59,413 research outputs found

    Declassification of Faceted Values in JavaScript

    Get PDF
    This research addresses the issues with protecting sensitive information at the language level using information flow control mechanisms (IFC). Most of the IFC mechanisms face the challenge of releasing sensitive information in a restricted or limited manner. This research uses faceted values, an IFC mechanism that has shown promising flexibility for downgrading the confidential information in a secure manner, also called declassification. In this project, we introduce the concept of first-class labels to simplify the declassification of faceted values. To validate the utility of our approach we show how the combination of faceted values and first-class labels can build various declassification mechanisms

    Policy-agnostic programming on the client-side

    Get PDF
    Browser security has become a major concern especially due to web pages becoming more complex. These web applications handle a lot of information, including sensitive data that may be vulnerable to attacks like data exfiltration, cross-site scripting (XSS), etc. Most modern browsers have security mechanisms in place to prevent such attacks but they still fall short in preventing more advanced attacks like evolved variants of data exfiltration. Moreover, there is no standard that is followed to implement security into the browser. A lot of research has been done in the field of information flow security that could prove to be helpful in solving the problem of securing the client-side. Policy- agnostic programming is a programming paradigm that aims to make implementation of information flow security in real world systems more flexible. In this paper, we explore the use of policy-agnostic programming on the client-side and how it will help prevent common client-side attacks. We verify our results through a client-side salary management application. We show a possible attack and how our solution would prevent such an attack

    Towards Practical Graph-Based Verification for an Object-Oriented Concurrency Model

    Get PDF
    To harness the power of multi-core and distributed platforms, and to make the development of concurrent software more accessible to software engineers, different object-oriented concurrency models such as SCOOP have been proposed. Despite the practical importance of analysing SCOOP programs, there are currently no general verification approaches that operate directly on program code without additional annotations. One reason for this is the multitude of partially conflicting semantic formalisations for SCOOP (either in theory or by-implementation). Here, we propose a simple graph transformation system (GTS) based run-time semantics for SCOOP that grasps the most common features of all known semantics of the language. This run-time model is implemented in the state-of-the-art GTS tool GROOVE, which allows us to simulate, analyse, and verify a subset of SCOOP programs with respect to deadlocks and other behavioural properties. Besides proposing the first approach to verify SCOOP programs by automatic translation to GTS, we also highlight our experiences of applying GTS (and especially GROOVE) for specifying semantics in the form of a run-time model, which should be transferable to GTS models for other concurrent languages and libraries.Comment: In Proceedings GaM 2015, arXiv:1504.0244
    • …
    corecore