2,393 research outputs found

    Deterministic Factorization of Sparse Polynomials with Bounded Individual Degree

    Full text link
    In this paper we study the problem of deterministic factorization of sparse polynomials. We show that if fF[x1,x2,,xn]f \in \mathbb{F}[x_{1},x_{2},\ldots ,x_{n}] is a polynomial with ss monomials, with individual degrees of its variables bounded by dd, then ff can be deterministically factored in time spoly(d)logns^{\mathrm{poly}(d) \log n}. Prior to our work, the only efficient factoring algorithms known for this class of polynomials were randomized, and other than for the cases of d=1d=1 and d=2d=2, only exponential time deterministic factoring algorithms were known. A crucial ingredient in our proof is a quasi-polynomial sparsity bound for factors of sparse polynomials of bounded individual degree. In particular we show if ff is an ss-sparse polynomial in nn variables, with individual degrees of its variables bounded by dd, then the sparsity of each factor of ff is bounded by sO(d2logn)s^{O({d^2\log{n}})}. This is the first nontrivial bound on factor sparsity for d>2d>2. Our sparsity bound uses techniques from convex geometry, such as the theory of Newton polytopes and an approximate version of the classical Carath\'eodory's Theorem. Our work addresses and partially answers a question of von zur Gathen and Kaltofen (JCSS 1985) who asked whether a quasi-polynomial bound holds for the sparsity of factors of sparse polynomials

    Tropical Geometry of Statistical Models

    Get PDF
    This paper presents a unified mathematical framework for inference in graphical models, building on the observation that graphical models are algebraic varieties. From this geometric viewpoint, observations generated from a model are coordinates of a point in the variety, and the sum-product algorithm is an efficient tool for evaluating specific coordinates. The question addressed here is how the solutions to various inference problems depend on the model parameters. The proposed answer is expressed in terms of tropical algebraic geometry. A key role is played by the Newton polytope of a statistical model. Our results are applied to the hidden Markov model and to the general Markov model on a binary tree.Comment: 14 pages, 3 figures. Major revision. Applications now in companion paper, "Parametric Inference for Biological Sequence Analysis

    Phase retrieval from very few measurements

    Full text link
    In many applications, signals are measured according to a linear process, but the phases of these measurements are often unreliable or not available. To reconstruct the signal, one must perform a process known as phase retrieval. This paper focuses on completely determining signals with as few intensity measurements as possible, and on efficient phase retrieval algorithms from such measurements. For the case of complex M-dimensional signals, we construct a measurement ensemble of size 4M-4 which yields injective intensity measurements; this is conjectured to be the smallest such ensemble. For the case of real signals, we devise a theory of "almost" injective intensity measurements, and we characterize such ensembles. Later, we show that phase retrieval from M+1 almost injective intensity measurements is NP-hard, indicating that computationally efficient phase retrieval must come at the price of measurement redundancy.Comment: 18 pages, 1 figur

    Parametric Inference for Biological Sequence Analysis

    Get PDF
    One of the major successes in computational biology has been the unification, using the graphical model formalism, of a multitude of algorithms for annotating and comparing biological sequences. Graphical models that have been applied towards these problems include hidden Markov models for annotation, tree models for phylogenetics, and pair hidden Markov models for alignment. A single algorithm, the sum-product algorithm, solves many of the inference problems associated with different statistical models. This paper introduces the \emph{polytope propagation algorithm} for computing the Newton polytope of an observation from a graphical model. This algorithm is a geometric version of the sum-product algorithm and is used to analyze the parametric behavior of maximum a posteriori inference calculations for graphical models.Comment: 15 pages, 4 figures. See also companion paper "Tropical Geometry of Statistical Models" (q-bio.QM/0311009

    Explicit excluded volume of cylindrically symmetric convex bodies

    Full text link
    We represent explicitly the excluded volume Ve{B1,B2} of two generic cylindrically symmetric, convex rigid bodies, B1 and B2, in terms of a family of shape functionals evaluated separately on B1 and B2. We show that Ve{B1,B2} fails systematically to feature a dipolar component, thus making illusory the assignment of any shape dipole to a tapered body in this class. The method proposed here is applied to cones and validated by a shape-reconstruction algorithm. It is further applied to spheroids (ellipsoids of revolution), for which it shows how some analytic estimates already regarded as classics should indeed be emended

    Phase Transitions in Phase Retrieval

    Full text link
    Consider a scenario in which an unknown signal is transformed by a known linear operator, and then the pointwise absolute value of the unknown output function is reported. This scenario appears in several applications, and the goal is to recover the unknown signal -- this is called phase retrieval. Phase retrieval has been a popular subject of research in the last few years, both in determining whether complete information is available with a given linear operator, and in finding efficient and stable phase retrieval algorithms in the cases where complete information is available. Interestingly, there are a few ways to measure information completeness, and each way appears to be governed by a phase transition of sorts. This chapter will survey the state of the art with some of these phase transitions, and identify a few open problems for further research.Comment: Book chapter, survey of recent literature, submitted to Excursions in Harmonic Analysis: The February Fourier Talks at the Norbert Wiener Cente

    Efficient Algorithms for Privately Releasing Marginals via Convex Relaxations

    Full text link
    Consider a database of nn people, each represented by a bit-string of length dd corresponding to the setting of dd binary attributes. A kk-way marginal query is specified by a subset SS of kk attributes, and a S|S|-dimensional binary vector β\beta specifying their values. The result for this query is a count of the number of people in the database whose attribute vector restricted to SS agrees with β\beta. Privately releasing approximate answers to a set of kk-way marginal queries is one of the most important and well-motivated problems in differential privacy. Information theoretically, the error complexity of marginal queries is well-understood: the per-query additive error is known to be at least Ω(min{n,dk2})\Omega(\min\{\sqrt{n},d^{\frac{k}{2}}\}) and at most O~(min{nd1/4,dk2})\tilde{O}(\min\{\sqrt{n} d^{1/4},d^{\frac{k}{2}}\}). However, no polynomial time algorithm with error complexity as low as the information theoretic upper bound is known for small nn. In this work we present a polynomial time algorithm that, for any distribution on marginal queries, achieves average error at most O~(ndk/24)\tilde{O}(\sqrt{n} d^{\frac{\lceil k/2 \rceil}{4}}). This error bound is as good as the best known information theoretic upper bounds for k=2k=2. This bound is an improvement over previous work on efficiently releasing marginals when kk is small and when error o(n)o(n) is desirable. Using private boosting we are also able to give nearly matching worst-case error bounds. Our algorithms are based on the geometric techniques of Nikolov, Talwar, and Zhang. The main new ingredients are convex relaxations and careful use of the Frank-Wolfe algorithm for constrained convex minimization. To design our relaxations, we rely on the Grothendieck inequality from functional analysis
    corecore