40,792 research outputs found

    Support Vector Machine in Prediction of Building Energy Demand Using Pseudo Dynamic Approach

    Get PDF
    Building's energy consumption prediction is a major concern in the recent years and many efforts have been achieved in order to improve the energy management of buildings. In particular, the prediction of energy consumption in building is essential for the energy operator to build an optimal operating strategy, which could be integrated to building's energy management system (BEMS). This paper proposes a prediction model for building energy consumption using support vector machine (SVM). Data-driven model, for instance, SVM is very sensitive to the selection of training data. Thus the relevant days data selection method based on Dynamic Time Warping is used to train SVM model. In addition, to encompass thermal inertia of building, pseudo dynamic model is applied since it takes into account information of transition of energy consumption effects and occupancy profile. Relevant days data selection and whole training data model is applied to the case studies of Ecole des Mines de Nantes, France Office building. The results showed that support vector machine based on relevant data selection method is able to predict the energy consumption of building with a high accuracy in compare to whole data training. In addition, relevant data selection method is computationally cheaper (around 8 minute training time) in contrast to whole data training (around 31 hour for weekend and 116 hour for working days) and reveals realistic control implementation for online system as well.Comment: Proceedings of ECOS 2015-The 28th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems , Jun 2015, Pau, Franc

    Optimized complex power quality classifier using one vs. rest support vector machine

    Get PDF
    Nowadays, power quality issues are becoming a significant research topic because of the increasing inclusion of very sensitive devices and considerable renewable energy sources. In general, most of the previous power quality classification techniques focused on single power quality events and did not include an optimal feature selection process. This paper presents a classification system that employs Wavelet Transform and the RMS profile to extract the main features of the measured waveforms containing either single or complex disturbances. A data mining process is designed to select the optimal set of features that better describes each disturbance present in the waveform. Support Vector Machine binary classifiers organized in a ?One Vs Rest? architecture are individually optimized to classify single and complex disturbances. The parameters that rule the performance of each binary classifier are also individually adjusted using a grid search algorithm that helps them achieve optimal performance. This specialized process significantly improves the total classification accuracy. Several single and complex disturbances were simulated in order to train and test the algorithm. The results show that the classifier is capable of identifying >99% of single disturbances and >97% of complex disturbances.Fil: de Yong, David Marcelo. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Electricidad y Electrónica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Bhowmik, Sudipto. Nexant Inc; Estados UnidosFil: Magnago, Fernando. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Electricidad y Electrónica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentin
    corecore