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WEAKLY SYMMETRIC STRESS EQUILIBRATION AND A

POSTERIORI ERROR ESTIMATION FOR LINEAR ELASTICITY

FLEURIANNE BERTRAND∗, BERNHARD KOBER † , MARCEL MOLDENHAUER†, AND

GERHARD STARKE†

Abstract. A stress equilibration procedure for linear elasticity is proposed and analyzed in
this paper with emphasis on the behavior for (nearly) incompressible materials. Based on the
displacement-pressure approximation computed with a stable finite element pair, it constructs an
H(div)-conforming, weakly symmetric stress reconstruction. Our focus is on the Taylor-Hood com-
bination of continuous finite element spaces of polynomial degrees k + 1 and k for the displacement
and the pressure, respectively. Our construction leads to a reconstructed stress tensor by Raviart-
Thomas elements of degree k which are weakly symmetric in the sense that its anti-symmetric part
is zero tested against continuous piecewise polynomial functions of degree k. The computation is
performed locally on a set of vertex patches covering the computational domain in the spirit of equi-
libration. This weak symmetry allows us to prove that the resulting error estimator constitutes a
guaranteed upper bound for the error with a constant that depends only on local constants associated
with the patches and thus on the shape regularity of the triangulation. It does not involve global
constants like those from Korn’s in equality which may become very large depending on the location
and type of the boundary conditions. Local efficiency, also uniformly in the incompressible limit, is
deduced from the upper bound by the residual error estimator. Numerical results for the popular
Cook’s membrane test problem confirm the theoretical predictions.

Key words. a posteriori error estimation, incompressible linear elasticity, Taylor-Hood elements,
weakly symmetric stress equilibration, Raviart-Thomas elements
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1. Introduction. This paper is concerned with a stress equilibration procedure
for the displacement-pressure formulation of linear elasticity. Our emphasis is on the
behavior for (nearly) incompressible materials and we concentrate ourselves on the
Taylor-Hood combination of continuous finite element spaces of polynomial degrees k+
1 and k (k ≥ 1) for the displacement and the pressure, respectively. This finite element
pair has the advantage that it is conforming for the displacement approximation which
simplifies the derivation of an a posteriori error estimator based on the equilibrated
stress. Another property which will prove to be useful in this context is the fact that
the stress, computed directy from the displacement-pressure approximation, already
possesses the convergence order k with respect to the L2-norm.

In contrast to the case of Poisson’s equation, where equilibrated fluxes are used,
the linear elasticity system involves the symmetric part of the displacement gradi-
ent for the definition of the associated stress. This requires the control of the anti-
symmetric part of the equilibrated stress for the use in an associated a posteriori error
estimator. One could perform the stress reconstruction in one of the available sym-
metric H(div)-conforming stress spaces like those introduced by Arnold and Winther
[4] or other ones included in the comparison [11] (see [17] or [1] for such approaches).
But this complicates the stress reconstruction procedure significantly compared to the
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Raviart-Thomas elements (of degree k) used here. This is particularly true in three
dimensions where the lowest-order member of the symmetric H(div)-conforming fi-
nite element space constructed in [3] already involves polynomials of degree 4 and
possesses 162 degrees of freedom per tetrahedron. Equilibrated stress reconstructions
with weak symmetry are also considered in [15], [2], [19]. These approaches utilize spe-
cial stress finite element spaces and are therefore less general than the one presented
in this work.

The construction of equilibrated fluxes in broken Raviart-Thomas spaces is de-
scribed in detail in [8] and [9]. More generally, a posteriori error estimation based
on stress reconstruction has a long history with ideas dating back at least as far as
[16] and [18]. Recently, a unified framework for a posteriori error estimation based
on stress reconstruction for the Stokes system was carried out in [13] (see also [12]
for polynomial-degree robust estimates). These two references include the treatment
of nonconforming methods and both of them contain a historical perspective with a
long list of relevant references. Our weakly symmetric stress equilibration procedure
is generalized to nonlinear elasticity associated with a hyperelastic material model in
[?].

The outline of this paper is as follows. The next section starts by reviewing the
displacement-pressure formulation for linear elasticity and its approximation using the
Taylor-Hood finite element pair. It then derives the conditions for a weakly symmetric
stress equilibration. The localization of the stress equilibration procedure is presented
in Section 3. Section 4 is concerned with the well-posedness of the local problems
arising in the stress equilibration procedure. In Section 5, local upper estimates for
the anti-symmetric and volumetric stress components are provided which are crucial
for the control of the constants associated with the reliability of the a posteriori
error estimates. Based on this, our a posteriori error estimator is derived first for
the incompressible limit case in Section 6. The effect of the data approximation is
studied in detail in Section 7. Section 8 is then concerned with the a posteriori error
estimator for the general case. In Section 9, an upper bound by an appropriate residual
error estimator is established which leads to a local efficiency result for our weakly
symmetric stress equilibration error estimator. Finally, Section 10 shows numerical
results for the popular Cook’s membrane test problem which confirm the theoretical
predictions.

2. Displacement-pressure formulation for incompressible linear elas-

ticity and weakly symmetric stress reconstruction. On a bounded domain
Ω ⊂ R

d, d = 2 or 3, assumed to be polygonally bounded such that the union of
elements in the triangulation Th coincides with Ω, the boundary is split into ΓD (of
positive surface measure) and ΓN = ∂Ω\ΓD. We also assume that the families of
triangulations {Th} are shape-regular and denote the diameter of an element T ∈ Th
by hT . The boundary value problem of (possibly) incompressible linear elasticity
consists in the saddle-point problem of finding u ∈ H1

ΓD
(Ω)d and p ∈ L2(Ω) such that

2µ(ε(u), ε(v))L2(Ω) + (p, div v)L2(Ω) = (f ,v)L2(Ω) + 〈g,v〉L2(ΓN ) ,

(div u, q)L2(Ω) −
1

λ
(p, q)L2(Ω) = 0

(1)

holds for all v ∈ H1
ΓD

(Ω)d and q ∈ L2(Ω). Here, f ∈ L2(Ω)d and g ∈ L2(ΓN )d are
prescribed volume and surface traction forces, respectively. For the Lamé parameters,
µ is assumed to be on the order of one while λ may become arbitrarily large modelling
nearly incompressible material behavior. From now on, we will abbreviate the inner



WEAKLY SYMMETRIC STRESS EQUILIBRATION 3

product in L2(ω) for some subset ω ⊆ Ω by ( · , · )ω (and simply write ( · , · ) in
the case of the entire domain ω = Ω). For the L2(Γ) inner product on a part of the
boundary γ ⊆ ∂Ω we use the short-hand notation 〈 · , · 〉γ . With respect to a suitable
pair of finite element spaces Vh × Qh representing H1

ΓD
(Ω)d × L2(Ω), the resulting

finite-dimensional saddle-point problem consists in finding uh ∈ Vh and ph ∈ Qh such
that

2µ(ε(uh), ε(vh)) + (ph, div vh) = (f ,vh) + 〈g,vh〉ΓN ,

(div uh, qh)−
1

λ
(ph, qh) = 0

(2)

holds for all vh ∈ Vh and qh ∈ Qh. One possibility for the choice of the finite element
spaces is, for k ≥ 1, the Taylor-Hood pair consisting of continuous piecewise polyno-
mials of degree k + 1 for each component of Vh combined with continuous piecewise
polynomials of degree k for Qh. Our focus in this work is on that finite element
combination but much of the derivation is also valid for more general approaches.

The approximation

(3) σh(uh, ph) = 2µε(uh) + phI

which is obtained from the solution (uh, ph) ∈ Vh ×Qh of the discrete saddle point
problem (2) is, in general, discontinuous and piecewise polynomial of degree k. From
σh(uh, ph), we reconstruct an H(div)-conforming stress tensor σR

h in the Raviart-

Thomas space (componentwise) ΣR
h of order k, usually denoted by RT d

k (see, e.g., [6,
Sect. 2.3.1]). For the detailed definition of our stress reconstruction algorithm, we
will also need the broken Raviart-Thomas space

(4) Σ∆
h = {τh ∈ L2(Ω) : τh|T ∈ RTk(T )

d} .
By Sh we denote the set of all sides (edges in 2D and faces in 3D) of the triangulation
Th. For each σ∆

h ∈ Σ∆
h and each interior side S ∈ Sh, we define the jump

(5) Jσ∆
h · nKS = σ∆

h · n
∣∣
T−

− σ∆
h · n

∣∣
T+

,

where n is the normal direction associated with S (depending on its orientation) and
T+ and T− are the elements adjacent to S (such that n points into T+). For sides
S ⊂ ΓN located on the Neumann boundary, the jump in (5) is to be interpreted as

Jσ∆
h · nKS = σ∆

h · n
∣∣
T−

,

assuming that n points outside of Ω. Moreover, a second type of jump is needed
which we define as

(6) Jσ∆
h · nK∗S =

{
σ∆

h · n
∣∣
T−

− g , if S ⊂ ΓN ,

Jσ∆
h · nKS , if S * ΓN .

The introduction of the auxiliary type of jump in (6) allows us later to use the same
formulas also for patches adjacent to the Neumann boundary ΓN .

We further define Zh as the space of discontinuous d-dimensional vector functions
which are piecewise polynomial of degree k. Similarly, Xh stands for the continuous
d(d − 1)/2-dimensional vector functions which are piecewise polynomial of degree k.
For every d(d− 1)/2-dimensional vector θ we define Jd(θ) by

(7) J2(θ) :=

(
0 θ
−θ 0

)
, J3(θ) :=




0 θ3 −θ2
−θ3 0 θ1
θ2 −θ1 0



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(cf. [6, Sect. 9.3]). Finally, the broken inner product

(8) ( · , · )h :=
∑

T∈Th

( · , · )T ,

will be used, where ( · , · )T is the L2(T ) inner product.
We follow the general idea of equilibration (cf. [7, Sect. III.9], [9]) and extend it

to the case of weakly symmetric stresses. The construction is done for the difference
σ∆

h := σR
h − σh(uh, ph) between the reconstructed and the original stress, which is

an element of Σ∆
h . In order to correspond to an admissible stress reconstruction σR

h ,
the following conditions need to be satisfied for σ∆

h :

(div σ∆
h , zh)h = −(f + div σh(uh, ph), zh)h for all zh ∈ Zh ,

〈Jσ∆
h · nKS , ζ〉S = −〈Jσh(uh, ph) · nK∗S , ζ〉S for all ζ ∈ Pk(S)

d , S ∈ S∗
h ,

(σ∆
h ,J

d(γh)) = 0 for all γh ∈ Xh

(9)

where S∗
h := {S ∈ Sh : S * ΓD}. Due to our specific choice of Zh, the first equation

in (9) implies that, on each T ∈ Th, div σ∆
h = −Pk

hf − div σh(uh, ph) holds, where
Pk
h denotes the element-wise L2 projection onto the space of polynomials of degree

k. Moreover, on sides located on the Neumann boundary ΓN , (5) and (6) lead to
σ∆

h · n = Pk
h,Γg−σh(uh, ph) · n, where Pk

h,Γ denotes the side-wise L2 projection onto
the polynomials of degree k.

3. Local stress equilibration procedure. For the purpose of localizing the
reconstruction and deriving local efficiency bounds we make use of a partition of unity.
The commonly used partition of unity with respect to the set Vh of all vertices of Th,

(10) 1 ≡
∑

z∈Vh

φz on Ω ,

consists of continuous piecewise linear functions φz. In this case, the support of φz is
restricted to

(11) ωz :=
⋃

{T ∈ Th : z is a vertex of T } .

For reasons which will be explained further below in this section, the classical partition
of unity has to be modified in order to exclude patches formed by vertices z ∈ ΓN .
To this end, let V∗

h = {z ∈ Vh : z /∈ ΓN} denote the subset of vertices which are not
located on a side (edge/face) of ΓN . The modified partition of unity is defined by

(12) 1 ≡
∑

z∈V∗

h

φ∗
z on Ω .

For z ∈ V∗
h not connected by an edge to ΓN the function φ∗

z is equal to φz. Otherwise,
the function φ∗

z has to be modified in order to account for unity at the connected
vertices on ΓN . For each zN ∈ ΓN one vertex zI /∈ ΓN connected by an edge with zN
is chosen and φzI is extended by the value 1 along the edge from zI to zN to obtain
the modified function φ∗

zI . The support of φ∗
z is denoted by

(13) ω∗
z :=

⋃
{T ∈ Th : φ∗

z = 1 for at least one vertex ẑ of T } .
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For the partition of unity (12) to hold, we require the triangulation Th to be such
that each vertex on ΓN is connected to an interior edge. For the localization of the
reconstruction algorithm, we will also need the local subspaces

Σ∆
h,z = {τh ∈ Σ∆

h : τ h · n = 0 on ∂ω∗
z\∂Ω , τh ≡ 0 on Ω\ω∗

z} ,
Zh,z = {zh|ω∗

z
: zh ∈ Zh} ,

Xh,z = {γh|ω∗

z
: γh ∈ Xh} ,

(14)

as well as the local sets of sides S∗
h,z := {S ∈ S∗

h : S ⊂ ω∗
z}.

The conditions in (9) can be satisfied by a sum of patch-wise contributions

(15) σ∆
h =

∑

z∈V∗

h

σ∆
h,z ,

where, for each z ∈ V∗
h, σ

∆
h,z ∈ Σ∆

h,z is computed such that ‖σ∆
h,z‖2ω∗

z
is minimized

subject to the following constraints:

(div σ∆
h,z, zh,z)ω∗

z ,h = −((f + div σh(uh, ph))φ
∗
z , zh,z)ω∗

z ,h for all zh,z ∈ Zh,z ,

〈Jσ∆
h,z · nKS , ζ〉S =− 〈Jσh(uh, ph) · nK∗S φ∗

z, ζ〉S for all ζ ∈ Pk(S)
d , S ∈ S∗

h,z ,

(σ∆
h,z,J

d(γh,z))ω∗

z
= 0 for all γh,z ∈ Xh,z .

(16)

For each z ∈ V∗
h, this is a linearly-constrained quadratic minimization problem of low

dimension. In a similar way as in [10], it can be solved in the following two substeps
using the subspace

(17) Σ
∆,div
h,z := {τh ∈ Σ∆

h,z : Jτ h · nKS = 0 for all S ∈ S∗
h,z , div τh = 0} :

Step 1: Compute an arbitrary σ
∆,1
h,z ∈ Σ∆

h,z satisfying the first two equalities in (16).

Step 2: Compute σ
∆,2
h,z ∈ Σ

∆,div
h,z such that ‖σ∆,1

h,z + σ
∆,2
h,z ‖2ω∗

z
is minimized and

(18) (σ∆,2
h ,Jd(γh))ω∗

z
= −(σ∆,1

h ,Jd(γh))ω∗

z
for all γh ∈ Xh,z

is satisfied. Finally, set σ∆
h,z = σ

∆,1
h,z + σ

∆,2
h,z .

For the computation of σ∆,1
h,z in Step 1, the explicit formulas from [10] can be

used. The remaining minimization problem in Step 2 is of much smaller size than for
the original problem (16).

We remark that the modification of the partition of unity (12) is only necessary
in the two-dimensional case and even then it can be avoided if the triangulation is
such that each vertex zN ∈ ΓN is connected to at least two edges which are not part
of ΓN . However, using the standard partition of unity without this mesh property
will (in 2D) lead to patches ωz around vertices on ΓN consisting of only two triangles.
For those patches the local space Σ∆

h,z does not exhibit enough degrees of freedom to
satisfy all equations in (16) unless ∂ωz ∩ ΓD 6= ∅. In the three-dimensional case it is
sufficient for each vertex zN ∈ ΓN to be connected to one interior edge.

4. Well-posedness of the local problems on vertex patches. The local
minimization problem subject to the constraints (16) can be guaranteed to possess a
unique solution if, for every right hand side, a function σ∆

h,z ∈ Σ∆
h,z exists such that

the constraints (16) are satisfied. To this end, the range of the linear operator on the
left-hand side of (16) is of interest.
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Proposition 1. The subspace

R⊥
h,z :={(zh,z,γh,z) ∈ Zh,z ×Xh,z : ∃ζS ∈ Pk(S)

d , S ∈ S∗
h,z such that

(div σ∆
h,z, zh,z)ω∗

z ,h −
∑

S∈S∗

z,h

〈Jσ∆
h,z · nKS , ζS〉S + (σ∆

h,z,J
d(γh,z))ω∗

z
= 0

holds for all σ∆
h,z ∈ Σ∆

h,z} ,

(19)

i.e., the null space of the adjoint operator associated with the constraints (16), can be
characterized as follows:

R⊥
h,z = {(0,0)} if ∂ω∗

z ∩ ΓD 6= ∅ ,
R⊥

h,z = {(ρ, θ) ∈ RM×Rd(d−1)/2 : Jd(θ) = as∇ρ} if ∂ω∗
z ∩ ΓD = ∅ ,

(20)

where RM = {ρ : ω∗
z → R

d : ε(ρ) = 0} denotes the space of rigid body modes and
as τ = (τ − τT )/2 stands for the anti-symmetric part of a function τ : Ω → R

d×d.

Proof. If we restrict ourselves to σ∆
h,z ∈ Σ∆

h,z with Jσ∆
h,z · nKS = 0 for all S ∈

ω∗
z , then we end up with the H(div)-conforming Raviart-Thomas space RT d

k . The
condition in (19) for the definition of R⊥

h,z simplifies to

(21) (div σ∆
h,z, zh,z)ω∗

z ,h + (σ∆
h,z,J

d(γh,z))ω∗

z
= 0 .

The inf-sup stability of the finite element combination RT d
k (for the stress) with

Zh,z × Xh,z (for the displacement and rotation), shown in [5], implies that R⊥
h,z is

contained in the null space of the continuous problem given by (20).
On the other hand, R⊥

h,z does indeed contain all the functions given in (20) since,

setting (zh,z,γh,z) = (ρ, θ) with Jd(θ) = as ∇ρ and ζS = ρ|S , we have, for all

σ∆
h,z ∈ Σ∆

h,z, that

(div σ∆
h,z, zh,z)ω∗

z ,h −
∑

S∈S∗

h,z

〈Jσ∆
h,z · nKS , ζS〉S + (σ∆

h,z,J
d(γh,z))ω∗

z

= (div σ∆
h,z,ρ)ω∗

z ,h −
∑

S∈S∗

h,z

〈Jσ∆
h,z · nKS ,ρ〉S + (σ∆

h,z,J
d(θ))ω∗

z

= −(σ∆
h,z,∇ρ)ω∗

z
+ (σ∆

h,z, as∇ρ)ω∗

z
= −(σ∆

h,z, ε(ρ))ω∗

z
= 0

(22)

holds (note that ε(ρ) = 0 for ρ ∈ RM).

Proposition 1 will now be used in order to show that it is possible to satisfy the
constraints in (16). For vertices z ∈ V∗

h with ∂ω∗
z ∩ ΓD 6= ∅, there is no restriction on

the right-hand side in (16) and there will always be a unique solution. However, if
∂ω′

z ∩ ΓD = ∅, the range of the left-hand side operator does not cover the full space
and therefore a compatibility condition needs to be fulfilled by the the right-hand side
in (16). More precisely, the right-hand side has to be perpendicular to R⊥

h,z which, in
view of Proposition 1, means that

(23) ((f + div σh(uh, ph))φ
∗
z ,ρ)ω∗

z ,h =
∑

S∈S∗

h,z

〈Jσh(uh, ph) · nK∗S φ∗
z ,ρ〉S
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has to hold for all (ρ, θ) ∈ RM×Rd(d−1)/2 with Jd(θ) = as∇ρ. That this is indeed
true can be seen as follows: The first term in (23) can be rewritten as

((f + div σh(uh, ph))φ
∗
z ,ρ)ω∗

z ,h
= (f + div σh(uh, ph), φ

∗
zρ)ω∗

z ,h

= (f , φ∗
zρ)ω∗

z
+

∑

S∈S∗

h,z

〈Jσh(uh, ph) · nKS , φ
∗
zρ〉S − (σh(uh, ph),∇(φ∗

zρ))ω∗

z
(24)

by partial integration. Using the fact that J · KS and J · K∗S differ only on sides S ⊂ ΓN

and recalling that σh(uh, ph) is symmetric, we end up with

((f + div σh(uh, ph))φ
∗
z ,ρ)ω∗

z ,h = (f , φ∗
zρ)ω∗

z
+ 〈g, φ∗

zρ〉ΓN

+
∑

S∈S∗

h,z

〈Jσh(uh, ph) · nK∗S , φ
∗
zρ〉S − (σh(uh, ph), ε(φ

∗
zρ))ω∗

z
.(25)

Using the fact that φ∗
zρ ∈ Vh, the first equation in (2) leads to (23).

5. Vertex-patch estimates for the anti-symmetric and volumetric stress

errors. This section provides upper bounds for two terms that will arise later in the
derivation of the error estimators. These terms involve the anti-symmetric and devia-
toric stress parts and are crucial for the treatment of linear elasticity with guaranteed
upper bound which are only dependent on the shape of the triangulation and not on
the considered problem, i.e., the location and type of the boundary conditions. For
τ : Ω → R

d×d, let us denote by dev τ = τ − (tr τ )I/d the deviatoric, i.e. trace-free,
part.

Lemma 2. Let (uh, ph) ∈ Vh × Qh be the solution of (2) and let σR
h ∈ ΣR

h be a
stress reconstruction satisfying the weak symmetry condition (σR

h ,J
d(γh)) = 0 for all

γh ∈ Xh. Then,

(26)
∣∣(as σR

h ,∇(u− uh))
∣∣ ≤ CK‖as σR

h ‖ ‖ε(u− uh)‖

holds with a constant CK which depends only on (the largest interior angle in) the
triangulation Th.

Moreover, if Qh is such that it contains the space of piecewise linear continuous
functions, then

(27)

∣∣∣∣(tr(σ − σR
h ), div uh − 1

λ
ph)

∣∣∣∣ ≤ CA‖dev(σ − σR
h )‖ ‖div uh − 1

λ
ph‖ ,

where, again, CA depends only on (the largest interior angle in) the triangulation Th.

Proof. For both inequalities (26) and (27), the (standard) partition of unity

(28) 1 ≡
∑

z∈Vh

φz on Ω

with respect to the set of all vertices in the triangulation Vh is used. For proving (26),
the weak symmetry property of the stress reconstruction σR

h implies

(29) (as σR
h ,∇(u− uh)) = (as σR

h ,∇(u− uh)− Jd(αh)) for all αh =
∑

z∈Vh

αzφz



8 F. BERTRAND, B. KOBER, M. MOLDENHAUER, AND G. STARKE

with αz ∈ Rd(d−1)/2. Using (28) we are led to

|(as σR
h ,∇(u− uh))| = |(as σR

h ,
∑

z∈Vh

(
∇(u− uh)− Jd(αz)

)
φz)|

=

∣∣∣∣∣
∑

z∈Vh

(as σR
h ,
(
∇(u− uh)− Jd(αz)

)
φz)ωz

∣∣∣∣∣

=

∣∣∣∣∣
∑

z∈Vh

((as σR
h )φz ,∇(u− uh)− Jd(αz))ωz

∣∣∣∣∣

≤
∑

z∈Vh

‖(as σR
h )φz‖ωz‖∇(u− uh)− Jd(αz)‖ωz

≤
∑

z∈Vh

‖as σR
h ‖ωz‖∇(u− uh)− Jd(αz)‖ωz .

(30)

For all rigid body modes ρ ∈ RM, ∇ρ = Jd(αz) holds with some αz ∈ Rd(d−1)/2

and therefore

(31) inf
αz

‖∇(u−uh)−Jd(αz)‖ωz ≤ inf
ρ∈RM

‖∇(u−uh−ρ)‖ωz ≤ CK,z‖ε(u−uh)‖ωz

due to Korn’s inequality (cf. [14]). The constant CK,z obviously only depends on the
geometry of the vertex patch ωz or, more precisely, on its largest interior angle. If we
define CK = (d+ 1)max{CK,z : z ∈ Vh}, we finally obtain from (30) that

|(as σR
h ,∇(u− uh))| ≤

CK

d+ 1

∑

z∈Vh

‖as σR
h ‖ωz‖ε(u− uh)‖ωz

≤ CK

(
1

d+ 1

∑

z∈Vh

‖as σR
h ‖2ωz

)1/2(
1

d+ 1

∑

z∈Vh

‖ε(u− uh)‖2ωz

)1/2

= CK‖as σR
h ‖ ‖ε(u− uh)‖

(32)

holds, where we used the fact that each element (triangle or tetrahedron) is contained
in exactly d+ 1 vertex patches.

For proving (27), we observe that the second equation in (2) together with our
assumption on Qh implies

(tr(σ − σR
h ), div uh − 1

λ
ph) = (tr(σ − σR

h )− βh, div uh − 1

λ
ph)

for all βh =
∑

z∈Vh

βzφz , βz ∈ R .
(33)

Again using the partition of unity (28), we obtain

(tr(σ − σR
h ), div uh − 1

λ
ph) =

∑

z∈Vh

((tr(σ − σR
h )− βz)φz , div uh − 1

λ
ph)ωz

=
∑

z∈Vh

(tr(σ − σR
h )− βz, (div uh − 1

λ
ph)φz)ωz .

(34)

We choose βz in such a way that (tr(σ − σR
h ) − βz , 1)ωz = 0 and use the “dev-div

lemma” (cf. [6, Prop. 9.1.1])

(35) ‖tr τ − βz‖ωz ≤ CA,z‖dev τ‖ωz
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which holds for any τ ∈ H(div, ωz) with div τ = 0. Since div(σ −σR
h ) = 0 this leads

to

∣∣(tr(σ − σR
h )− βz , (div uh − 1

λ
ph)φz)ωz

∣∣∣∣

≤ ‖tr(σ − σR
h )− βz‖ωz‖(div uh − 1

λ
ph)φz‖ωz

≤ CA,z‖dev(σ − σR
h )‖ωz‖div uh − 1

λ
ph‖ωz ,

(36)

where CA,z depends only on the shape of ωz. Setting CA = (d+1)max{CA,z : z ∈ Vh}
and inserting this into (34) finally leads to

|(tr(σ − σR
h ), div uh − 1

λ
ph)| ≤

∑

z∈Vh

CA,z‖dev(σ − σR
h )‖ωz‖div uh − 1

λ
ph‖ωz

≤ CA

(
∑

z∈Vh

1

d+ 1
‖dev(σ − σR

h )‖2ωz

)1/2(∑

z∈Vh

1

d+ 1
‖div uh − 1

λ
ph‖2ωz

)1/2

= CA‖dev(σ − σR
h )‖ ‖div uh − 1

λ
ph‖

(37)

and concludes the proof.

The constants CK,z from (31) corresponds to the second case in [14] and are
known to be not smaller than 2 (which is the value for a perfect disc). In principle,
upper bounds for CK,z can be computed for any vertex patch using the formulas in
[14, Sect. 5]. In particular, for a vertex patch ωz consisting of six equilateral triangles,
we have CK,z ≤

√
8 from [14, (5.17)].

In the two-dimensional case, the constant CA,z from (35) is related to CK,z by

(38) CA,z ≤ 2
(
C2

K,z − 1
)1/2

,

which can be seen as follows: Korn’s inequality of the type (31) implies that

(39) ‖ε(v)‖2ωz
+ inf

α∈R
‖as∇v − J2(α)‖2ωz

= inf
α∈R

‖∇v − J2(α)‖2ωz
≤ C2

K,z‖ε(v)‖2ωz

holds for all v ∈ H1(ωz)
d. Due to the special form of as and J2(α) this may be

rewritten as

(40)
1

2
inf
α∈R

‖curl v − 2α‖2ωz
≤
(
C2

K,z − 1
)
‖ε(v)‖2ωz

.

In order to derive the desired inequality (35) from this, the representation τ = ∇
⊥v

with v ∈ H1(ωz), which holds due to div τ = 0, is used. This leads to

(41) tr τ = curl v and dev τ = ε(v)

(
0 −1
1 0

)
,

which implies that (35) holds with CA,z = 2
(
C2

K,z − 1
)1/2

.
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6. A posteriori error estimation: Incompressible case. In this section,
our a posteriori error estimator based on the stress equilibration σ∆

h is derived under
simplifying assumptions that make the analysis less complicated and clarifies the main
ideas. To this end, we restrict ouselves to the incompressible limit where λ is set to
infinity. Moreover, we assume that f is piecewise polynomial of degree k with respect
to Th and that g is piecewise polynomial of degree k with respect to Sh∩ΓN (implying
that f = Pk

h f and g = Pk
h,Γg). The justification of this assumption will be postponed

to the next section. After that, Section 8 contains the more technical analysis for
arbitrary Lamé parameter λ.

Our aim is to estimate the displacement error with respect to ‖ε( · )‖ which
constitutes a norm on H1

ΓD
(Ω)d due to Korn’s inequality. The definition of the stress

leads directly to

(42) tr σ = 2µ div u+ d p = d p , tr σh(uh, ph) = 2µ div uh + d ph ,

which implies

(43) ε(u) =
1

2µ
(σ − pI) =

1

2µ

(
σ − 1

d
(tr σ)I

)
=: A∞σ

and

ε(uh) =
1

2µ
(σh − phI)

=
1

2µ

(
σh − 1

d
(tr σh)I

)
+

1

d
(div uh) I = A∞σh +

1

d
(div uh) I .

(44)

Inserting the relation σ = 2µε(u) + pI which holds for the exact solution, we obtain

‖σ∆
h ‖2A∞

= ‖σR
h − σh(uh, ph)‖2A∞

= ‖σ − σR
h − 2µε(u− uh)− (p− ph)I‖2A∞

= ‖σ − σR
h ‖2A∞

+ ‖2µε(u− uh) + (p− ph)I‖2A∞

− 2(σ − σR
h , 2µε(u− uh) + (p− ph)I)A∞

=
1

2µ
‖dev(σ − σR

h )‖2 + (2µε(u− uh) + (p− ph)I− 2(σ − σR
h ),

A∞(2µε(u− uh) + (p− ph)I)) .

(45)

The right term in the last inner product can be rewritten as

A∞(2µε(u− uh) + (p− ph)I) = ε(u− uh) +
1

d
(div uh)I .(46)

Inserting this into (45) leads to

‖σ∆
h ‖2A∞

=
1

2µ
‖dev(σ − σR

h )‖2 + 2µ‖ε(u− uh)‖2 −
2µ

d
‖div uh‖2

− 2(σ − σR
h , ε(u− uh)) −

2

d
(tr(σ − σR

h ), div uh) .

(47)

The two last terms on the right-hand side of (47) can be treated as

2(σ − σR
h , ε(u− uh)) = 2(σ − σR

h ,∇(u− uh))− 2(σ − σR
h , as∇(u− uh))

= −2(div(σ − σR
h ),u− uh) + 2(as σR

h , as∇(u− uh))

= 2(as σR
h ,∇(u− uh)) ≤ 2CK‖as σR

h ‖ ‖ε(u− uh)‖

≤ C2
K

δ
‖as σR

h ‖2 + δ‖ε(u− uh)‖2 ,

(48)
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where the first estimate in Lemma 2 is used (with CK depending only on the shape-
regularity of the triangulation) and δ > 0 can be chosen arbitrarily. The second
estimate in Lemma 2 leads to

2

d
(tr(σ − σR

h ), div uh) ≤
2

d
CA‖dev(σ − σR

h )‖ ‖div uh‖

≤ 1

2µ
‖dev(σ − σR

h )‖2 + 2µ

(
CA

d

)2

‖div uh‖2 ,
(49)

where the constantCA again only depends on the shape-regularity of the triangulation.
Combining (47) with (48) and (49) and using the fact that as σR

h = as σ∆
h leads

to

(50) (2µ−δ)‖ε(u−uh)‖2 ≤ ‖σ∆
h ‖2A∞

+2µ

(
1

d
+

(
CA

d

)2
)
‖divuh‖2+

C2
K

δ
‖asσ∆

h ‖2 .

Setting δ = µ, and noting that 2µ‖σ∆
h ‖2A∞

= ‖dev σ∆
h ‖2 holds, we finally obtain

(51) 2µ‖ε(u−uh)‖2 ≤ 1

µ
‖devσ∆

h ‖2+4µ

(
1

d
+

(
CA

d

)2
)
‖divuh‖2+2

C2
K

µ
‖asσ∆

h ‖2 .

In the incompressible limit, our error estimator therefore consists element-wise of the
three parts

(52) ηA,T =
1

(2µ)
1
2

‖dev σ∆
h ‖T , ηB,T = (2µ)

1
2 ‖div uh‖T , ηC,T =

1

(2µ)
1
2

‖as σ∆
h ‖T .

Together these provide a guaranteed upper bound for the energy norm of the error of
the form

(53) 2µ‖ε(u− uh)‖2 ≤ 2
∑

T∈Th

η2A,T + 2

(
1

d
+

(
CA

d

)2
)
∑

T∈Th

η2B,T + 4C2
K

∑

T∈Th

η2C,T

involving the controllable constants CA and CK .

7. Effect of the data approximation. In Section 8, our a posteriori error
estimator will be analyzed for the general case of arbitrary Lamé parameter λ. The
error will be estimated in the energy norm, expressed in terms of u− uh and p− ph,
given by

(54) |||(u− uh, p− ph)||| =
(
2µ‖ε(u− uh)‖2 +

1

λ
‖p− ph‖2

)1/2

.

This section provides an investigation of the effect of the approximation of the right-
hand side terms f and g on the solution (u, p) of (1). To this end, denote by (ũ, p̃)
the solution of (1) with f and g replaced by Pk

hf and Pk
h,Γg, respectively. Then, the

difference (u− ũ, p− p̃) satisfies

2µ(ε(u− ũ), ε(v)) + (p− p̃, div v) = (f − Pk
h f ,v) + 〈g − Pk

h,Γg,v〉L2(ΓN ) ,

(div(u− ũ), q)− 1

λ
(p− p̃, q) = 0

(55)
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for all v ∈ H1
ΓD

(Ω)d and q ∈ L2(Ω)d. From the inf-sup stability, we deduce that

(56) |||(u− ũ, p− p̃)||| . sup
v∈H1

ΓD
(Ω)d

(f − Pk
hf ,v)

‖v‖H1(Ω)
+ sup

v∈H1
ΓD

(Ω)d

〈g− Pk
h,Γg,v〉L2(ΓN )

‖v‖H1(Ω)

holds (cf. [6, Theorem 4.2.3]), where . denotes that the inequality holds up to a
constant which is independent of λ (and, in the sequel, also of the local mesh-size
hT ). Standard approximation estimates imply, locally for each T ∈ Th,

(f − Pk
hf ,v)T = (f − Pk

hf ,v − Pk
hv)T

≤ ‖f − Pk
hf‖T ‖v − Pk

hv‖T . hT ‖f − Pk
hf‖T ‖v‖H1(T ) .

(57)

Summing over all elements, this leads to

(f − Pk
hf ,v) .

∑

T∈Th

hT ‖f − Pk
h f‖T ‖v‖H1(T )

≤
(
∑

T∈Th

h2
T ‖f − Pk

hf‖2T

)1/2

‖v‖H1(Ω) .

(58)

Similarly, for each S ∈ Sh with S ⊆ ΓN , we have

〈g − Pk
h,Γg,v〉S = 〈g − Pk

h,Γg,v − Pk
h,Γv〉S

≤ ‖g− Pk
h,Γg‖S‖v− Pk

h,Γv‖S . h
1/2
S ‖g− Pk

h,Γg‖S‖v‖H1/2(S) .
(59)

Summing over all sides in ΓN , we obtain

〈g − Pk
h,Γg,v〉ΓN .

∑

S⊆ΓN

h
1/2
S ‖g− Pk

h,Γg‖S‖v‖H1/2(S)

≤




∑

S⊆ΓN

hS‖g− Pk
h,Γg‖2S




1/2

‖v‖H1/2(ΓN )

.



∑

S⊆ΓN

hS‖g− Pk
h,Γg‖2S




1/2

‖v‖H1(Ω) ,

(60)

where the standard trace theorem from H1(Ω)d to H1/2(ΓN )d is used. Finally, in-
serting (58) and (60) into (56) gives

(61) |||(u− ũ, p− p̃)||| .




∑

T∈Th

h2
T ‖f − Pk

hf‖2T +
∑

S⊆ΓN

hS‖g− Pk
h,Γg‖2S




1/2

.

We compare the convergence order of the local terms in the right-hand side in
(61) to the best possible one for the local error ‖ε(u − uh)‖T of the approximation
computed from (2). Assuming that f ∈ Hα(T )d for some α ∈ (0, k + 1), then we
have ‖f − Pk

hf‖T . hα
T , while the approximation error does, in general, behave like

‖ε(u − uh)‖T = O(h1+α
T ) at best. Note that u can locally not be more than H2+α-

regular, in general. Similarly, if we assume that g ∈ Hβ(S)d for some β ∈ (0, k +
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1), then we have ‖g − Pk
h,Γg‖S . hβ

S . The regularity of u, however, is locally not

better than H3/2+β , in general, leading to a convergence behavior not better than

‖ε(u − uh)‖T = O(h
1/2+β
S ) on elements adjacent to S. In any case, we get that

|||(u − ũ, p− p̃)||| . |||(u − uh, p − ph)||| independently of the triangulation. This is
completely similar to the situation for the Poisson equation treated in [9, Theorem
4]. We may therefore perform our analysis under the assumption that f = Pk

hf and
g = Pk

hg is fulfilled.

8. A posteriori error estimation: The general case. We are now ready for
the analysis of our error estimator in the general case. The definition of the stress
directly leads to

tr σ = 2µdiv u+ dp =

(
2µ

λ
+ d

)
p ,

tr σh = 2µdiv uh + dph =

(
2µ

λ
+ d

)
ph + 2µ

(
div uh − 1

λ
ph

)
,

(62)

which implies

(63) ε(u) =
1

2µ
(σ − pI) =

1

2µ

(
σ − λ

2µ+ dλ
(tr σ)I

)
=: Aσ

and

ε(uh) =
1

2µ
(σh − phI)

=
1

2µ

(
σh − λ

2µ+ dλ
(tr σh)I

)
+

λ

2µ+ dλ

(
div uh − 1

λ
ph

)
I

= Aσh +
λ

2µ+ dλ

(
div uh − 1

λ
ph

)
I .

(64)

Note that (63) and (64) remain valid in the incompressibe limit λ → ∞, where A
tends to A∞ which was studied earlier in Section 6.

Our a posteriori error estimator will be based on ‖σ∆
h ‖2A, the stress equilibration

correction measured with respect to the A-norm given by ‖ · ‖A := ( A(·) , · )1/2.
Inserting the exact solution, we obtain in analogy to (45) that

‖σ∆
h ‖2A = ‖σR

h − σh(uh, ph)‖2A = ‖σ − σR
h − 2µε(u− uh)− (p− ph)I‖2A

= ‖σ − σR
h ‖2A

+ (2µε(u− uh) + (p− ph)I− 2(σ − σR
h ),A(2µε(u− uh) + (p− ph)I))

(65)

holds. The right term in the last inner product can be rewritten as

(66) A(2µε(u− uh) + (p− ph)I) = ε(u− uh) +
λ

2µ+ dλ

(
div uh − ph

λ

)
I .
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Inserting this into (65) leads to

‖σ∆
h ‖2A = ‖σ − σR

h ‖2A + 2µ‖ε(u− uh)‖2 +
2µλ

2µ+ dλ

( p
λ
− divuh, divuh − ph

λ

)

+
(
p− ph,

p

λ
− div uh

)
+

dλ

2µ+ dλ

(
p− ph, div uh − ph

λ

)

− 2(σ − σR
h , ε(u− uh))−

2λ

2µ+ dλ

(
tr(σ − σR

h ), div uh − ph
λ

)

= ‖σ − σR
h ‖2A + 2µ‖ε(u− uh)‖2 +

1

λ
‖p− ph‖2 −

2µλ

2µ+ dλ

∥∥∥div uh − ph
λ

∥∥∥
2

− 2(σ − σR
h , ε(u− uh))−

2λ

2µ+ dλ

(
tr(σ − σR

h ), div uh − ph
λ

)

= ‖σ − σR
h ‖2A + |||(u− uh, p− ph)|||2 −

2µλ

2µ+ dλ

∥∥∥div uh − ph
λ

∥∥∥
2

− 2(σ − σR
h , ε(u− uh))−

2λ

2µ+ dλ

(
tr(σ − σR

h ), div uh − ph
λ

)
,

(67)

where we replaced div u by p/λ, wherever it occurred. From (48), we obtain

(68) 2(σ − σR
h , ε(u− uh)) ≤

C2
K

δ
‖as σR

h ‖2 +
δ

2µ
|||(u− uh, p− ph)|||2 ,

which may be used to bound the second-to-last term in (67). For the last term in
(67), we deduce from (27) in Lemma 2 and from

‖σ − σR
h ‖2A = (A(σ − σR

h ),σ − σR
h )

=
1

2µ

(
‖σ − σR

h ‖2 −
λ

2µ+ dλ
‖tr(σ − σR

h )‖2
)

≥ 1

2µ

(
‖σ − σR

h ‖2 −
1

d
‖tr(σ − σR

h )‖2
)

=
1

2µ
‖dev(σ − σR

h )‖2
(69)

that

2λ

2µ+ dλ

(
tr(σ − σR

h ), div uh − ph
λ

)

≤ 2λCA

2µ+ dλ
‖dev(σ − σR

h )‖ ‖div uh − 1

λ
ph‖

≤ 1

2µ
‖dev(σ − σR

h )‖2 +
2µλ2C2

A

(2µ+ dλ)2
‖div uh − 1

λ
ph‖2

≤ ‖σ − σR
h ‖2A + 2µ

(
λCA

2µ+ dλ

)2

‖div uh − 1

λ
ph‖2

(70)

holds. Inserting (68) and (70) into (67) and using the fact that as σR
h = as σ∆

h leads
to

(
1− δ

2µ

)
|||(u− uh, p− ph)|||2

≤ ‖σ∆
h ‖2A +

2µλ2

(2µ+ dλ)2

(
2µ

λ
+ d+ C2

A

)
‖div uh − ph

λ
‖2 + C2

K

δ
‖as σ∆

h ‖2 ,
(71)
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where δ ∈ (0, 1) is still arbitrary. Setting again δ = µ, we finally obtain

|||(u− uh, p− ph)|||2

≤ 2‖σ∆
h ‖2A +

4µλ2

(2µ+ dλ)2

(
2µ

λ
+ d+ C2

A

)
‖div uh − ph

λ
‖2 + 2

C2
K

µ
‖as σ∆

h ‖2 ,
(72)

Our error estimator therefore consists element-wise of the three parts

(73) ηA,T = ‖σ∆
h ‖A,T , ηB,T = (2µ)1/2‖div uh − ph

λ
‖T , ηC,T =

1

(2µ)1/2
‖as σ∆

h ‖T ,

which together provide a guaranteed upper bound for the energy norm of the error.
We summarize the result of this derivation as follows.

Theorem 3. Let (u, p) ∈ H1
ΓD

(Ω)d × L2(Ω) be the exact solution of (1) and
(uh, ph) ∈ Vh ×Qh its finite element approximation satisfying (2). Then,

|||(u− uh, p− ph)|||2

≤ 2
∑

T∈Th

η2A,T +
2λ2

(2µ+ dλ)2

(
2µ

λ
+ d+ C2

A

) ∑

T∈Th

η2B,T + 4C2
K

∑

T∈Th

η2C,T ,
(74)

involving the controllable constants CA and CK which only depend on the shape reg-
ularity of the triangulation.

Note that the term in front of the estimator contributions ηB,h is monotonically
increasing in λ and therefore bounded by its limit for λ → ∞. Thus, (74) implies that

(75) |||(u− uh, p− ph)|||2 ≤ 2
∑

T∈Th

η2A,T + 2

(
1

d
+

C2
A

d2

) ∑

T∈Th

η2B,T + 4C2
K

∑

T∈Th

η2C,T

holds which is independent of λ.

9. Upper bound by a residual a posteriori error estimator and local

efficiency. Local efficiency of our equibrated error estimator (73) may be shown
following the same idea as in [9, 8] by bounding it from above with the residual
estimator. To this end, we use the decomposition (15) again and obtain

(76) ‖σ∆
h ‖ ≤

∑

z∈V∗

h

‖σ∆
h,z‖ω∗

z
.

The terms in the sum on the right-hand side in (76) can be treated by the following
result.

Proposition 4. Let hz denote the average diameter of all elements in ω∗
z and

hS the diameter of the side S. Then, σ∆
h,z ∈ Σ∆

h,z minimizing ‖σ∆
h,z‖2ω∗

z
subject to

(16) satisfies

(77) ‖σ∆
h,z‖ω∗

z
. hz‖f + div σh(uh, ph)‖ω∗

z
+

∑

S∈S∗

h,z

h
1/2
S ‖Jσh(uh, ph) · nK∗S‖S .

Proof. Step 1. We first prove that

(78) ‖σ∆
h,z‖2ω∗

z
. h2−d

z


|(div σ∆

h,z, zh,z)ω∗

z ,h|2 +
∑

S∈S∗

h,z

|〈Jσ∆
h,z · nKS , ζS〉S |2



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holds for all zh,z ∈ Zh,z with ‖zh,z‖2ω∗

z ,h
≤ h2d

z and ζS ∈ Pk(S)
d with ‖ζS‖2S ≤ h

2(d−1)
S ,

S ∈ S∗
h,z. To this end, we transform the vertex patch ω∗

z by a piecewise affine mapping
onto a reference patch ωref (e.g., centered at the origin and such that all edges attached
to z have unit length and all triangular angles at z are equal). Due to the shape
regularity of our triangulation Th, this piecewise affine mapping possesses an inverse
which we denote by ϕz.

The space Σ∆
h,z has its counterpart Σ∆

ref of functions σ∆
ref defined on ωref and

connected via the Piola transformation

(79) σ∆
h,z ◦ϕz =

1

det(∇ϕz)
σ∆

ref(∇ϕz)
T

(cf. [6, Sect. 2.1.3]). If we also define the test functions zref = zh,z ◦ ϕz and
ζref = ζS ◦ϕz on ωref , then

(div σ∆
h,z, zh,z)ω∗

z ,h = (div σ∆
ref , zref)ωref

〈Jσ∆
h,z · nKS , ζS〉S = 〈Jσ∆

ref · nKŜ , ζŜ〉Ŝ , S = ϕz(Ŝ)
(80)

holds (cf. [6, Lemma 2.1.6]). On the reference patch ωref , we have

(81) ‖σ∆
ref‖2ωref

. |(div σ∆
ref , zref)ωref

|2 +
∑

Ŝ∈S∗

ref

|〈Jσ∆
ref · nKŜ , ζŜ〉Ŝ |2 ,

since the right-hand side being zero forces the left-hand side to vanish and due to
the finite dimension of the spaces involved and the fact that there is only a finite
number of possible reference patches. The shape regularity implies that |∇ϕz| . hz

and det(∇ϕz) & hd
z holds uniformly on ωref and therefore

(82) ‖σ∆
h,z‖2ω∗

z ,h
. h2−d

z ‖σ∆
ref‖2ωref

follows directly from (79). Thus, (78) follows from (80), (81) and (82).
Step 2. Inserting the constraints (16) into (78) leads to

‖σ∆
h,z‖2ω∗

z ,h
. h2−d

z

(∣∣((f + div σh(uh, ph))φ
∗
z , zh,z)ω∗

z ,h

∣∣2

+
∑

S∈S∗

h,z

|〈Jσh(uh, ph) · nK∗Sφ
∗
z , ζS〉S |2


 .

(83)

Combining the Cauchy-Schwarz inequality with our scaling of zh,z and ζS implies

‖σ∆
h,z‖2ω∗

z ,h
. h2

z‖(f + div σh(uh, ph))φ
∗
z‖2ω∗

z ,h

+
∑

S∈S∗

h,z

hS

(
hS

hz

)d−2

‖Jσh(uh, ph) · nK∗Sφ
∗
z‖2S

. h2
z‖f + div σh(uh, ph)‖2ω∗

z ,h
+

∑

S∈S∗

h,z

hS‖Jσh(uh, ph) · nK∗S‖2S ,

(84)

where hS . hz due to the shape regularity and the fact that φ∗
z is bounded by one is

used. Taking the square root of (84) implies (77).
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The fact that

(85) η2A,T + η2C,T .
∑

z∈T

‖σ∆
h,z‖2T

is satisfied, combined with (77), implies

η2A,T + η2B,T + η2C,T .
∑

z∈T

‖σ∆
h,z‖2T + ‖div uh − ph

λ
‖2T

.
∑

T ′⊂ωT

h2
T ′‖f + div σh(uh, ph)‖2T ′ +

∑

S∈S′

h,z

hS‖Jσh(uh, ph) · nK∗S‖2S

+ ‖div uh − ph
λ
‖2T .

∑

T ′⊂ωT

(
η2R,T ′ + h2

T ′‖f − Pk
hf‖2T ′

)
,

(86)

where ωT = ∪{ωz : z ∈ T } and where

ηR,T =

(
h2
T ‖Pk

hf + div σh(uh, ph)‖2T +
∑

S⊂∂T

hS‖Jσh(uh, ph) · nK∗S‖2S

+‖div uh − ph
λ
‖2T
)1/2

(87)

denotes the residual error estimator. The local efficiency of this residual error estima-
tor is shown, for the case of the incompressible Stokes equations, in [20, Sect. 4.10.3].
In analogy to [20, Theorem 4.70] we obtain that

(88) ηR,T .
(
‖ε(u− uh)‖2ωT

+ ‖p− ph‖2ωT
+ h2

T ‖f − Pk
hf‖2ωT

)1/2

holds. All together this leads to the local efficiency bound

(89) η2A,T + η2B,T + η2C,T . ‖ε(u− uh)‖2ω̃T
+ ‖p− ph‖2ω̃T

+ h2
T ‖f − Pk

hf‖2ω̃T
,

where ω̃T := ∪{ωT ′ : T ′ ⊂ ωT }, i.e., the next layer of elements around ωT .

10. Numerical Results. Finally, we present numerical results obtained for a
popular test example for linear elasticity computations. It is given by the Cook’s
membrane problem which consists of a quadrilateral domain Ω ⊂ R

2 with corners
(0, 0), (0.48, 0.44), (0.48, 0.6) and (0, 0.44). Homogeneous Dirichlet boundary condi-
tions hold on the left boundary segment while traction forces are prescribed on the
remaining boundary parts, g ≡ 0 on the top and on the bottom, g ≡ (0, 0.01) on the
right. We restrict ourselves to the incompressible limit λ = ∞ since this is the most
challenging situation.

Starting from an initial triangulation with 32 elements, 14 adaptive refinement

steps are performed based on our error estimator ηT =
(
η2A,T + η2B,T + ηC,T

)1/2
from

(73). The refinement strategy uses Dörfler marking, i.e., a subset T̃h ⊂ Th of elements
with the largest estimator contributions is refined such that

(90)




∑

T∈T̃h

η2T




1/2

≥ θ

(
∑

T∈Th

η2T

)1/2

holds. Figure 1 shows the refined triangulation after the 7th refinement step. As
expected, most of the refinement is concentrated around the most severe singularity at
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Fig. 1. Triangulation after 9 adaptive refinement steps

the left upper corner. However, some local refinement is also seen at the other corners
where the solution fails to be in H3(Ω). At later refinement steps this is no longer
visible as nicely since individual triangles can no longer be recognized in the vicinity
of the corners. Figure 2 shows the decrease of the error estimator components ηA,T ,
ηB,T and ηC,T as well as the total estimator ηT (on the vertical axis) in dependence of
the dimension of the finite element spaces (on the horizontal axis). All three estimator
contributions apparently convergence with the optimal rate η ∼ N−1, if N denotes
the associated number of degrees of freedom.

In order to investigate the efficiency of our estimator, we also attempt a com-
parison with the actual true error |||(u − uh, p − ph)|||. However, since the exact
solution (u, p) is not known to us analytically in this case, we use the approximation
|||(u∗, p∗)||| on the finest triangulation (after 14 refinements) instead and compute
|||(u∗−uh, p

∗−ph)|||. We may trust that |||(u∗−uh, p
∗−ph)||| ≈ |||(u−uh, p−ph)|||

at least up to refinement level 12, before the curve starts to astray downwards due to
the discrepancy between (u∗, p∗) and (u, p). Figure 2 also shows that the energy norm
of the error is already bounded from above by the dominating estimator contribution
ηA alone.

If one is interested in guaranteed upper bounds which are as tight as possible one
may refine the derivation of the reliability of our error estimator by incorporating the
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local constants CK,z and CA,z in (31) and (35) into the estimator contributions ηB,T

and ηC,T . To this end, the constants CK,z and CA,z may be bounded from above as
described at the end of Section 5. However, since this becomes rather tedious we want
to finish our paper here with the conclusion that our numerical example already shows
the potential of our equilibrated error estimator for producing rather tight bounds for
the error.
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