2 research outputs found

    A Practical Approach to Reduce the Learning Bias Under Covariate Shift

    No full text
    International audienceCovariate shift is a specific class of selection bias that arises when the marginal distributions of the input features X are different in the source and the target domains while the conditional distributions of the target Y given X are the same. A common technique to deal with this problem, called importance weighting, amounts to reweighting the training instances in order to make them resemble the test distribution. However this usually comes at the expense of a reduction of the effective sample size. In this paper, we show analytically that, while the unweighted model is globally more biased than the weighted one, it may locally be less biased on low importance instances. In view of this result, we then discuss a manner to optimally combine the weighted and the unweighted models in order to improve the predictive performance in the target domain. We conduct a series of experiments on synthetic and real-world data to demonstrate the efficiency of this approach

    Evaluating Classifiers During Dataset Shift

    Get PDF
    Deployment of a classifier into a machine learning application likely begins with training different types of algorithms on a subset of the available historical data and then evaluating them on datasets that are drawn from identical distributions. The goal of this evaluation process is to select the classifier that is believed to be most robust in maintaining good future performance, and then deploy that classifier to end-users who use it to make predictions on new data. Often times, predictive models are deployed in conditions that differ from those used in training, meaning that dataset shift occurred. In these situations, there are no guarantees that predictions made by the predictive model in deployment will still be as reliable and accurate as they were during the training of the model. This study demonstrated a technique that can be utilized by others when selecting a classifier for deployment, as well as the first comparative study that evaluates machine learning classifier performance on synthetic datasets with different levels of prior-probability, covariate, and concept dataset shifts. The results from this study showed the impact of dataset shift on the performance of different classifiers for two real-world datasets related to teacher retention in Wisconsin and detecting fraud in testing, as well as demonstrated a framework that can be used by others when selecting a classifier for deployment. By using the methods from this study as a proactive approach to evaluate classifiers on synthetic dataset shift, different classifiers would have been considered for deployment of both predictive models, compared to only using evaluation datasets that were drawn from identical distributions. The results from both real-world datasets also showed that there was no classifier that dealt well with prior-probability shift and that classifiers were affected less by covariate and concept shift than was expected. Two supplemental demonstrations of the methodology showed that it can be extended for additional purposes of evaluating classifiers on dataset shift. Results from analyzing the effects of hyperparameter choices on classifier performance under dataset shift, as well as the effects of actual dataset shift on classifier performance, showed that different hyperparameter configurations have an impact on the performance of a classifier in general, but can also have an impact on how robust that classifier might be to dataset shift
    corecore