148 research outputs found

    Scalable, Detailed and Mask-Free Universal Photometric Stereo

    Full text link
    In this paper, we introduce SDM-UniPS, a groundbreaking Scalable, Detailed, Mask-free, and Universal Photometric Stereo network. Our approach can recover astonishingly intricate surface normal maps, rivaling the quality of 3D scanners, even when images are captured under unknown, spatially-varying lighting conditions in uncontrolled environments. We have extended previous universal photometric stereo networks to extract spatial-light features, utilizing all available information in high-resolution input images and accounting for non-local interactions among surface points. Moreover, we present a new synthetic training dataset that encompasses a diverse range of shapes, materials, and illumination scenarios found in real-world scenes. Through extensive evaluation, we demonstrate that our method not only surpasses calibrated, lighting-specific techniques on public benchmarks, but also excels with a significantly smaller number of input images even without object masks.Comment: CVPR 2023 (Highlight). The source code will be available at https://github.com/satoshi-ikehata/SDM-UniPS-CVPR202

    Recovering refined surface normals for relighting clothing in dynamic scenes

    Get PDF
    In this paper we present a method to relight captured 3D video sequences of non-rigid, dynamic scenes, such as clothing of real actors, reconstructed from multiple view video. A view-dependent approach is introduced to refine an initial coarse surface reconstruction using shape-from-shading to estimate detailed surface normals. The prior surface approximation is used to constrain the simultaneous estimation of surface normals and scene illumination, under the assumption of Lambertian surface reflectance. This approach enables detailed surface normals of a moving non-rigid object to be estimated from a single image frame. Refined normal estimates from multiple views are integrated into a single surface normal map. This approach allows highly non-rigid surfaces, such as creases in clothing, to be relit whilst preserving the detailed dynamics observed in video

    A Novel Framework for Highlight Reflectance Transformation Imaging

    Get PDF
    We propose a novel pipeline and related software tools for processing the multi-light image collections (MLICs) acquired in different application contexts to obtain shape and appearance information of captured surfaces, as well as to derive compact relightable representations of them. Our pipeline extends the popular Highlight Reflectance Transformation Imaging (H-RTI) framework, which is widely used in the Cultural Heritage domain. We support, in particular, perspective camera modeling, per-pixel interpolated light direction estimation, as well as light normalization correcting vignetting and uneven non-directional illumination. Furthermore, we propose two novel easy-to-use software tools to simplify all processing steps. The tools, in addition to support easy processing and encoding of pixel data, implement a variety of visualizations, as well as multiple reflectance-model-fitting options. Experimental tests on synthetic and real-world MLICs demonstrate the usefulness of the novel algorithmic framework and the potential benefits of the proposed tools for end-user applications.Terms: "European Union (EU)" & "Horizon 2020" / Action: H2020-EU.3.6.3. - Reflective societies - cultural heritage and European identity / Acronym: Scan4Reco / Grant number: 665091DSURF project (PRIN 2015) funded by the Italian Ministry of University and ResearchSardinian Regional Authorities under projects VIGEC and Vis&VideoLa

    MODELING OF LIGHT ILLUMINATION FIELD ON MICRO-EXPRESSION FOR FACE RECOGNITION APPLICATION

    Get PDF
    the feature points and thereby degrades the recognition rate. Though past techniques in the same area often requires manual setting of thresholding parameters but in this study the presented technique solves the problem of variation in light illumination by modeling the light field on facial micro expression for improving performance of the face recognition. The performance of the method is compared with the other techniques based on two benchmark datasets namely: CMU PIE & Multi-PIE.  Â

    Surface analysis and visualization from multi-light image collections

    Get PDF
    Multi-Light Image Collections (MLICs) are stacks of photos of a scene acquired with a fixed viewpoint and a varying surface illumination that provides large amounts of visual and geometric information. Over the last decades, a wide variety of methods have been devised to extract information from MLICs and have shown its use in different application domains to support daily activities. In this thesis, we present methods that leverage a MLICs for surface analysis and visualization. First, we provide background information: acquisition setup, light calibration and application areas where MLICs have been successfully used for the research of daily analysis work. Following, we discuss the use of MLIC for surface visualization and analysis and available tools used to support the analysis. Here, we discuss methods that strive to support the direct exploration of the captured MLIC, methods that generate relightable models from MLIC, non-photorealistic visualization methods that rely on MLIC, methods that estimate normal map from MLIC and we point out visualization tools used to do MLIC analysis. In chapter 3 we propose novel benchmark datasets (RealRTI, SynthRTI and SynthPS) that can be used to evaluate algorithms that rely on MLIC and discusses available benchmark for validation of photometric algorithms that can be also used to validate other MLIC-based algorithms. In chapter 4, we evaluate the performance of different photometric stereo algorithms using SynthPS for cultural heritage applications. RealRTI and SynthRTI have been used to evaluate the performance of (Neural)RTI method. Then, in chapter 5, we present a neural network-based RTI method, aka NeuralRTI, a framework for pixel-based encoding and relighting of RTI data. In this method using a simple autoencoder architecture, we show that it is possible to obtain a highly compressed representation that better preserves the original information and provides increased quality of virtual images relighted from novel directions, particularly in the case of challenging glossy materials. Finally, in chapter 6, we present a method for the detection of crack on the surface of paintings from multi-light image acquisitions and that can be used as well on single images and conclude our presentation
    • …
    corecore