 3d point cover problem. For example, to get

the best level of radiation in radiotherapy, the most challenging part of the job is to insert a

minimum number of radio-active needles into the certain area of the body [3]. By realizing

the enormous importance of covering 3d points with axis parallel lines, we have become

interested to work in this topic.

Now we are going to talk about the contribution of our work in the field of Computer Sci-

ence. We see that, our problem can be reduced to the set cover problem. The set cover

problem has enormous significance in the fields of approximation and optimization algo-

rithms. We have used our iterative rounding Algorithm 1 in computing the upper bound of
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1.2. FRAMEWORK OF THE THESIS

each node in our branch and bound algorithm. We are the first who have used branch and

bound approach in solving point cover problems. For large input instances GLPK IP solver

cannot compute optimal integral solution, but our branch and bound algorithm successfully

computes optimal results for those instances. We hope our work will motivate to the future

researchers to use different useful techniques in their research works and encourage them

to explore different areas of combinatorial optimization problems.

The problem of covering points can be modelled by an integer programming solution (See

Chapter 2). We design an algorithm for implementing the iterative rounding technique to

obtain an integral solution of our problem. Next we design another algorithm by using the

branch and bound technique to obtain the optimal integral solution of our integer program-

ming problem. Lastly, we implement another iterative rounding algorithm and compare the

results with the previous iterative rounding scheme. The algorithms are general and work

for any dimension even though the experimental results have been reported for instances in

3d.

Our first iterative rounding approach has shown better result compared to the second one.

For some empirical input sets we have achieved interesting outputs for both of the ap-

proaches. In case of running time computation the second approach is better. So we found

both of the iterative approaches as powerful and advantageous. The branch and bound

technique which gives optimal output is also very useful and captivating.

1.2 Framework of the Thesis

In this Chapter we discuss the key terms and concepts needed. This chapter includes

the concept of linear programming, integer programming and some methods to solve the

linear programming problems. We also introduce the iterative rounding method, the branch

and bound technique and some other important terms. After that we describe some of the

related research that has been done in the field of covering points by axis parallel lines.

In Section 1.3 we give a brief description of linear programming. After that we discuss

2



1.3. LINEAR PROGRAMMING

the graphical interpretation and the primal dual method for solving linear programming

problems. Next we present the simplex method to solve the linear programming problems.

Lastly we mention some other methods to solve linear programming problems. In Section

1.4 we present the concept of integer programming problems. In Section 1.5 we talk about

the set cover problem and we show how our problem relates to the set cover problem. We

discuss the iterative rounding and the branch and bound techniques in Section 1.6 and 1.7

respectively. In Section 1.8 we discuss the work regarding the problem of covering points

in Rd by axis parallel lines with minimum cardinality.

In Chapter 2 we present the point cover problem in the 3 dimensional space. We introduce

the integer and the linear programming formulation of our problem. We present our itera-

tive rounding algorithm and the branch and bound algorithm. We talk about the importance

of our proposed approaches. Finally we analyse our proposed algorithms and present the

results of different experiments.

Chapter 3 contains the implementation of another iterative rounding algorithm. We present

the results of different experiments and the analysis of the approximation factor of the al-

gorithm.

Finally in Chapter 4 we conclude the thesis by comparing the two iterative rounding schemes

and discussing the significance of our branch and bound technique.

1.3 Linear Programming

A linear program (LP) is an optimization problem designed to maximize or minimize

a given linear objective function by satisfying a given set of linear inequality or equality

constraints. It was first introduced by Leonid Kantorovich in 1939 [12]. The variables of

the linear program are relaxed, they are not restricted to be integers.

A maximization problem gives an optimal solution to the LP with the largest objective

3



1.3. LINEAR PROGRAMMING

function value. The canonical form of the maximization problem [14] :

maximize ax

subject to Cx≤ b

x≥ 0

(1.1)

A minimization problem gives an optimal solution to the LP with the smallest objective

function value. The canonical form of the minimization problem :

minimize ax

subject to Cx≥ b

x≥ 0

(1.2)

The linear function ax that we want to optimize is the objective function. In the objective

function, a represents the vector of known coefficients and x represents the vector of deci-

sion variables which are non-negative. Cx ≤ b or Cx ≥ b is known as the linear inequality

constraint and x ≥ 0 is known as the non-negativity constraint. C is the coefficient matrix

with m rows and n columns where m is equal to the number of constraints (other than the

non-negativity constraints) and n is the number of decision variables. C can also be pre-

sented as ci j where i = 1, 2, ...., m and j = 1, 2, ...., n. The vector b contains the right hand

side value for each constraint.

We represent the linear programming problem in the standard form. For describing proper-

ties and algorithms for LPs, it is convenient to use the standard form. The transformation

of an LP instance from canonical to standard form can be done by using a series of slack

or surplus variables [11]. A linear program in the standard form is the maximization or

minimization problem of a linear function subject to linear equalities. Here slack variable,

s and surplus variable, su have used to transform the inequality constraints to equality.

4



1.3. LINEAR PROGRAMMING

The standard form of the maximization problem :

maximize ax

subject to Cx+ s = b

x≥ 0

(1.3)

The standard form of the minimization problem :

minimize ax

subject to Cx− su = b

x≥ 0

(1.4)

An assignment of specific values for the decision variables is called a solution for the

linear programming problem. A feasible solution is one that satisfies all the equality and

inequality constraints. The feasible solution becomes an optimal solution if it has the max-

imum (for maximization problem) or the minimum (for minimization problem) objective

function value. A problem is called infeasible if it has no feasible solution [17].

If a maximization linear program is feasible with a solution of an arbitrary large objective

function value or a minimization linear program is feasible with a solution of an arbitrary

small objective function value then it is called unbounded. For an unbounded maximization

linear program, the objective function value is +∞ and for an unbounded minimization lin-

ear program, the objective function value is −∞. Finally we conclude that a linear program

which is feasible and bounded has a finite optimum (maximum or minimum) [16].

5



1.3. LINEAR PROGRAMMING

For example, we consider a maximization problem :

maximize 3x1 +4x2

subject to 3x1−4x2 ≤ 12

x1 +2x2 ≤ 4

x1 ≥ 0

x2 ≥ 0

(1.5)

The maximum objective function value is 12 and the values of decision variables are 4 and

0 respectively.

Now consider a minimization problem :

minimize x1 + x2

subject to x1 +2x2 ≥ 2

2x1 + x2 ≥ 3

x1 ≥ 0

x2 ≥ 0

(1.6)

The minimum objective function value is 1.66667 and the values of decision variables are

1.33333 and 0.333333 respectively.

To obtain the optimal objective function value we can solve a linear programming problem

by using several methods including geometric interpretation, primal-dual method, simplex

method and others. Optimality condition can be established by using the weak and strong

duality theorems and the complementary slackness condition which are discussed later (See

1.3.2).

6



1.3. LINEAR PROGRAMMING

1.3.1 Geometric Interpretation

We can solve a linear programming problem graphically. Each of the variable values can

be plotted on one of the coordinate axes. After plotting the linear constraints we obtain the

feasible region. From that feasible region we compute the optimal objective function value

and the optimal variable values. The feasible region is convex and the optimal solution is a

vertex.

We consider our previous minimization example. Let us assume that the x−axis represents

the values of variable x1 and the y− axis represents the values of variable x2. We plot

(0,1), (2,0) points to represent the first constraint and (0,3), (3
2 ,0) points for the second

constraint respectively. Our feasible region shows that (1.3333,0.3333) is the minimum

point. 1.3333 and 0.3333 values of x1 and x2 respectively give the minimum objective

function value. Figure 1.1 of the geometric interpretation for the minimization problem is

given below :

Figure 1.1: Graphical Interpretation of LP

7



1.3. LINEAR PROGRAMMING

1.3.2 Primal Dual Method

This is another method which can be used for solving linear programming problems.

In 1955 Kuhn proposed his primal dual method for solving the assignment problem. We

consider the linear programming problem as the primal problem. We get a dual linear

program which is associated with a primal linear program [17].

Let us consider a primal linear programming problem in canonical form :

minimize ax

subject to Cx≥ b

x≥ 0

(1.7)

The surplus variable, su p for each constraint is :

su p = Cx - b

the associated dual linear program is :

maximize by

subject to CT y≤ a

y≥ 0

(1.8)

The slack variable, sd for each constraint is :

sd = a - CT y

The optimum of the dual provides a bound to the optimum of the primal. Here the dual

(1.8) provides a lower bound to the optimum of the primal (1.7) which can be formalized

as the weak duality theorem.

Theorem 1.1 (Weak Duality theorem). If x = (x1, x2,.....,xn) is a feasible and bounded so-

lution to the primal minimization linear program (1.7) and y = (y1, y2,......,ym) is a feasible

8



1.3. LINEAR PROGRAMMING

and bounded solution to the dual maximization linear program (1.8) then

n

∑
j=1

a jx j ≥
m

∑
i=1

biyi (1.9)

Where a j and bi are the coefficient vectors of the respective primal and dual objective

functions with i = 1, 2, ...., m and j = 1, 2, ...., n.

Proof. We show from equations (1.7) and (1.8) :

n

∑
j=1

a jx j ≥
n

∑
j=1

(
m

∑
i=1

ci jyi

)
x j =

m

∑
i=1

(
n

∑
j=1

ci jx j

)
yi ≥

m

∑
i=1

biyi (1.10)

which proves the theorem [17].

A dual solution certifies the exact value of the primal at optimality for a bounded and

feasible linear program. This property is recognized as the strong duality theorem.

Theorem 1.2 (Strong Duality theorem). If x = (x1, x2,.....,xn) is an optimal solution to the

primal minimization linear program (1.7) and y = (y1, y2,......,ym) is an optimal solution to

the dual maximization linear program (1.8) then

n

∑
j=1

a jx j =
m

∑
i=1

biyi (1.11)

For a proof of the above theorem please see Vanderbei [17]. The primal dual concept

can be summarized in the following two cases [16] :

• In the case of a feasible and bounded solution of a primal problem we inevitably get

a feasible and bounded solution for the dual and the other way around .

• Second case happens when the primal or the dual is unbounded, then the other is

infeasible. If any of the primal or the dual is infeasible, then the other one is either

infeasible or unbounded.

9



1.3. LINEAR PROGRAMMING

Now comes the complementary slackness theorem.

Theorem 1.3 (Complementary slackness). If x = (x1, x2,.....,xn) is the optimal solution to

the primal (1.7) and y = (y1, y2,......,ym) is the optimal solution to the dual (1.8) and let sp =

(sp1, sp2,.....spm) and sd = (sd1, sd2,.....sdn) stand for the primal slack variables and dual

slack variables respectively then

x jsd j = 0 j = 1,2, ....,n

yispi = 0 i = 1,2, .....,m
(1.12)

For a proof of the theorem please see Vanderbei [17]. The complementary slackness

condition is used to recover the optimal dual solution from a known optimal primal solution.

1.3.3 Simplex Method

The simplex method is one of the popular methods to solve the linear programming

problem. It is an iterative process to find the optimal solution of a given linear objective

function. This method was developed by George Bernard Dantzig in 1947 [1]. To apply the

simplex method, a linear programming problem needs to be in standard form. The example

of the maximization problem (1.5) becomes :

F = 3x1 +4x2 +(0)s1 +(0)s2

s1 = 12−3x1 +4x2

s2 = 4− x1−2x2

(1.13)

The above equation (1.13) is called dictionary. A solution of a linear programming problem

with at most m non zero variables (x1, x2, ......, xn, s1, s2, ....., sm) of the constraint equations

is a basic solution. The non-zero variables which appear on the left side of the constraint

equalities are called basic or dependent variables and the right sided variables are known as

non basic or independent variables. A solution becomes a basic feasible solution when all

10



1.3. LINEAR PROGRAMMING

variables are non-negative.

Now we construct the simplex tableau. This tableau consists of the augmented matrix

corresponding to the constraint equations (after adding slack variables) together with the

coefficients of the objective function. The initial simplex tableau of the above LP is :

x1 x2 s1 s2 b

3 -4 1 0 12

1 2 0 1 4

-3 -4 0 0 0

After creating the tableau we locate the most negative entry, known as the entering variable,

in the bottom row. The column corresponding to the entering variable is called the entering

column. In the case of ties we choose the column j where j is the smallest index.

Next we compute the ratios of the values in the column holding b-values with their corre-

sponding positive entries in the entering column. The smallest non-negative ratio among all

bi
ci j

is the leaving variable, where bi represents the value of the ith row from the b− column

and ci j represents the value of the ith row and the jth column of the coefficient matrix. The

row with that entry is the leaving row. In case of ties we choose the row i where i is the

smallest index. We determine the pivot as the entry from the entering column and the leav-

ing row.

In order to perform a pivot we use a series of elementary row operations (by applying

Gaussian elimination method) which makes the pivot element 1 and all other entries in the

entering column 0. This process ends up with a feasible solution.

As a result of the pivoting operation we move from one feasible solution to another until we

arrive at the optimal solution. At that point all the entries in the bottom row of the tableau

become zero or positive.

In case of a minimization problem we convert the primal problem into the dual maximiza-

tion problem. In order to do this, first of all we form an augmented matrix corresponding

to the inequality constraints. Then we add a last row to this augmented matrix with the

11



1.3. LINEAR PROGRAMMING

coefficients of the objective function. The augmented matrix corresponding to the example

of the minimization problem (1.6) is given below :


1 2 2

2 1 3

1 1 0


In the next step we do the transpose operation in order to interchange rows and columns of

the augmented matrix as follows. 
1 2 1

2 1 1

2 3 0


Here is the dual maximization problem :

maximize 2y1 +3y2

subject to y1 +2y2 ≤ 1

2y1 + y2 ≤ 1

y1 ≥ 0

y2 ≥ 0

(1.14)

We construct the initial simplex tableau for the dual (1.14) :

y1 y2 s1 s2 b

1 2 1 0 1

2 1 0 1 1

-2 -3 0 0 0

Finally we obtain the optimal solution for our minimization problem by applying the above

mentioned simplex method to the dual maximization problem.

We consider a basic feasible solution for an initial dictionary if all the right-hand side values

12



1.3. LINEAR PROGRAMMING

are non-negative. If this is not the case then we introduce an auxiliary problem and solve it

by using the two-phase method.

Let us consider the following auxiliary problem :

minimize
m

∑
i=1

gi

subject to
n

∑
j=1

ci jx j +gi = bi

x j ≥ 0 j = 1,2, .....,n

gi ≥ 0 i = 1,2, .....,m

(1.15)

Here we add or subtract a new variable for each constraint. We keep applying the steps

of the simplex method to obtain a feasible dictionary for the auxiliary problem. This process

is referred as phase I. After performing the phase I we follow the steps to go from a feasible

solution to an optimal solution. This process is known as phase II.

At the time of performing pivot operation we may detect two special cases :

1. One case is unboundedness, where all the ratios of bi
ci j

are non-positive. In this case,

the value of the entering variable can be increased indefinitely.

2. Another case is degeneracy. If the ratio of any leaving variable is +∞ where the

numerator is positive but the denominator vanishes then we call the pivot a degenerate

pivot. Sometimes the simplex method returns to a previously generated dictionary by

performing a sequence of degenerate pivot operations which causes an infinite loop.

This is known as cycling. In order to avoid cycling we can use Bland’s rule for

pivoting. Bland’s rule states that for choosing the entering and leaving variable from

corresponding sets of columns and rows, respectively, we take the variable with the

smallest index [17] .

Here is the algorithm for the simplex method where the linear program is in standard form

and we use Bland’s rule for the pivot operations.
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Algorithm 1 The Simplex Algorithm
Require: A maximization LP in standard form.

Ensure: Optimal solution to the LP.

1: while (1) do

2: set up initial simplex tableau.

3: determine the entering and leaving variables and the pivot.

4: do elementary row operations to obtain the new feasible solution and to construct

the next tableau .

5: if the current feasible solution < the previous feasible solution then

6: return the previous feasible solution.

7: end if

8: end while

9: return the optimal feasible solution.

1.3.4 Some Other Methods for Solving a Linear Programming Problem

The ellipsoid method is an iterative technique which finds an optimal solution in a finite

number of steps by solving a linear optimization problem with rational data. It minimizes a

convex function by generating a sequence of ellipsoids whose volume uniformly decreases

at every step. It does not have good practical performance. This method was first devised

by Khachian in 1979 [17].

Another technique named the interior point method is also used to solve a linear convex

optimization problem. Karmarkar [6] proposed this method which has better practical per-

formance than theoretical complexity.

1.4 Integer Programming

Here we introduce the integer linear program (ILP).

An integer program (IP) is an optimization problem designed to maximize or minimize a

14
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given objective function by satisfying a given set of inequality or equality constraints in

which some or all of the variables are restricted to be integers.

A maximization problem gives an optimal solution to the IP with the largest integer objec-

tive function value. The canonical form of the maximization problem is :

maximize ax

subject to Cx≤ b

x ∈ Z

(1.16)

A minimization problem gives an optimal solution to the IP with the smallest integer

objective function value. The canonical form of the minimization problem :

minimize ax

subject to Cx≥ b

x ∈ Z

(1.17)

We consider the following integer programming example for a minimization problem :

minimize x1 + x2

subject to x1 +2x2 ≥ 2

2x1 + x2 ≥ 3

x1 ∈ Z

x2 ∈ Z

(1.18)

Here the minimum objective function value is 2 and the values of decision variables are

1 and 1 respectively.
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1.5 Set Cover

Given a set U of n elements and a collection of subsets S1,S2.....Ss of U, the set cover

problem is to find the smallest number of subsets whose union equals to U .

We consider a scenario where we want to form a team of programmers who can code C++,

Ruby, Perl, Octave and Python. We have four available people including A who knows

C++, Python and Perl, B who knows C++ and Ruby, C who knows Perl and Octave and

D who knows C++, Octave and Ruby. We formulate the scenario as a set cover problem

instance.

U = {C++,Ruby,Perl,Octave,Python}

S1 = {C++,Python,Perl}

S2 = {C++,Ruby}

S3 = {Perl,Octave}

S4 = {Octave,Ruby}

where S1 and S4 give the minimum set cover.

The point cover problem can be reduced to set cover where all the points are considered to

form the universal set U and the points on each axis parallel line form each subset Ss. The

set cover instance in d dimensions has frequency d, as d axis parallel lines go through each

point.

Let us consider the following example for d = 3 :

U = {P1, P2, P3, P4, P5, P6}

Sx1 = {P1, P6}

Sx2 = {P2, P4, P5}

Sx3 = {P3}

Sy1 = {P3, P5, P6}

Sy2 = {P1, P4}

Sy3 = {P2}

Sz1 = {P1, P2}

16



1.6. ITERATIVE ROUNDING

Sz2 = {P4, P6}

Sz3 = {P3, P5}

Here by picking Sx2, Sy1 and Sz1 a cover is obtained.

A hypergraph, HG = (V, E) is a collection of subsets from a set, where V is a set of elements

(v1, v2, ....., vv) which are vertices, and E is a set of subsets (e1, e2 ,..., ee) which are

hyperedges. If the vertices of the hypergraph can be divided into subsets S1,S2, .....,Sk in

such a way that each edge intersects every subset at exactly one element then the hypergraph

is called k− partite. A hypergraph with every hyperedge of size k is known as k−uni f orm.

The problem of covering points with the minimum number of axis parallel lines can be

reduced to the vertex covering problem in d− partite hypergraph. The hypergraph HP is

constructed by considering the lines as the vertices and the lines going through each point

as the edges. To demonstrate the hypergraph HP is d − partite, the set of lines can be

partitioned according to each of the d axes. Exactly d axis parallel lines (one line for each

axis) pass across each point and each Si ∩ e j = 1 where i = 1, 2,...., s and j = 1, 2, ...., e.

The hypergraph HP is also d−uni f orm.

1.6 Iterative Rounding

In this Section we introduce rounding. Rounding is a technique to replace a fractional

value by an integer. After that we explain the concept of deterministic rounding. In de-

terministic rounding if a linear variable has fractional value < 1
v then the variable value is

rounded to 0 and if the variable value ≥ 1
v then it is rounded to 1 and here v is an arbitrary

threshold variable where v≥ 1. Here we consider iterative rounding to be a specific version

of the deterministic rounding technique.

The iterative rounding technique rounds a fractional solution of a linear programming prob-

lem and updates the current instance by reducing its size in each iteration until all the vari-

ables are rounded. Jain [5] first introduced this technique to show a 2-approximation ratio

for the survivable network design problem. The iterative rounding technique works on the
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extreme point solution of a linear programming problem through an iterative algorithm. It

rounds a subset of variables at each iteration. Next this technique updates a current instance

of the problem by replacing the number of fractional variables and passes the updated in-

stance to the next iteration for further processing.

The iteratve rounding method follows the following steps to reach the integral solution of a

linear programming problem :

1. At first the linear programming problem is formulated. One can follow the method

described in Section 1.3 for formulating the linear programming problem.

2. The second step is to use the rank lemma to identify a variable with a large fractional

value. Rounding the fractional value to 1 and go to the previous step.

1.7 Branch and Bound

The branch and bound method is used to find an optimal solution. This method follows

a trick of throwing out large parts of the search space which does not contribute any better

solution. The branch and bound technique was first proposed by Alisa Land and Alison

Doig in 1960.

At the time of exploring any node of the tree this technique makes a finite decision to set

one of the unbounded variables. Let us consider each variable v can have 0 or 1 value

to decide the right choice. The main advantage of using the branch and bound technique

is that it allows avoiding searches that do not make the solution better. For example, we

consider a root node and it is going to explore. Considering x = 0 will lead to a solution

which has upper bound ub1 and x = 1 will give the solution with lower bound lb2. We

never consider the case x = 0 when ub1 < lb2. We easily prune all the branches where x

would be set to 0. It saves both of the search space and search time. This is the reason the

method to be so powerful. The following figure 1.2 shows the basic concept of branch and

bound technique. In the figure, a node is explored into two subproblems by rounding x = 0

and x = 1 respectively in a binary tree. Depending on the lower and upper bounds of each
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subproblem it decides which node to branch (node 3 and 4) and which node to prune (node

2 and 5) next.

Figure 1.2: Branch and Bound Technique

Another important term is effective branching factor (EBF). Let N be the total number

of nodes in the search tree and d be the depth at which the solution node was found.

EBF = N
1
d (1.19)

By using the branch and bound technique, branching at only half of the levels in a

binary tree is similar to search the whole tree of depth d
2 . So the estimated number of nodes

searched becomes as 2
d
2 . Now the EBF is :

EBF = (2
d
2 )

1
d = 2

1
2 (1.20)

For a general case of n− ary tree the branching and pruning pattern gives an EBF of
√

n [9] .
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1.8 Some Important Terms

In this Section, we discuss the concept of the run time complexity and the approximation

ratio.

1.8.1 The Time Complexity of an Algorithm

The time complexity largely depends upon the size and type of the input and the num-

ber of elementary operations performed by the algorithm. Performance of an elementary

operation usually takes a fixed amount of time. We commonly express the time complexity

by big O notation [15] which gives an upper bound on the running time of the algorithm.

There are various classes of time complexities including constant time, linear time, poly-

nomial time, exponential time and so on. Among all these, we discuss the polynomial time

[13] and the exponential time complexities.

• An algorithm is said to be solvable in polynomial time with a running time of O(nk)

which is upper bounded by a polynomial expression of the size of the input where k

is a non-negative integer and n is the size of the input. Cobham and Edmonds are the

inventors of the notion of polynomial time.

• An algorithm is said to be exponential time with an upper bounded running time of

O(2nk
) for a given input size where k is a non-negative integer and n is the size of the

input.

In most of the cases, the simplex method has polynomial time complexity. But there are a

few exceptions for which this method runs in exponential time complexity [7].

Both the ellipsoid method and the interior point method are polynomial time algorithms for

solving linear programming problems.

The run time complexity of the iterative rounding algorithm depends on the solution of the

linear programming problem. If the linear programming problem has a polynomial time

solution then we can conclude that our iterative rounding algorithm also has a polynomial
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time complexity.

Our branch and bound method can have worse time complexity if the number of nodes in

the branching tree is too large.

1.8.2 Approximation Ratio

An algorithm that finds an approximate solution to a combinatorial optimization prob-

lem is known as an approximation algorithm. The approximation ratio is the ratio between

the solution obtained by the approximation algorithm and the optimal solution.

Approximation ratio =
solution of the approximation algorithm

the optimal solution
(1.21)

1.9 Related Research

In this Section we discuss about the previous works regarding covering points with axis

parallel lines.

1.9.1 Covering Points with Axis parallel Lines

The problem definition is to cover a stated set of n points in Rd with the minimum num-

ber of axis parallel lines. The problem is formulated as an integer and a linear programming

problems respectively. The formulation can be stated in the way where P1, P2, ........., Pn is

considered as a set of n points in Rd and L is the set of axis parallel lines going through all

the points. A binary variable, al , is considered for an integer program where al is 1 if the

line is picked in the solution for each l ∈ L , otherwise al is 0.

IP :

minimize ∑
l∈L

al

subject to ∑
l:l∈L(ai)

al ≥ 1 ∀ai

al ∈ {0,1}

(1.22)
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By replacing the constraint al ∈ {0,1} with al ≥ 0 , the integer program is relaxed to

the linear program.

LP :

minimize ∑
l∈L

al

subject to ∑
l:l∈L(ai)

al ≥ 1 ∀ai

al ≥ 0

(1.23)

The LP is the primal. Now the dual is,

LP dual :

maximize
n

∑
i=1

bi

subject to ∑
i:l∈L(ai)

bi ≤ 1 ∀l ∈ L

bi ≥ 0

(1.24)

A vertex cover of a graph is a subset of vertices such that each edge of the graph is

incident to at least one of the vertices of the subset. A matching of a graph is a subset of

pairwise non-adjacent edges such that no two edges share a common vertex. In the case of

the point cover problem in two dimensions, a primal feasible integer program IP solution is

analogous to a vertex cover and its integral solution of the linear programming dual is also

analogous to a matching which reminds the König-Egerváry theorem. For a proof please

see [2].

Theorem 1.4 (König-Egerváry). The size of the minimum vertex cover is the same as the

size of the maximum matching in a bipartite graph.

A bipartite graph is a graph with vertices decomposed into two disjoint sets V1 and V2,

such that every edge connects a vertex from V1 to a vertex from V2, and no two vertices

within the same set are adjacent. A polynomial time solution can be obtained for the prob-
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lem of covering points with the minimum number of axis parallel lines in two dimensions

by reducing it to the vertex cover [2]. A bipartite graph can be constructed by considering

each point as an edge and two axis parallel lines going through that point as the adjacent

vertices of that edge. The following figure 1.3 demonstrates the construction of the bipartite

graph.

Figure 1.3: (b) A Bipartite Graph is Constructed From (a) A Point Cover Problem in 2d

According to König’s theorem the optimal fractional vertex cover and the optimal in-

tegral vertex cover must have the same value for the bipartite graph which clearly demon-

strates the reason the above problem is polynomially solvable.

1.9.2 Hitting Points with Straight Lines

The hitting set problem is similar to the set cover problem, where a set of objects U

= 1,2,.....,o and subsets Sj j=(1,2,....,m) are considered and the goal is to find the smallest

subset H ⊆ U of objects which hits every subset Sj such that H ∩ Sj 6= /0 .
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The greedy algorithm does not have a constant approximation ratio for the problem of

covering points in the plane with the minimum number of axis parallel lines. To make

the statement clear, the following example can be considered where x number of disjoint

sets Sm (m = 1,2, ....,x) is assumed each with x! points. Each set Sm consists of x!
m disjoint

sets where each of the disjoint sets has m points. x! horizontal lines cover all the points

optimally, whereas the greedy algorithm may provide a solution of x!H(x) vertical lines. In

case of 3 disjoint sets, S1,S2 and S3, each with 6 points, the optimal solution consists of 6

horizontal lines (see figure 1.4(a)) but the greedy algorithm may end up with a solution of

11 vertical lines(see figure 1.4(b)) [3].

Figure 1.4: (a) The Optimal Solution Covers All the Points by 6 Lines But (b) The Greedy
Solution May Choose 11 Lines

Several polynomial time approximation algorithms are observed for hitting points, ver-

tical and horizontal line segments in two dimensional spaces.

The problem of covering points with axis parallel lines in R3 is NP-complete if a set of k
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lines can cover all the n points. For a proof please see [3].

1.9.3 Approximation Algorithms for Covering Points by Axis Parallel Lines

Several heuristic and combinatorial approaches are used to solve this problem. So some

approximate and optimal results are also obtained.

A d-approximation primal dual algorithm is observed where for an uncovered point pi(i∈ n)

the algorithm picks all the d axis parallel lines going through that point pi in the solution [3].

Another d-approximation deterministic rounding algorithm is also observed where the round-

ing process increases the value of the optimal solution at most d times [4]. The better run-

ning time of O(nd) makes the primal dual based algorithm more preferable compared to

the rounding algorithm.

The following theorem shows that in Rd , the point cover problem has an approximation

factor of d− 1. This theorem gives the foundation for an efficient (d− 1)-approximation

algorithm for covering points with axis parallel lines in d dimensions. For a proof of the

following theorem please see [2].

Theorem 1.5. The point cover problem in Rd can be approximated within a factor of d-1 (

in O(n5) time assuming constant d )

A dependent randomized rounding scheme is also used to obtain an integral solution

of the point cover problem. At first a set of lines, S1 is selected with decision variable

values f vi ≥ 2
d and the lines with decision variable values f vi <

2
d are placed in a set SL.

After that, the lines from SL are partitioned according to their respective dimensions and

a uniformly distributed random variable rvi between 0 to 2
d is picked for each dimension

di. At each dimension di, a set of lines with rvi ≤ f vi <
2
d is picked to form another set

S2. The combination of the two sets S1 and S2 makes the cover. A d
2 approximation ratio

is obtained from the above mentioned scheme [8]. Another d
2 -approximation algorithm is

also observed for covering points with axis parallel lines in d dimensions [10].

An integral solution of the point cover problem is also obtained which gives the foundation
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for an efficient
√

d-approximation algorithm for covering points with axis parallel lines in d

dimensions [8].
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Chapter 2

Point Cover Problem

2.1 Introduction

In this Chapter we discuss the point cover problem in R3. For a given number of points

in R3, the point cover problem determines the minimum number of axis parallel lines to

cover all the points. In Section 2.2 we present the problem definition. After that we discuss

the integer programming formulation for the point cover problem in Section 2.3 . In Sec-

tion 2.4 we present the linear programming formulation for the point cover problem. The

iterative rounding Algorithm 1 is mentioned in Section 2.5. In Section 2.6 we present a

combinatorial approach which is the branch and bound algorithm to the point cover prob-

lem. We discuss an example to the problem in Section 2.7 . Finally in Section 2.8 we

present the experimental results for our iterative rounding approach and branch and bound

algorithm.

2.2 Problem Definition

Given a set of n points in Rd (d ≥ 3), one has to find the minimum number of axis

parallel lines to cover all the points.

We consider,

p1, ....., pn is the set of n points in R3.

L is the set of all the axis parallel lines going through the n points.

Rd is the dimension of space.

L(p) is the set of lines going through point p.
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|L| ≤ nd.

Let us consider the following three points (n = 3) in R3 :

(1,2,3), (4,3,5), (6,2,3)

Each of the above three points can be covered by any of the axis (x-axis, y-axis or z-axis)

parallel lines respectively.

Here

L = 9

L(1,2,3) = (*,2,3), (1,*,3), (1,2,*)

L(4,3,5) = (*,3,5), (4,*,5), (4,3,*)

L(6,2,3) = (*,2,3), (6,*,3), (6,2,*)

Both of the points (1,2,3) and (6,2,3) can be covered by the same x− axis parallel line

(*,2,3). We can pick any of the axis (x-axis, y-axis or z-axis) parallel lines to cover the

point (4,3,5) as it does not share any common axis parallel lines with the other points. We

conclude that we can cover the above three points by using two axis parallel lines. The

following figure 2.1 makes the example easier to understand :

Figure 2.1: Point Cover Problem Example in 3d
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2.3 Example of Reduction to Set Cover problem

In Section 1.5 we state how we can reduce the point cover problem to set cover. From

the above example of Section 2.2 we show the reduction in R3. By following the example :

U = {(1,2,3), (4,3,5), (6,2,3)}

Sx1 = the points on the line (*,2,3) = {(1,2,3), (6,2,3)}

Sy1 = the point on the line (1,*,3) = {(1,2,3)}

Sz1 = the point on the line (1,2,*) = {(1,2,3)}

Sx2 = the point on the line (*,3,5) = {(4,3,5)}

Sy2 = the point on the line (4,*,5) = {(4,3,5)}

Sz2 = the point on the line (4,3,*) = {(4,3,5)}

Sy3 = the point on the line (6,*,3) = {(6,2,3)}

Sz3 = the point on the line (6,2,*) = {(6,2,3)}

where the subsets Sx1 and Sy2 give the minimum set cover.

2.4 Integer Programming Formulation

In this Section we introduce the integer programming formulation for the point cover

problem. A binary variable, pl , is associated with each line l ∈ L which receives a value 1

if the line is picked in the solution or value 0 if the line is not picked in the solution.

The IP to the point cover problem is :

minimize ∑
l∈L

pl

subject to ∑
l:l∈L(pi)

pl ≥ 1 ∀pi

pl ∈ {0,1}

(2.1)

The IP formulation restricts the decision variables to be binary. The variable pl is associated

with each line l ∈ L and the value of pl becomes 1 if the line is picked in the solution and

0 if the line is not picked in the solution. IP OPT denotes the optimal integral solution for
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the point cover problem.

2.5 Linear Programming Formulation

In this Section, we present the linear programming formulation.

We obtain the linear programming relaxation to the IP by relaxing the non-negativity con-

straints to pl ≥ 0. The LP formulation to the point cover problem :

minimize ∑
l∈L

pl

subject to ∑
l:l∈L(pi)

pl ≥ 1 ∀pi

pl ≥ 0

(2.2)

We obtain the optimal solution to the LP relaxation by solving the formulated LP. We

construct the coefficient matrix C with dimension nxL to the LP. Each row of C contains

exactly d ones and all the other entries of L columns are exactly 0 in the row. LP OPT

denotes the value of the optimal solution. The LP solution returns the optimal values to the

decision variables too.

The dual LP is :

maximize
n

∑
i=1

qi

subject to ∑
i:l∈L(pi)

qi ≤ 1 ∀l ∈ L

qi ≥ 0

(2.3)

2.6 Iterative Rounding Algorithm 1

Iterative rounding is a heuristic approach which produces an integral solution to the

point cover problem. We follow the following steps to obtain an integral solution by apply-

ing the iterative rounding method :

1. At first, we solve our LP. The solution returns the minimum number of axis parallel

lines to cover all the points and optimal values to the decision variables fractionally.
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2. If our LP solution has no fractional variable value, then the LP solution is the optimal

integral solution.

3. If our LP solution contains any fractional values of the decision variables, we round

the largest fractional decision variable value to 1. In the case more than one decision

variables have largest fractional value, we pick one arbitrarily.

4. After rounding the decision variable value to 1, we solve the current LP instance.

5. We keep following steps 1, 2, 3 and 4 until we obtain an integral solution to each of

the decision variables. IR1 denotes the value of the integral solution.

Here is our algorithm for the iterative rounding method :

Algorithm 2 Iterative Rounding Algorithm 1
Require: A minimization LP in standard form.

Ensure: Integral solution, IR1 to the LP.

1: while (1) do

2: find the optimal LP solution, LP OPT.

3: if no fractional variable, f vi exists then

4: return LP OPT.

5: end if

6: if a fractional variable, f vi exists then

7: find f vi with largest fractional value.

8: round f vi to 1

9: end if

10: end while

11: return IR1 (integral solution).

A subset of variables is rounded in each iteration of the algorithm. The current instance

of the problem is updated by reducing its size based on the rounded variables and the

updated instance is passed to the next iteration.
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2.7 Branch and Bound Algorithm

The branch and bound technique is a combinatorial approach which produces the opti-

mal integral solution to the point cover problem. We consider our algorithm for exploring a

binary rooted tree. We follow the following steps to obtain an optimal integral solution by

applying the branch and bound technique.

1. At first, we consider the value of our LP solution at the root node of the tree. Initially

we assume an upper bound UB with the IR1 value and as we explore only the root

node so the number of node becomes 1.

2. If the LP solution returns integral output for all the decision variables, we consider

the LP OPT value as the optimal integral solution.

3. On the other hand, if the LP solution for a node returns a fractional output of a deci-

sion variable then we explore the node to obtain two sub problems, SP1 and SP2. This

procedure is known as branching.

• In case of SP1, we round the first fractional decision variable value to 0. We

solve the current LP instance. We consider the current LP OPT value as the

lower bound, LB1, of the current node. In order to obtain the upper bound, UB1,

of the current node we solve the current instance by using the iterative rounding

algorithm. The IR1 value represents the upper bound. We increase the number

of nodes by 1.

• In case of SP2, we round the first fractional decision variable value to 1. We

solve the current LP instance. We consider the current LP OPT value as the

lower bound of the current node and name it LB2. In order to obtain the upper

bound, UB2, of the current node, we solve the current instance by using the

iterative rounding algorithm. The IR1 value represents the upper bound. We

increase the number of nodes by 1.
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The procedure of computing lower and upper bound of each node is known as bound-

ing. After exploring the SP1 and SP2 we update UB with the minimum value among

UB1, UB2 and UB.

4. In this step, we enumerate the branching and pruning methods based on the current

candidate solutions in the following ways :

• If the current value of UB is greater than the current value of LB2, we prune the

current SP1 node and follow steps 2 and 3 to branch the SP2 node.

• If the current value of UB is greater than the current value of LB1, we prune the

current SP2 node and follow steps 2 and 3 to branch the SP1 node.

• If the current value of UB and LB2 is equal, we obtain the optimal integral

solution LB2, or if the current value of UB and LB1 is equal, we obtain the

optimal integral solution LB1 at this point.

• If none of the above condition satisfies, then the current value of UB is the

optimal integral solution.

5. We keep following steps 2, 3 and 4 recursively. The recursion stops when we obtain

the optimal integral solution BB OPT and then we return the total number of nodes

explored.

Here is our algorithm for the branch and bound technique :
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Algorithm 3 Branch and Bound Algorithm
Require: A minimization LP in standard form.

Ensure: Optimal Integral solution, BB OPT to the LP.

1: UB = inf.

2: Numberofnodes = 1.

3: procedure BBLP(A f v ≥ 1, fv ≥ 0, UB cost, LB cost)

4: find the optimal LP solution, LP OPT.

5: if no fractional variable, f vi exists then

6: return LP OPT and total number of nodes explored.

7: end if

8: if a fractional variable, f vi exists then

9: find the optimal LP solution LB1 and integral IR solution, UB1 by rounding

fractional variable, f vi to 0.

10: Numberofnodes++

11: find the optimal LP solution LB2 and integral IR solution, UB2 by rounding

fractional variable, f vi to 1.

12: Numberofnodes++

13: Update UB with the minimum value among UB1, UB2 and UB.

14: if UB > LB2 then

15: return BBLP(A f v ≥ 1, fv = 1, UB2, LB2).

16: end if

17: if UB > LB1 then

18: return BBLP(A f v ≥ 1, fv = 0, UB1, LB1).

19: end if

20: if UB = LB2 ∨ UB = LB1 then

21: if UB = LB2 then

22: return LB2 and total number of nodes explored.

23: end if
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24: if UB = LB1 then
25: return LB1 and total number of nodes explored.
26: end if
27: end if
28: if none of the above condition satisfies then
29: return UB and total number of nodes explored.
30: end if
31: end if
32: end procedure
33: return BB OPT (optimal integral solution).

In any real problem, the entire tree is too large. The advantage of the branch and bound

technique is to avoid searching the whole tree. At each stage only the most promising node

grows by estimating its bounds. Pruning is the important aspect of the branch and bound

technique which cuts off and permanently discards the unprofitable branches of the tree.

2.8 An Example of the Point Cover Problem

We consider the following set of points :

(1,1,1), (1,1,2), (1,2,2), (2,2,2), (2,2,3), (2,3,3), (3,3,3), (3,3,4), (3,4,4), (1,4,4), (1,4,1)

Each of the above points can be covered with any of the axis(x-axis, y-axis or z-axis) parallel

lines. Here,

n = 11

nd = 11x3 = 33

L = 22

The following figure 2.2 shows the coefficient matrix C where R and Co stands for the

labels of rows and columns respectively :
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Figure 2.2: Constraint Coefficient Matrix C

We obtain the IP solution to cover all the n points by axis parallel lines.

IP OPT = 6 (2.4)

The LP solution to cover all the n points by axis parallel lines :

LP OPT = 5.5 (2.5)

The solution produces fractional values for the decision variables. The following figure

represents the decision variable values :

Figure 2.3: Decision Variable Values

We obtain the following integral solution by applying the iterative rounding method

(from Section 2.6) :

IR1 = 6 (2.6)
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The approximation ratio IR1 becomes :

Approximation Ratio IR1 =
IR1

LP OPT
=

6
5.5

= 1.09091 (2.7)

We obtain the following optimal integral solution by applying the branch and bound

technique(from Section 2.7).

BB OPT = 6 (2.8)

2.9 Experiments and Results

In this section, we present the empirical data obtained by running experiments on the

iterative rounding Algorithm 1 and the branch and bound algorithm which computes the

approximation ratio based on a 10x10x10 grid. We used a range of p values from 0.01 to 1

with a 0.01 difference. Each grid point was picked with probability p in the input instance.

We repeated each experiment 25 times for each p−value and took the average of 25 values.

We used Octave 3.8.1 for the implementation of the algorithms. We used the GLPK solver

for computing the LP value and the IP value of each input instance. All the experiments

presented here were conducted on a 2.10 GHz processor with 8 GB of RAM in Ubuntu

14.04 environment.

2.9.1 Experimental Results of the Iterative Rounding Approach 1

Here we present the experimental results of the iterative rounding Algorithm 1.

• avgIR1LP represents the average approximation ratio of the integral solution IR1 and

the optimal LP solution LP OPT .

• avgIR1IP represents the average approximation ratio of the integral solution IR1 and

the optimal IP solution IP OPT .
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• highestIR1LP represents the highest approximation ratio of the integral solution IR1

and the optimal LP solution LP OPT .

• highestIR1IP represents the highest approximation ratio of the integral solution IR1

and the optimal IP solution IP OPT .

Figure 2.4 summarizes the results. The first column of the table represents the p− value

and the second, third, fourth and fifth columns represent the average avgIR1LP, the average

avgIR1IP, the highestIR1LP and the highestIR1IP data respectively.
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Figure 2.4: Computational Performance of Iterative Rounding Algorithm 1

We graphically represent the experimental results in the following figure 2.5 :

Figure 2.5: Graphical Representation of the performance of Iterative Rounding Algorithm
1
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In Figure 2.5, we plot the p− values along the x− axis and the approximation ratio

(average of 25 values and highest among 25 values) along the y− axis. Based on figures

2.4 and 2.5 we can say that,

• Average approximation ratio of IR1
LP OPT :

In the case of the input instance of the p−value from 0.01 to 0.09 we receive integral

LP solutions. So the approximation ratios are 1. For the instances starting from the

p− value 0.1 to 0.36, the approximation ratio increases slowly and at p = 0.41, we

obtain the highest approximation ratio which is 1.1272219. After that, from p = 0.37

to p = 0.53, the approximation ratios of the respective instances decrease slowly.

From p = 0.54 to p = 1, the approximation ratios are 1.

• Average approximation ratio of IR1
IP OPT :

The approximation ratio starts increasing slowly for the input instance from p =

0.14 to p = 0.37. We obtain the highest approximation ratio at p = 0.41 which is

1.1041667. From p = 0.42 the approximation ratio starts decreasing slowly and it

ends up at 1 when p = 1.

In figure 2.6 we compare the running time of the GLPK LP solver, the GLPK IP solver and

the iterative rounding function based on a 10x10x10 data grid. We plot the average time of

25 results for each p− value. All the times are computed in seconds.

• LP represents the average time to compute LP OPT value.

• IP represents the average time to compute IP OPT value.

• IR1 represents the average time to compute IR1 value.
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Figure 2.6: Running Time of GLPK LP Solver, GLPK IP Solver and Iterative Rounding
Approach 1

Based on figure 2.6 we can say that for the input instance from p = 0.2 to p = 0.4 the iterative

rounding operation shows significant improvement in running time compared to the running

time of GLPK IP solver. So we can conclude that our iterative rounding approach performs

better in computing an approximate integral solution in the case of running time.

2.9.2 Experimental Results of The Branch and Bound Approach

Here we present the experimental results of the branch and bound algorithm.

• avgBBLP represents the average integrality gap of the optimal integral solution BB OPT

and the optimal LP solution LP OPT .

• highestBBLP represents the highest integrality gap of the optimal integral solution

BB OPT and the optimal LP solution LP OPT .
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• nodes represents the average total number of nodes explored for each input instance.

• points represents the average total number of points selected for each p− value.

We show the running time of the branch and bound operation based on a 10x10x10 data

grid. We plot the average time of 25 results for each p− value. All the times are computed

in second.

• BB represents the average time to compute BB OPT value.

We consider three strategies for picking the fractional variable which are the first one in

the ordering, the last one in the ordering and the largest one in the ordering. We get the

positions of the first and the last fractional variables from the positions of the variables

given by GLPK solver.

• Rounding the first fractional variable value (R FFV ) :

Figure 2.7 summarizes the results. The first column of the table represents the p−

value and the second, third, fourth and fifth columns represent the average avgBBLPF ,

the highestBBLPF, the average nodesF and the average pointsF data respectively.
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Figure 2.7: Computational Performance of Branch and Bound Algorithm with R FFV

We graphically represent the experimental summary of the branch and bound algo-

rithm with R FFV in the following figure 2.8 :

45



2.9. EXPERIMENTS AND RESULTS

Figure 2.8: Graphical Representation of the Performance of Branch and Bound Algorithm
with R FFV

In figure 2.9 we plot the p− values along the x− axis and the approximation ra-

tio(average of 25 values and highest among 25 values) along the y−axis. By observ-

ing both the table and the plot we can say that,

– Average approximation ratio of BB OPT
LP OPT :

The approximation ratio starts increasing slowly for the input instance from p

= 0.1 to p = 0.36. We obtain the highest approximation ratio at p = 0.34 which

is 1.03825137. From p = 0.37, the approximation ratio starts decreasing slowly

and it ends up at 1.

In figure 2.9 we plot the p− values along the x− axis and the nodesF and the

pointsF(average of 25 values) along the y− axis. Based on figure 2.9 we can say
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that, the nodes grows polynomially with the input instance starting from p = 0.1 to

p = 0.29. At p = 0.39 we obtain the highest number of nodes explored , which is

2090.44 to cover the 428 input points . From p = 0.41, the number of nodes starts

decreasing slowly and it ends up at 1.

Figure 2.9: Nodes Explored to Cover Input Points with R FFV

Following figure 2.10 graphically shows the running time :
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Figure 2.10: Running Time of Branch and Bounding Approach with R FFV

Based on figure 2.10 we can say that, the running time of our branch and bound

technique is much greater than all other running times. The highest time it takes to

run the function is 1131.7172s at p = 0.39.

• Rounding the last fractional variable value (R FFV ) :

Figure 2.11 contains the table of the experimental data. The first column of the table

represents the p− value and the second, third, fourth and fifth columns represent the

average avgBBLPL, the highestBBLPL, the average nodesL and the average pointsL

data respectively.
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Figure 2.11: Computational Performance of Branch and Bound Algorithm with R LFV

We graphically represent the experimental summary of the branch and bound algo-

rithm with R LFV in the following figure 2.12 :
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Figure 2.12: Graphical Representation of the Performance of Branch and Bound Algorithm
with R LFV

In figure 2.12 we plot the p− values along the x− axis and the approximation ra-

tio(average of 25 values and highest among 25 values) along the y−axis. Based on

figures 2.11 and 2.12 we can say that,

– Average approximation ratio of BB OPT
LP OPT :

The approximation ratio starts increasing slowly for the input instance from p

= 0.1 to p = 0.36. We obtain the highest approximation ratio at p = 0.34 which

is 1.03825137. From p = 0.37, the approximation ratio starts decreasing slowly

and it ends up at 1.

In figure 2.13 we plot the p− values along the x− axis and the nodesL and the

pointsL(average of 25 values) along the y− axis. Based on figure 2.13 we can say

that,
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The nodes grows polynomially with the input instance starting from p = 0.1 to p =

0.28. We obtain the highest number of nodes explored at p = 0.33, which is 2240.92

and the average cardinality of the input instance is 360 . From p = 0.39, the number

of nodes starts decreasing slowly and it ends up at 1.

Figure 2.13: Nodes Explored to Cover Input Points with R LFV

Following figure 2.14 shows the running time :
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Figure 2.14: Running Time of Branch and Bounding Approach with R LFV

Based on figure 2.14 we can say that, the running time of our branch and bound

technique is much greater than all other running times. The highest time it takes to

run the function is 683.2905s at p = 0.39.

• Rounding the largest fractional variable value (R LAFV ) :

Figure 2.15 contains the table of the experimental data. The first column of the table

represents the p− value and the second, third, fourth and fifth columns represent

the average avgBBLPM, the highestBBLPM, the average nodesM and the average

pointsM data respectively.
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Figure 2.15: Computational Performance of Branch and Bound Algorithm with R LAFV

We graphically represent the experimental summary of the branch and bound algo-

rithm with R LAFV in the following figure 2.16 :

55



2.9. EXPERIMENTS AND RESULTS

Figure 2.16: Graphical Representation of the Performance of Branch and Bound Algorithm
with R LAFV

In figure 2.16 we plot the p− values along the x− axis and the approximation ra-

tio(average of 25 values and highest among 25 values) along the y−axis. Based on

figures 2.15 and 2.16 we can say that,

– Average approximation ratio of BB OPT
LP OPT :

The approximation ratio starts increasing slowly for the input instance from p

= 0.1 to p = 0.36. We obtain the highest approximation ratio at p = 0.34 which

is 1.03825137. From p = 0.37, the approximation ratio starts decreasing slowly

and it ends up at 1.

In figure 2.17 we plot the p− values along the x− axis and the nodesM and the

pointsM(average of 25 values) along the y− axis. Based on figure 2.17 we can say

that,
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The nodes grows polynomially with the input instance starting from p = 0.1 to p =

0.33. We obtain the highest number of nodes explored at p = 0.37, which is 2834.75

and the average cardinality of the input instance is 393.84 . From p = 0.41, the

number of nodes starts decreasing slowly and it ends up at 1.

Figure 2.17: Nodes Explored to Cover Input Points with R LAFV

Following figure 2.18 shows the running time :
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Figure 2.18: Running Time of Branch and Bounding Approach with R LAFV

Based on figure 2.18 we can say that, the running time of our branch and bound

technique is much greater than all other running times. The highest time it takes to

run the function is 738.040019s at p = 0.39.

As Branch and bound approach runs in exponential time, so we tried to find out a way which

takes less running time. We could come to the conclusion that, the approach of rounding

the last fractional variable value (R LFV ) to 1 at each recursive call takes the minimum

time compared to the other two approaches. Because this approach explores the minimum

number of nodes to cover all the points.
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Chapter 3

Iterative Rounding Algorithm 2

3.1 Introduction

In this chapter, we discuss another scheme of iterative rounding method [8]. In Section

3.2 we discuss the iterative rounding Algorithm 2 that we implemented. In Section 3.3 the

approximation ratio of the algorithm is discussed. Finally in Section 3.4 we present the

experimental results for the iterative rounding approach.

3.2 Iterative Rounding Algorithm 2

In this algorithm, the concept of iterative rounding and the primal-dual method has been

used. Let us consider α is the approximation factor of the algorithm, ε is a constant with

value 0 < ε≤ 1 and d is the dimension (3 for the experiments). The algorithm is as follows:

1. At first, the algorithm solves the primal LP. The solution returns the minimum num-

ber of axis parallel lines to cover all the points and the optimal values to the decision

variables fractionally.

2. In the next step, the algorithm solves the dual of the primal LP.

3. If the primal LP solution LP OPT P returns an integral output where all the variables

have integral values, then that is the required result.

4. In the case of the dual LP solution LP OPT D≥ n
α

where n is the number of points in

the subproblem, the algorithm returns any cover to the point cover problem.
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5. In the case of the dual LP solution LP OPT D≤ d
ε
, the algorithm returns the cheapest

cover by enumerating all the subsets of lines which have size no more than d2

ε
.

6. If there is a fractional value ≥ 1
α

, then the algorithm rounds it up to 1 and solves the

subproblem recursively .

7. If none of the above condition executes, the algorithm selects a point p with the dual

variable value≤ 1
α

, then the algorithm includes all the lines passing through that point

in the cover and solves the subproblem instance recursively. Such a point p always

exists, otherwise if the dual variable value would be > 1
α

then for all the n points the

algorithm would get a dual solution > n
α

which follows step 4.

8. The recursive calls keep following steps 3, 4, 5, 6 and 7 until the integral solution is

obtained.

Here is the Algorithm 2 of iterative rounding method :
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Algorithm 4 Iterative Rounding Algorithm 2
Require: A minimization LP in standard form.

Ensure: Integral solution, IR2 to the LP.

1: procedure IR2 func(min LP OPT , A f v ≥ 1, fv ≥ 0)

2: find the optimal primal LP solution LP OPTP.

3: find the optimal dual LP solution LP OPTD.

4: if no fractional variable f vi exists then

5: return LP OPTP.

6: end if

7: if LP OPTD ≥ n
α

then

8: return any cover of the point cover problem.

9: end if

10: if LP OPTD ≤ d
ε

then

11: return the cheapest cover by enumerating all the subsets of lines which has size

no more than d2

ε
.

12: end if

13: if a fractional variable f vi ≥ 1
α

exists then

14: comment: round that variable to 1.

15: return IR2 func(min LP OPT , A f v ≥ 1, f vi = 1, fv ≥ 0).

16: end if

17: if a point p with dual variable dvi ≤ 1
α

exists then

18: comment: round all the d lines Lp going through that point p to 1.

19: return IR2 func(min LP OPT , A f v ≥ 1, f vi = 1, ∀i ∈ Lp, fv ≥ 0).

20: end if

21: end procedure

A subset of variables is rounded at each recursive call of the algorithm. The current

instance of the problem is updated by reducing its size based on the rounded variables and
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this updated instance is passed to the next recursive call.

3.3 Approximation Ratio

Conjecture 3.1. The point cover problem can be approximated within a factor of 1
4 +√

1
4 +d(1− ε) within polynomial time for constants d and 0 < ε ≤ 1.

The iterative rounding Algorithm 2 does not rely on linear independence. The algo-

rithm shows that either there is a large fractional value in the primal solution or there is a

set of dual variables to which the cost of the lines in any given iteration can be charged. In

the algorithm it is assumed that, the number of points is n. Later α is chosen to minimize

the performance ratio of the algorithm. For a few cases of the algorithm an α-approximate

solution can be constructed in the current call. If none of the above cases (lines 4-12) are

met then the algorithm makes a recursive call in the following way. If a fractional primal

variable f vi ≥ 1
α

exists then line i is picked in the cover and the algorithm recursively com-

putes the cover for the remaining points not covered by line i. If no such primal variable

exists then a point p with dual variable dvi ≤ 1
α

exists. All the lines passing through point

p are picked in the cover and the supproblem is solved recursively. The iterative rounding

Algorithm 2 takes a linear program for an instance of the point cover problem as input and

returns a set of lines as an integral vector. The function call can return on lines 5, 8, 11, 15,

19. The return on lines 5, 8, 11 are the base cases [8].

3.4 Experiments and Results

In this section, we present the empirical data obtained by running experiments on the it-

erative rounding Algorithm 2 which computes the approximation ratio based on a 10x10x10

grid. We used a range of p values from 0.01 to 1 with a 0.01 difference. Each grid point

was picked with probability p in the input instance. We repeat each experiment 25 times

for each p− value and took the average of 25 values.
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We used Octave 3.8.1 for the implementation of the algorithms. We used the GLPK solver

for computing the LP value and the IP value for each input instance. All the experiments

presented here were conducted on a 2.10 GHz processor with 8 GB of RAM in Ubuntu

14.04 environment.

3.4.1 Experimental Results of the Second Iterative Rounding Approach

Here we present the experimental results of iterative rounding Algorithm 2 :

• avgIR2LP represents the average approximation ratio of the integral solution IR2 and

the optimal LP solution LP OPT .

• avgIR2IP represents the average approximation ratio of the integral solution IR2 and

the optimal IP solution IP OPT .

• highestIR2LP represents the highest approximation ratio of the integral solution IR2

and the optimal LP solution LP OPT .

• highestIR2IP represents the highest approximation ratio of the integral solution IR2

and the optimal IP solution IP OPT .

Figure 3.1 summarizes the results. The first column of the table represents the p− value

and second, third, fourth and fifth columns represent the average avgIR2LP, the average

avgIR2IP, the highestIR2LP and the highestIR2IP data respectively.
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Figure 3.1: Computational Performance of Iterative Rounding Algorithm 2

We graphically represent the experimental summary of iterative rounding Algorithm 2

in the following figure 3.2 :
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Figure 3.2: Graphical Representation of the Performance of Iterative Rounding Algorithm
2

In figure 3.2 we plot the p−values along the x−axis and the approximation ratio(average

of 25 values and highest among 25 values) along the y−axis. Based on figures 3.1 and 3.2

we can say that,

• Average approximation ratio of IR2
LP OPT :

In the case of the input instance of the p−value from 0.01 to 0.09, we receive integral

LP solutions. So the approximation ratios are 1. For the instances starting from

p− value 0.1 to 0.35, the approximation ratio increases slowly. After that, from p =

0.36 to p = 1, the approximation ratios of the respective instances decrease slowly

and end up at 1 when p = 1. At p = 0.12, we obtain the highest approximation ratio

which is 1.423423.

• Approximation ratio of IR2
IP OPT :
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The approximation ratio starts increasing slowly for the input instance from p = 0.11

to p = 0.35. From p = 0.36, the approximation ratio starts decreasing slowly and

it ends up at 1 when p = 1. We obtain the highest approximation ratio at p = 0.12,

which is 1.410714.

In figure 3.3 we compare the running time of the GLPK LP solver, the GLPK IP solver and

the iterative rounding approach 2 based on a 10x10x10 data grid. We plot the average time

of 25 results for each p− value. All the times are computed in seconds.

• LP represents the average time to compute LP OPT value.

• IP represents the average time to compute IP OPT value.

• IR2 represents the average time to compute IR2 value.

Figure 3.3: Running Time of GLPK LP Solver, GLPK IP Solver and Iterative Rounding
Approach 2
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Based on figure 3.3 we can say that, for the input instance from p = 0.18 to p = 0.48, the it-

erative rounding Algorithm 2 shows significant improvement in the running time compared

to the running time of the GLPK IP solver. So we can conclude that the iterative rounding

approach performs the best in the case of the running time.
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Chapter 4

Conclusion

4.1 Introduction

In this chapter, we summarize the experimental results of the iterative rounding Algo-

rithm 1, iterative rounding Algorithm 2 and branch and bound algorithm and compare the

approximation ratios with the best known one in Section 4.2. we discuss the comparative

analysis between the two iterative rounding approaches in Section 4.3. Finally in Section

4.4 we present significance of our branch and bound approach.

4.2 Summary

This chapter is a summary of the results and conclusions. In this thesis, we consider the

problem of covering points by axis parallel lines in Rd . We presented an iterative rounding

approach to compute an integral solution. We designed a branch and bound approach to

compute the optimal integral solution. We also implemented another α−approximation

iterative rounding approach [8].

The current best known approximation ratio for covering points with axis parallel lines in

d dimension is d
2 [8].

According to our experiments (d = 3) :

• best known approximation ratio = 3
2 = 1.5.

• Approximation ratios of iterative rounding Algorithm 1 :

– IR1
IP is 1.1041667.
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– IR1
LP is 1.1272219.

• Approximation ratios of iterative rounding Algorithm 2 :

– IR2
IP is 1.410714.

– IR2
LP is 1.423423.

• For branch and bound algorithm :

– Approximation ratio, BB
IP is 1.

– Integrality gap, BB
LP is 1.038251.

from the above results we can come to the conclusion that, both of the iterative rounding

algorithms show better approximation ratio compared to the best known one.

4.3 Comparison Between the Two Iterative Rounding Approaches

In this Section, we present a comparative analysis of the two iterative rounding ap-

proaches we have mentioned earlier in Chapter 2 and Chapter 3 respectively.

In the case of the iterative rounding Algorithm 1, we round the largest fractional variable

value to 1 in each iteration until all the variables are integral.

Iterative rounding Algorithm 2 uses the primal dual approach and it solves the problem

recursively. it uses a new idea. If any primal fractional variable with value ≥ 1
α

exists, then

that variable is rounded to 1 in the recursive call. Otherwise, if any dual variable with value

≤ 1
α

exists, then the variable values for all the lines going through that point are rounded to

1. For d = 3 the algorithm rounds three variables to 1 in a single recursive call.

We used the same set of the input instance for both of the algorithms. Figure 4.1 summa-

rizes the results. The first column of the table represents the p−value and the second, third,

fourth and fifth columns represent the highestIR1LP, the highestIR2LP, the highestIR1IP

and the highestIR2IP1 data respectively.
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Figure 4.1: Comparative Computational Performance of Iterative Rounding Approaches

We graphically represent the experimental summary in the following figure 4.2 :
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Figure 4.2: Graphical Representation of Comparative Performance of Iterative Rounding
Approaches

In figure 4.2, we plot the p− values along the x− axis and the approximation ratio

(highest among 25 values) along the y−axis. Based on figures 4.1 and 4.2 we can say that,

the highest approximation ratio IR1
LP is 1.1272219 and IR2

LP is 1.423423. Similarly The high-

est approximation ratio IR1
IP is 1.1041667 and IR2

IP is 1.410714. So we can conclude that, in

case of the resulting data Algorithm 1 performs better than Algorithm 2.

Figure 4.3 compares the running time of the iterative rounding functions based on a 10x10x10

data grid for both of the algorithms. We plot the p− values along x−axis and the average

running time along y−axis. All the times are computed in seconds.
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Figure 4.3: Comparative Running Time of Iterative Rounding Approaches

According to figure 4.3, the iterative function of Algorithm 1 requires more time com-

pared to the Algorithm 2. So in case of running time Algorithm 2 performs better than

Algorithm 1.

In case of resulting data and running time the performance of the algorithms differ. The

reason is that, the Algorithm 1 rounds only one fractional variable value to 1, so picks only

one line in the solution in each iteration. But in case of the Algorithm 2, there are some

base cases which may return integral solution in a single call. Moreover there is a case

when Algorithm 2 rounds d fractional variable values to 1 when there exists a dual variable

with value ≤ 1
α

, so picks all the d lines passing through that point in the cover in a single

recursive call.

From the above discussion we can conclude that, our Algorithm 1 shows better performance

in terms of the value of the integral solution but shows worse performance in the case of
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the running time as compared to the Algorithm 2. But the drawback of our Algorithm 1

is that, we could not be able to find any approximation factor for the Algorithm 1 but the

Algorithm 2 offers an α−approximation factor where α = 1
4 +
√

1
4 +d(1− ε).

4.4 Significance of the Branch and Bound Approach

We are the first who have used the branch and bound technique to solve the problem

of covering points by axis parallel lines. We have obtained the optimal integral solution

of the above mentioned problem from our branch and bound algorithm. For some large

input instances, the GLPK IP solver cannot return any output. But our branch and bound

algorithm computes the optimal outputs for all those instances.

The only drawback of our algorithm is that the running time can be worse depending on

the size of the input instance. In order to reduce this problem a bit, we have applied three

strategies in case of picking the fractional variable which are the first one in the ordering,

the last one in the ordering and the largest one in the ordering. As all the above techniques

return the same result for the experimental data, based on the running time we can conclude

that, rounding the last fractional variable value to 1 in each recursive call takes the least time

to compute the solution. So for better performance we can use the technique of rounding

the last fractional variable while using the branch and bound algorithm.
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