3,628 research outputs found

    Lower Bounds on Quantum Query and Learning Graph Complexities

    Get PDF
    In this thesis we study the power of quantum query algorithms and learning graphs; the latter essentially being very specialized quantum query algorithms themselves. We almost exclusively focus on proving lower bounds for these computational models. First, we study lower bounds on learning graph complexity. We consider two types of learning graphs: adaptive and, more restricted, non-adaptive learning graphs. We express both adaptive and non-adaptive learning graph complexities of Boolean-valued functions (i.e., decision problems) as semidefinite minimization problems, and derive their dual problems. For various functions, we construct feasible solutions to these dual problems, thereby obtaining lower bounds on the learning graph complexity of the functions. Most notably, we prove an almost optimal Omega(n^(9/7)/sqrt(log n)) lower bound on the non-adaptive learning graph complexity of the Triangle problem. We also prove an Omega(n^(1-2^(k-2)/(2^k-1))) lower bound on the adaptive learning graph complexity of the k-Distinctness problem, which matches the complexity of the best known quantum query algorithm for this problem. Second, we construct optimal adversary lower bounds for various decision problems. Our main procedure for constructing them is to embed the adversary matrix into a larger matrix whose properties are easier to analyze. This embedding procedure imposes certain requirements on the size of the input alphabet. We prove optimal Omega(n^(1/3)) adversary lower bounds for the Collision and Set Equality problems, provided that the alphabet size is at least Omega(n^2). An optimal lower bound for Collision was previously proven using the polynomial method, while our lower bound for Set Equality is new. (An optimal lower bound for Set Equality was also independently and at about the same time proven by Zhandry using the polynomial method [arXiv, 2013].) We compare the power of non-adaptive learning graphs and quantum query algorithms that only utilize the knowledge on the possible positions of certificates in the input string. To do that, we introduce a notion of a certificate structure of a decision problem. Using the adversary method and the dual formulation of the learning graph complexity, we show that, for every certificate structure, there exists a decision problem possessing this certificate structure such that its non-adaptive learning graph and quantum query complexities differ by at most a constant multiplicative factor. For a special case of certificate structures, we construct a relatively general class of problems having this property. This construction generalizes the adversary lower bound for the k-Sum problem derived recently by Belovs and Spalek [ACM ITCS, 2013]. We also construct an optimal Omega(n^(2/3)) adversary lower bound for the Element Distinctness problem with minimal non-trivial alphabet size, which equals the length of the input. Due to the strict requirement on the alphabet size, here we cannot use the embedding procedure, and the construction of the adversary matrix heavily relies on the representation theory of the symmetric group. While an optimal lower bound for Element Distinctness using the polynomial method had been proven for any input alphabet, an optimal adversary construction was previously only known for alphabets of size at least Omega(n^2). Finally, we introduce the Enhanced Find-Two problem and we study its query complexity. The Enhanced Find-Two problem is, given n elements such that exactly k of them are marked, find two distinct marked elements using the following resources: (1) one initial copy of the uniform superposition over all marked elements, (2) an oracle that reflects across this superposition, and (3) an oracle that tests if an element is marked. This relational problem arises in the study of quantum proofs of knowledge. We prove that its query complexity is Theta(min{sqrt(n/k),sqrt(k)})

    Adversary Lower Bound for Element Distinctness with Small Range

    Full text link
    The Element Distinctness problem is to decide whether each character of an input string is unique. The quantum query complexity of Element Distinctness is known to be Θ(N2/3)\Theta(N^{2/3}); the polynomial method gives a tight lower bound for any input alphabet, while a tight adversary construction was only known for alphabets of size Ω(N2)\Omega(N^2). We construct a tight Ω(N2/3)\Omega(N^{2/3}) adversary lower bound for Element Distinctness with minimal non-trivial alphabet size, which equals the length of the input. This result may help to improve lower bounds for other related query problems.Comment: 22 pages. v2: one figure added, updated references, and minor typos fixed. v3: minor typos fixe

    A New Quantum Lower Bound Method, with Applications to Direct Product Theorems and Time-Space Tradeoffs

    Full text link
    We give a new version of the adversary method for proving lower bounds on quantum query algorithms. The new method is based on analyzing the eigenspace structure of the problem at hand. We use it to prove a new and optimal strong direct product theorem for 2-sided error quantum algorithms computing k independent instances of a symmetric Boolean function: if the algorithm uses significantly less than k times the number of queries needed for one instance of the function, then its success probability is exponentially small in k. We also use the polynomial method to prove a direct product theorem for 1-sided error algorithms for k threshold functions with a stronger bound on the success probability. Finally, we present a quantum algorithm for evaluating solutions to systems of linear inequalities, and use our direct product theorems to show that the time-space tradeoff of this algorithm is close to optimal.Comment: 16 pages LaTeX. Version 2: title changed, proofs significantly cleaned up and made selfcontained. This version to appear in the proceedings of the STOC 06 conferenc

    Quantum Zero-Error Algorithms Cannot be Composed

    Get PDF
    We exhibit two black-box problems, both of which have an efficient quantum algorithm with zero-error, yet whose composition does not have an efficient quantum algorithm with zero-error. This shows that quantum zero-error algorithms cannot be composed. In oracle terms, we give a relativized world where ZQP^{ZQP}\=ZQP, while classically we always have ZPP^{ZPP}=ZPP.Comment: 7 pages LaTeX. 2nd version slightly rewritte

    Optimal quantum algorithm for polynomial interpolation

    Get PDF
    We consider the number of quantum queries required to determine the coefficients of a degree-d polynomial over GF(q). A lower bound shown independently by Kane and Kutin and by Meyer and Pommersheim shows that d/2+1/2 quantum queries are needed to solve this problem with bounded error, whereas an algorithm of Boneh and Zhandry shows that d quantum queries are sufficient. We show that the lower bound is achievable: d/2+1/2 quantum queries suffice to determine the polynomial with bounded error. Furthermore, we show that d/2+1 queries suffice to achieve probability approaching 1 for large q. These upper bounds improve results of Boneh and Zhandry on the insecurity of cryptographic protocols against quantum attacks. We also show that our algorithm's success probability as a function of the number of queries is precisely optimal. Furthermore, the algorithm can be implemented with gate complexity poly(log q) with negligible decrease in the success probability. We end with a conjecture about the quantum query complexity of multivariate polynomial interpolation.Comment: 17 pages, minor improvements, added conjecture about multivariate interpolatio

    Semidefinite programming characterization and spectral adversary method for quantum complexity with noncommuting unitary queries

    Get PDF
    Generalizing earlier work characterizing the quantum query complexity of computing a function of an unknown classical ``black box'' function drawn from some set of such black box functions, we investigate a more general quantum query model in which the goal is to compute functions of N by N ``black box'' unitary matrices drawn from a set of such matrices, a problem with applications to determining properties of quantum physical systems. We characterize the existence of an algorithm for such a query problem, with given error and number of queries, as equivalent to the feasibility of a certain set of semidefinite programming constraints, or equivalently the infeasibility of a dual of these constraints, which we construct. Relaxing the primal constraints to correspond to mere pairwise near-orthogonality of the final states of a quantum computer, conditional on black-box inputs having distinct function values, rather than bounded-error determinability of the function value via a single measurement on the output states, we obtain a relaxed primal program the feasibility of whose dual still implies the nonexistence of a quantum algorithm. We use this to obtain a generalization, to our not-necessarily-commutative setting, of the ``spectral adversary method'' for quantum query lower bounds.Comment: Dagstuhl Seminar Proceedings 06391, "Algorithms and Complexity for Continuous Problems," ed. S. Dahlke, K. Ritter, I. H. Sloan, J. F. Traub (2006), available electronically at http://drops.dagstuhl.de/portals/index.php?semnr=0639

    Quantum Weakly Nondeterministic Communication Complexity

    Full text link
    We study the weakest model of quantum nondeterminism in which a classical proof has to be checked with probability one by a quantum protocol. We show the first separation between classical nondeterministic communication complexity and this model of quantum nondeterministic communication complexity for a total function. This separation is quadratic.Comment: 12 pages. v3: minor correction
    corecore