2,468 research outputs found

    A posteriori error control for discontinuous Galerkin methods for parabolic problems

    Full text link
    We derive energy-norm a posteriori error bounds for an Euler time-stepping method combined with various spatial discontinuous Galerkin schemes for linear parabolic problems. For accessibility, we address first the spatially semidiscrete case, and then move to the fully discrete scheme by introducing the implicit Euler time-stepping. All results are presented in an abstract setting and then illustrated with particular applications. This enables the error bounds to hold for a variety of discontinuous Galerkin methods, provided that energy-norm a posteriori error bounds for the corresponding elliptic problem are available. To illustrate the method, we apply it to the interior penalty discontinuous Galerkin method, which requires the derivation of novel a posteriori error bounds. For the analysis of the time-dependent problems we use the elliptic reconstruction technique and we deal with the nonconforming part of the error by deriving appropriate computable a posteriori bounds for it.Comment: 6 figure

    Adaptive discontinuous Galerkin approximations to fourth order parabolic problems

    Full text link
    An adaptive algorithm, based on residual type a posteriori indicators of errors measured in L(L2)L^{\infty}(L^2) and L2(L2)L^2(L^2) norms, for a numerical scheme consisting of implicit Euler method in time and discontinuous Galerkin method in space for linear parabolic fourth order problems is presented. The a posteriori analysis is performed for convex domains in two and three space dimensions for local spatial polynomial degrees r2r\ge 2. The a posteriori estimates are then used within an adaptive algorithm, highlighting their relevance in practical computations, which results into substantial reduction of computational effort

    A posteriori error bounds for discontinuous Galerkin methods for quasilinear parabolic problems

    Get PDF
    We derive a posteriori error bounds for a quasilinear parabolic problem, which is approximated by the hphp-version interior penalty discontinuous Galerkin method (IPDG). The error is measured in the energy norm. The theory is developed for the semidiscrete case for simplicity, allowing to focus on the challenges of a posteriori error control of IPDG space-discretizations of strictly monotone quasilinear parabolic problems. The a posteriori bounds are derived using the elliptic reconstruction framework, utilizing available a posteriori error bounds for the corresponding steady-state elliptic problem.Comment: 8 pages, conference ENUMATH 200

    A Frame Work for the Error Analysis of Discontinuous Finite Element Methods for Elliptic Optimal Control Problems and Applications to C0C^0 IP methods

    Full text link
    In this article, an abstract framework for the error analysis of discontinuous Galerkin methods for control constrained optimal control problems is developed. The analysis establishes the best approximation result from a priori analysis point of view and delivers reliable and efficient a posteriori error estimators. The results are applicable to a variety of problems just under the minimal regularity possessed by the well-posed ness of the problem. Subsequently, applications of C0C^0 interior penalty methods for a boundary control problem as well as a distributed control problem governed by the biharmonic equation subject to simply supported boundary conditions are discussed through the abstract analysis. Numerical experiments illustrate the theoretical findings. Finally, we also discuss the variational discontinuous discretization method (without discretizing the control) and its corresponding error estimates.Comment: 23 pages, 5 figures, 1 tabl

    Fully computable a posteriori error bounds for hybridizable discontinuous Galerkin finite element approximations

    Get PDF
    We derive a posteriori error estimates for the hybridizable discontinuous Galerkin (HDG) methods, including both the primal and mixed formulations, for the approximation of a linear second-order elliptic problem on conforming simplicial meshes in two and three dimensions. We obtain fully computable, constant free, a posteriori error bounds on the broken energy seminorm and the HDG energy (semi)norm of the error. The estimators are also shown to provide local lower bounds for the HDG energy (semi)norm of the error up to a constant and a higher-order data oscillation term. For the primal HDG methods and mixed HDG methods with an appropriate choice of stabilization parameter, the estimators are also shown to provide a lower bound for the broken energy seminorm of the error up to a constant and a higher-order data oscillation term. Numerical examples are given illustrating the theoretical results
    corecore