395 research outputs found

    Weakly symmetric stress equilibration and a posteriori error estimation for linear elasticity

    Get PDF
    A stress equilibration procedure for linear elasticity is proposed and analyzed in this paper with emphasis on the behavior for (nearly) incompressible materials. Based on the displacement-pressure approximation computed with a stable finite element pair, it constructs an H(div)H (\text{div})-conforming, weakly symmetric stress reconstruction. Our focus is on the Taylor-Hood combination of continuous finite element spaces of polynomial degrees k+1k+1 and kk for the displacement and the pressure, respectively. Our construction leads then to reconstructed stresses by Raviart-Thomas elements of degree kk which are weakly symmetric in the sense that its anti-symmetric part is zero tested against continuous piecewise polynomial functions of degree kk. The computation is performed locally on a set of vertex patches covering the computational domain in the spirit of equilibration \cite{BraSch:08}. Due to the weak symmetry constraint, the local problems need to satisfy consistency conditions associated with all rigid body modes, in contrast to the case of Poisson's equation where only the constant modes are involved. The resulting error estimator is shown to constitute a guaranteed upper bound for the error with a constant that depends only on the shape regularity of the triangulation. Local efficiency, uniformly in the incompressible limit, is deduced from the upper bound by the residual error estimator

    Convergence and Optimality of Adaptive Mixed Finite Element Methods

    Full text link
    The convergence and optimality of adaptive mixed finite element methods for the Poisson equation are established in this paper. The main difficulty for mixed finite element methods is the lack of minimization principle and thus the failure of orthogonality. A quasi-orthogonality property is proved using the fact that the error is orthogonal to the divergence free subspace, while the part of the error that is not divergence free can be bounded by the data oscillation using a discrete stability result. This discrete stability result is also used to get a localized discrete upper bound which is crucial for the proof of the optimality of the adaptive approximation

    Convergence of an adaptive mixed finite element method for general second order linear elliptic problems

    Full text link
    The convergence of an adaptive mixed finite element method for general second order linear elliptic problems defined on simply connected bounded polygonal domains is analyzed in this paper. The main difficulties in the analysis are posed by the non-symmetric and indefinite form of the problem along with the lack of the orthogonality property in mixed finite element methods. The important tools in the analysis are a posteriori error estimators, quasi-orthogonality property and quasi-discrete reliability established using representation formula for the lowest-order Raviart-Thomas solution in terms of the Crouzeix-Raviart solution of the problem. An adaptive marking in each step for the local refinement is based on the edge residual and volume residual terms of the a posteriori estimator. Numerical experiments confirm the theoretical analysis.Comment: 24 pages, 8 figure

    Refined a posteriori error estimation for classical and pressure-robust Stokes finite element methods

    Get PDF
    Recent works showed that pressure-robust modifications of mixed finite element methods for the Stokes equations outperform their standard versions in many cases. This is achieved by divergence-free reconstruction operators and results in pressure independent velocity error estimates which are robust with respect to small viscosities. In this paper we develop a posteriori error control which reflects this robustness. The main difficulty lies in the volume contribution of the standard residual-based approach that includes the L2L^2-norm of the right-hand side. However, the velocity is only steered by the divergence-free part of this source term. An efficient error estimator must approximate this divergence-free part in a proper manner, otherwise it can be dominated by the pressure error. To overcome this difficulty a novel approach is suggested that uses arguments from the stream function and vorticity formulation of the Navier--Stokes equations. The novel error estimators only take the curl\mathrm{curl} of the right-hand side into account and so lead to provably reliable, efficient and pressure-independent upper bounds in case of a pressure-robust method in particular in pressure-dominant situations. This is also confirmed by some numerical examples with the novel pressure-robust modifications of the Taylor--Hood and mini finite element methods

    Recovery-Based Error Estimators for Diffusion Problems: Explicit Formulas

    Full text link
    We introduced and analyzed robust recovery-based a posteriori error estimators for various lower order finite element approximations to interface problems in [9, 10], where the recoveries of the flux and/or gradient are implicit (i.e., requiring solutions of global problems with mass matrices). In this paper, we develop fully explicit recovery-based error estimators for lower order conforming, mixed, and non- conforming finite element approximations to diffusion problems with full coefficient tensor. When the diffusion coefficient is piecewise constant scalar and its distribution is local quasi-monotone, it is shown theoretically that the estimators developed in this paper are robust with respect to the size of jumps. Numerical experiments are also performed to support the theoretical results

    Convergence of adaptive mixed finite element method for convection-diffusion-reaction equations

    Full text link
    We prove the convergence of an adaptive mixed finite element method (AMFEM) for (nonsymmetric) convection-diffusion-reaction equations. The convergence result holds from the cases where convection or reaction is not present to convection-or reaction-dominated problems. A novel technique of analysis is developed without any quasi orthogonality for stress and displacement variables, and without marking the oscillation dependent on discrete solutions and data. We show that AMFEM is a contraction of the error of the stress and displacement variables plus some quantity. Numerical experiments confirm the theoretical results.Comment: arXiv admin note: text overlap with arXiv:1312.645
    corecore