4 research outputs found

    Augmented reality in open surgery

    Get PDF
    Augmented reality (AR) has been successfully providing surgeons an extensive visual information of surgical anatomy to assist them throughout the procedure. AR allows surgeons to view surgical field through the superimposed 3D virtual model of anatomical details. However, open surgery presents new challenges. This study provides a comprehensive overview of the available literature regarding the use of AR in open surgery, both in clinical and simulated settings. In this way, we aim to analyze the current trends and solutions to help developers and end/users discuss and understand benefits and shortcomings of these systems in open surgery. We performed a PubMed search of the available literature updated to January 2018 using the terms (1) “augmented reality” AND “open surgery”, (2) “augmented reality” AND “surgery” NOT “laparoscopic” NOT “laparoscope” NOT “robotic”, (3) “mixed reality” AND “open surgery”, (4) “mixed reality” AND “surgery” NOT “laparoscopic” NOT “laparoscope” NOT “robotic”. The aspects evaluated were the following: real data source, virtual data source, visualization processing modality, tracking modality, registration technique, and AR display type. The initial search yielded 502 studies. After removing the duplicates and by reading abstracts, a total of 13 relevant studies were chosen. In 1 out of 13 studies, in vitro experiments were performed, while the rest of the studies were carried out in a clinical setting including pancreatic, hepatobiliary, and urogenital surgeries. AR system in open surgery appears as a versatile and reliable tool in the operating room. However, some technological limitations need to be addressed before implementing it into the routine practice

    A Portable Image Overlay Projection Device for Computer-Aided Open Liver Surgery

    No full text
    Image overlay projection is a form of augmented reality that allows surgeons to view underlying anatomical structures directly on the patient surface. It improves intuitiveness of computer-aided surgery by removing the need for sight diversion between the patient and a display screen and has been reported to assist in 3-D understanding of anatomical structures and the identification of target and critical structures. Challenges in the development of image overlay technologies for surgery remain in the projection setup. Calibration, patient registration, view direction, and projection obstruction remain unsolved limitations to image overlay techniques. In this paper, we propose a novel, portable, and handheld-navigated image overlay device based on miniature laser projection technology that allows images of 3-D patient-specific models to be projected directly onto the organ surface intraoperatively without the need for intrusive hardware around the surgical site. The device can be integrated into a navigation system, thereby exploiting existing patient registration and model generation solutions. The position of the device is tracked by the navigation system’s position sensor and used to project geometrically correct images from any position within the workspace of the navigation system. The projector was calibrated using modified camera calibration techniques and images for projection are rendered using a virtual camera defined by the projectors extrinsic parameters. Verification of the device’s projection accuracy concluded a mean projection error of 1.3 mm. Visibility testing of the projection performed on pig liver tissue found the device suitable for the display of anatomical structures on the organ surface. The feasibility of use within the surgical workflow was assessed during open liver surgery. We show that the device could be quickly and unobtrusively deployed within the sterile environment

    SURGICAL NAVIGATION AND AUGMENTED REALITY FOR MARGINS CONTROL IN HEAD AND NECK CANCER

    Get PDF
    I tumori maligni del distretto testa-collo rappresentano un insieme di lesioni dalle diverse caratteristiche patologiche, epidemiologiche e prognostiche. Per una porzione considerevole di tali patologie, l’intervento chirurgico finalizzato all’asportazione completa del tumore rappresenta l’elemento chiave del trattamento, quand’anche esso includa altre modalità quali la radioterapia e la terapia sistemica. La qualità dell’atto chirurgico ablativo è pertanto essenziale al fine di garantire le massime chance di cura al paziente. Nell’ambito della chirurgia oncologica, la qualità delle ablazioni viene misurata attraverso l’analisi dello stato dei margini di resezione. Oltre a rappresentare un surrogato della qualità della resezione chirurgica, lo stato dei margini di resezione ha notevoli implicazioni da un punto di vista clinico e prognostico. Infatti, il coinvolgimento dei margini di resezione da parte della neoplasia rappresenta invariabilmente un fattore prognostico sfavorevole, oltre che implicare la necessità di intensificare i trattamenti postchirurgici (e.g., ponendo indicazione alla chemioradioterapia adiuvante), comportando una maggiore tossicità per il paziente. La proporzione di resezioni con margini positivi (i.e., coinvolti dalla neoplasia) nel distretto testa-collo è tra le più elevate in ambito di chirurgia oncologica. In tale contesto si pone l’obiettivo del dottorato di cui questa tesi riporta i risultati. Le due tecnologie di cui si è analizzata l’utilità in termini di ottimizzazione dello stato dei margini di resezione sono la navigazione chirurgica con rendering tridimensionale e la realtà aumentata basata sulla videoproiezione di immagini. Le sperimentazioni sono state svolte parzialmente presso l’Università degli Studi di Brescia, parzialmente presso l’Azienda Ospedale Università di Padova e parzialmente presso l’University Health Network (Toronto, Ontario, Canada). I risultati delle sperimentazioni incluse in questo elaborato dimostrano che l'impiego della navigazione chirurgica con rendering tridimensionale nel contesto di procedure oncologiche ablative cervico-cefaliche risulta associata ad un vantaggio significativo in termini di riduzione della frequenza di margini positivi. Al contrario, le tecniche di realtà aumentata basata sulla videoproiezione, nell'ambito della sperimentazione preclinica effettuata, non sono risultate associate a vantaggi sufficienti per poter considerare tale tecnologia per la traslazione clinica.Head and neck malignancies are an heterogeneous group of tumors. Surgery represents the mainstay of treatment for the large majority of head and neck cancers, with ablation being aimed at removing completely the tumor. Radiotherapy and systemic therapy have also a substantial role in the multidisciplinary management of head and neck cancers. The quality of surgical ablation is intimately related to margin status evaluated at a microscopic level. Indeed, margin involvement has a remarkably negative effect on prognosis of patients and mandates the escalation of postoperative treatment by adding concomitant chemotherapy to radiotherapy and accordingly increasing the toxicity of overall treatment. The rate of margin involvement in the head and neck is among the highest in the entire field of surgical oncology. In this context, the present PhD project was aimed at testing the utility of 2 technologies, namely surgical navigation with 3-dimensional rendering and pico projector-based augmented reality, in decreasing the rate of involved margins during oncologic surgical ablations in the craniofacial area. Experiments were performed in the University of Brescia, University of Padua, and University Health Network (Toronto, Ontario, Canada). The research activities completed in the context of this PhD course demonstrated that surgical navigation with 3-dimensional rendering confers a higher quality to oncologic ablations in the head and neck, irrespective of the open or endoscopic surgical technique. The benefits deriving from this implementation come with no relevant drawbacks from a logistical and practical standpoint, nor were major adverse events observed. Thus, implementation of this technology into the standard care is the logical proposed step forward. However, the genuine presence of a prognostic advantage needs longer and larger study to be formally addressed. On the other hand, pico projector-based augmented reality showed no sufficient advantages to encourage translation into the clinical setting. Although observing a clear practical advantage deriving from the projection of osteotomy lines onto the surgical field, no substantial benefits were measured when comparing this technology with surgical navigation with 3-dimensional rendering. Yet recognizing a potential value of this technology from an educational standpoint, the performance displayed in the preclinical setting in terms of surgical margins optimization is not in favor of a clinical translation with this specific aim

    Ultraschallbasierte Navigation fĂĽr die minimalinvasive onkologische Nieren- und Leberchirurgie

    Get PDF
    In der minimalinvasiven onkologischen Nieren- und Leberchirurgie mit vielen Vorteilen für den Pa- tienten wird der Chirurg häufig mit Orientierungsproblemen konfrontiert. Hauptursachen hierfür sind die indirekte Sicht auf die Patientenanatomie, das eingeschränkte Blickfeld und die intra- operative Deformation der Organe. Abhilfe können Navigationssysteme schaffen, welche häufig auf intraoperativem Ultraschall basieren. Durch die Echtzeit-Bildgebung kann die Deformation des Organs bestimmt werden. Da viele Tumore im Schallbild nicht sichtbar sind, wird eine robuste automatische und deformierbare Registrierung mit dem präoperativen CT benötigt. Ferner ist eine permanente Visualisierung auch während der Manipulation am Organ notwendig. Für die Niere wurde die Eignung von Ultraschall-Elastographieaufnahmen für die bildbasierte Re- gistrierung unter Verwendung der Mutual Information evaluiert. Aufgrund schlechter Bildqualität und geringer Ausdehnung der Bilddaten hatte dies jedoch nur mäßigen Erfolg. Die Verzweigungspunkte der Blutgefäße in der Leber werden als natürliche Landmarken für die Registrierung genutzt. Dafür wurden Gefäßsegmentierungsalgorithmen für die beiden häufigsten Arten der Ultraschallbildgebung B-Mode und Power Doppler entwickelt. Die vorgeschlagene Kom- bination beider Modalitäten steigerte die Menge an Gefäßverzweigungen im Mittel um 35 %. Für die rigide Registrierung der Gefäße aus dem Ultraschall und CT werden mithilfe eines bestehen- den Graph Matching Verfahrens [OLD11b] im Mittel 9 bijektive Punktkorrespondenzen definiert. Die mittlere Registrierungsgenauigkeit liegt bei 3,45 mm. Die Menge an Punktkorrespondenzen ist für eine deformierbare Registrierung nicht ausreichend. Das entwickelte Verfahren zur Landmarkenverfeinerung fügt zwischen gematchten Punkte weitere Landmarken entlang der Gefäßmittellinien ein und sucht nach weiteren korrespondierenden Gefäß- segmenten wodurch die Zahl der Punktkorrespondenzen im Mittel auf 70 gesteigert wird. Dies erlaubt die Bestimmung der Organdeformation anhand des unterschiedlichen Gefäßverlaufes. Anhand dieser Punktkorrespondenzen kann mithilfe der Thin-Plate-Splines ein Deformationsfeld für das gesamte Organ berechnet werden. Auf diese Weise wird die Genauigkeit der Registrierung im Mittel um 44 % gesteigert. Die wichtigste Voraussetzung für das Gelingen der deformierbaren Registrierung ist eine möglichst umfassende Segmentierung der Gefäße aus dem Ultraschall. Im Rahmen der Arbeit wurde erstmals der Begriff der Regmentation auf die Segmentierung von Gefäßen und die gefäßbasierte Registrie- rung ausgeweitet. Durch diese Kombination beider Verfahren wurde die extrahierte Gefäßlänge im Mittel um 32 % gesteigert, woraus ein Anstieg der Anzahl korrespondierender Landmarken auf 98 resultiert. Hierdurch lässt sich die Deformation des Organs und somit auch die Lageveränderung des Tumors genauer und mit höherer Sicherheit bestimmen. Mit dem Wissen über die Lage des Tumors im Organ und durch Verwendung eines Markierungs- drahtes kann die Lageveränderung des Tumors während der chirurgischen Manipulation mit einem elektromagnetischen Trackingsystem überwacht werden. Durch dieses Tumortracking wird eine permanente Visualisierung mittels Video Overlay im laparoskopischen Videobild möglich. Die wichtigsten Beiträge dieser Arbeit zur gefäßbasierten Registrierung sind die Gefäßsegmen- tierung aus Ultraschallbilddaten, die Landmarkenverfeinerung zur Gewinnung einer hohen Anzahl bijektiver Punktkorrespondenzen und die Einführung der Regmentation zur Verbesserung der Ge- fäßsegmentierung und der deformierbaren Registrierung. Das Tumortracking für die Navigation ermöglicht die permanente Visualisierung des Tumors während des gesamten Eingriffes
    corecore