2 research outputs found

    A Pose Awareness Solution for Estimating Pedestrian Walking Speed

    No full text
    Pedestrian walking speeds (PWS) can be used as a “body speedometer” to reveal health status information of pedestrians and positioning indoors with other locating methods. This paper proposes a pose awareness solution for estimating pedestrian walking speeds using the sensors built in smartphones. The smartphone usage pose is identified by using a machine learning approach based on data from multiple sensors. The data are then coupled tightly with an adaptive step detection solution to estimate the pedestrian walking speed. Field tests were carried out to verify the advantages of the proposed algorithms compared to existing solutions. The test results demonstrated that the features extracted from the data of the smartphone built-in sensors clearly reveal the characteristics of the pose pattern, with overall accuracy of 98.85% and a kappa statistic of 98.46%. The proposed walking speed estimation solution, running in real-time on a commercial smartphone, performed well, with a mean absolute error of 0.061 m/s, under a challenging walking process combining various usage poses including texting, calling, swinging, and in-pocket modes

    Smart Monitoring and Control in the Future Internet of Things

    Get PDF
    The Internet of Things (IoT) and related technologies have the promise of realizing pervasive and smart applications which, in turn, have the potential of improving the quality of life of people living in a connected world. According to the IoT vision, all things can cooperate amongst themselves and be managed from anywhere via the Internet, allowing tight integration between the physical and cyber worlds and thus improving efficiency, promoting usability, and opening up new application opportunities. Nowadays, IoT technologies have successfully been exploited in several domains, providing both social and economic benefits. The realization of the full potential of the next generation of the Internet of Things still needs further research efforts concerning, for instance, the identification of new architectures, methodologies, and infrastructures dealing with distributed and decentralized IoT systems; the integration of IoT with cognitive and social capabilities; the enhancement of the sensing–analysis–control cycle; the integration of consciousness and awareness in IoT environments; and the design of new algorithms and techniques for managing IoT big data. This Special Issue is devoted to advancements in technologies, methodologies, and applications for IoT, together with emerging standards and research topics which would lead to realization of the future Internet of Things
    corecore