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Abstract

In this thesis we study the power of quantum query algorithms and learning graphs; the latter
essentially being very specialized quantum query algorithms themselves. We almost exclusively
focus on proving lower bounds for these computational models.

First, we study lower bounds on learning graph complexity. We consider two types of learning
graphs: adaptive and, more restricted, non-adaptive learning graphs. We express both adaptive
and non-adaptive learning graph complexities of Boolean-valued functions (i.e., decision problems)
as semidefinite minimization problems, and derive their dual problems. For various functions, we
construct feasible solutions to these dual problems, thereby obtaining lower bounds on the learn-
ing graph complexity of the functions. Most notably, we prove an almost optimal Ω(n9/7/

√
log n)

lower bound on the non-adaptive learning graph complexity of the Triangle problem. We
also prove an Ω(n1−2k−2/(2k−1)) lower bound on the adaptive learning graph complexity of the
k-Distinctness problem, which matches the complexity of the best known quantum query al-
gorithm for this problem.

Second, we construct optimal adversary lower bounds for various decision problems. Our main
procedure for constructing them is to embed the adversary matrix into a larger matrix whose
properties are easier to analyze. This embedding procedure imposes certain requirements on the
size of the input alphabet. We prove optimal Ω(n1/3) adversary lower bounds for the Collision
and Set Equality problems, provided that the alphabet size is at least Ω(n2). An optimal lower
bound for Collision was previously proven using the polynomial method, while our lower bound
for Set Equality is new. (An optimal lower bound for Set Equality was also independently
and at about the same time proven by Zhandry using the polynomial method [arXiv, 2013].)

We compare the power of non-adaptive learning graphs and quantum query algorithms that
only utilize the knowledge on the possible positions of certificates in the input string. To do
that, we introduce a notion of a certificate structure of a decision problem. Using the adversary
method and the dual formulation of the learning graph complexity, we show that, for every
certificate structure, there exists a decision problem possessing this certificate structure such that
its non-adaptive learning graph and quantum query complexities differ by at most a constant
multiplicative factor. For a special case of certificate structures, we construct a relatively general
class of problems having this property. This construction generalizes the adversary lower bound
for the k-Sum problem derived recently by Belovs and Špalek [ACM ITCS, 2013].

We also construct an optimal Ω(n2/3) adversary lower bound for the Element Distinctness
problem with minimal non-trivial alphabet size, which equals the length of the input. Due to the
strict requirement on the alphabet size, here we cannot use the embedding procedure, and the
construction of the adversary matrix heavily relies on the representation theory of the symmetric
group. While an optimal lower bound for Element Distinctness using the polynomial method
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had been proven for any input alphabet, an optimal adversary construction was previously only
known for alphabets of size at least Ω(n2).

Finally, we introduce the Enhanced Find-Two problem and we study its query complexity.
The Enhanced Find-Two problem is, given n elements such that exactly k of them are marked,
find two distinct marked elements using the following resources: (1) one initial copy of the uniform
superposition over all marked elements, (2) an oracle that reflects across this superposition, and
(3) an oracle that tests if an element is marked. This relational problem arises in the study of

quantum proofs of knowledge. We prove that its query complexity is Θ(min{
»
n/k,

√
k}).
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Molina, and Robert Špalek for fruitful discussions and useful comments regarding my work. I
thank Andrew Childs, Richard Cleve, Frédéric Magniez, Ashwin Nayak, and John Watrous for
being on my PhD thesis committee, reading this thesis, and providing me with useful comments
that helped me to improve it.

I would like to thank the faculty and students at the Institute for Quantum Computing for
invaluable group and personal meetings, which broadened my knowledge on the field and gave
me many ideas for my research. I have spent a portion of my studies as a visitor to Laboratoire
d’Informatique Algorithmique: Fondements et Applications in Paris, the University of Latvia in
Riga, and the Centre for Quantum Technologies in Singapore, and I would like to thank these
institutions for their hospitality.

I also thank Canada for its hospitality. Over the years of my graduate studies, I have met
many people that have made my days here very colorful. You are too many to name, and I thank
you all. I would also like to thank my family, my dad and my two sisters, for their support.

For the financial support, I thank Mike and Ophelia Lazaridis Fellowship, David R. Cheriton
Graduate Scholarship, and the US ARO.

v



Table of Contents

List of Tables xi

List of Figures xii

Introduction 1

I Preliminaries 8

1 Mathematical preliminaries 9

1.1 Linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Semidefinite programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Linear group representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Basics of group theory and the symmetric group . . . . . . . . . . . . . . . 12

1.3.2 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.3 Subrepresentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.4 Transporter bases of isotypical subspaces . . . . . . . . . . . . . . . . . . . 15

1.3.5 Character theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.6 Group action and regular representations . . . . . . . . . . . . . . . . . . . 18

1.3.7 Restricted and induced representations . . . . . . . . . . . . . . . . . . . . . 19

1.3.8 Composition of representations . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Representation theory of the symmetric group . . . . . . . . . . . . . . . . . . . . . 20

vi



1.4.1 Young diagrams and Young tableaux . . . . . . . . . . . . . . . . . . . . . . 21

1.4.2 Specht modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.3 Induction and restriction of representations . . . . . . . . . . . . . . . . . . 25

1.4.4 The orthogonal form of Sλ . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4.5 Decomposition of inner tensor products . . . . . . . . . . . . . . . . . . . . 29

1.4.6 Representation theory of the unitary group . . . . . . . . . . . . . . . . . . 30

1.5 Association schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.5.1 Hamming scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.5.2 Johnson scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 Quantum query complexity 34

2.1 Computational problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.1 Common computational problems . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.2 Certificates for decision problems . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 Quantum query algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.1 Registers and states of the computation . . . . . . . . . . . . . . . . . . . . 40

2.2.2 Automorphisms of problems and symmetrization . . . . . . . . . . . . . . . 43

2.2.3 Algorithms with an input register . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2.4 Symmetries of the input register . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3 Adversary bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.1 Intuition behind the bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3.2 Simplification tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3.3 Structure of adversary constructions . . . . . . . . . . . . . . . . . . . . . . 56

2.3.4 Limitations of positive-weights adversary bound . . . . . . . . . . . . . . . 59

2.4 Span programs and learning graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

vii



II Results 65

3 Lower bounds on learning graph complexity 66

3.1 Learning graph complexity as a semidefinite program . . . . . . . . . . . . . . . . . 66

3.1.1 SDPs for adaptive learning graph complexity . . . . . . . . . . . . . . . . . 66

3.1.2 SDPs for learning graph complexity of certificate structures . . . . . . . . . 70

3.2 Learning graph complexity of certificate structures . . . . . . . . . . . . . . . . . . 72

3.2.1 Lower bounds for the k-subset and hidden shift certificate structures . . . . 73

3.2.2 Lower bound for the triangle certificate structure . . . . . . . . . . . . . . . 74

3.3 Lower bounds on adaptive learning graph complexity . . . . . . . . . . . . . . . . . 78

3.3.1 Adaptive learning graph complexity of the And function . . . . . . . . . . . 78

3.3.2 Adaptive learning graph complexity of k-Distinctness . . . . . . . . . . . . 78

4 Adversary bounds using matrix embedding 83

4.1 Adversary bound for Element Distinctness . . . . . . . . . . . . . . . . . . . . . . . 84

4.1.1 Construction of the adversary matrix . . . . . . . . . . . . . . . . . . . . . . 85

4.1.2 Bounding ‖∆1 ◦ Γ̃′‖ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1.3 Bounding ‖∆n ◦ Γ̃′′‖. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1.4 Removal of illegal columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Adversary lower bounds for the Collision and Set Equality problems . . . . . . . . 90

4.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.2 Simple yet unsuccessful construction . . . . . . . . . . . . . . . . . . . . . . 92

4.2.3 Successful construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.4 Removal of illegal rows and columns . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Adversary bounds for certificate structures . . . . . . . . . . . . . . . . . . . . . . 97

4.3.1 Outline of the lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.2 Common parts of the proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3.3 Comparison to adversary constructions of Sections 4.1 and 4.2 . . . . . . . 101

4.3.4 Boundedly generated certificate structures . . . . . . . . . . . . . . . . . . . 102

4.3.5 General certificate structures . . . . . . . . . . . . . . . . . . . . . . . . . . 104

viii



5 Adversary bound for Element Distinctness with small range 109

5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Building blocks of Γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2.1 Decomposition of U and V into irreps . . . . . . . . . . . . . . . . . . . . . 111

5.2.2 Γ as a linear combination of transporters . . . . . . . . . . . . . . . . . . . 113

5.3 Specification of Γ via Γ1,2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3.1 Necessary and sufficient symmetries of Γ1,2 . . . . . . . . . . . . . . . . . . 114

5.3.2 Labeling of projectors and transporters . . . . . . . . . . . . . . . . . . . . 116

5.3.3 Decomposition of Γ1,2 into projectors and transporters . . . . . . . . . . . . 116

5.4 Tools for estimating ‖∆1 ◦ Γ‖ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4.1 Division of ∆1 ◦ Γ into two parts . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4.2 Commutativity with the action of ∆i . . . . . . . . . . . . . . . . . . . . . 118

5.4.3 Relations among irreps of S[3..n] × SΣ within an isotypical subspace . . . . 118

5.4.4 Relations among irreps of S[4..n] × SΣ within an isotypical subspace . . . . 119

5.4.5 Summing the permutations of (∆1 ◦ Γ1,2)∗(∆1 ◦ Γ1,2) . . . . . . . . . . . . 120

5.5 Construction of the optimal adversary matrix . . . . . . . . . . . . . . . . . . . . . 121

5.5.1 Approximate action of ∆i . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.5.2 Bounding ‖∆1 ◦ Γ′‖ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.5.3 Bounding ‖∆1 ◦ Γ′′‖ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6 Lower bound for the Enhanced Find-Two problem 127

6.1 Framework of the lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.1.1 Proof of Lemma 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.1.2 Proof of Lemma 6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2 Proof of Lemma 6.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.2.1 Decomposition of XIQ into irreps . . . . . . . . . . . . . . . . . . . . . . . . 136

6.2.2 Necessary and sufficient conditions for the irrep S(n−1,1) . . . . . . . . . . . 139

6.2.3 Solution for the irreps S(n−2,2) and S(n−2,1,1) . . . . . . . . . . . . . . . . . 141

6.2.4 Solution for the irrep S(n−1,1) . . . . . . . . . . . . . . . . . . . . . . . . . . 142

ix



Conclusion 144

References 146

APPENDICES 152

A Proofs of lemmas in Section 4.2 153

A.1 Proof of Lemma 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.2 Proof of Lemma 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A.3 Proof of Lemma A.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

B Necessary conditions on the adversary matrix for Element Distinctness with
small range 163

B.1 Action of ∆i on Πλ
λ and transporters . . . . . . . . . . . . . . . . . . . . . . . . . . 163

B.2 Necessary conditions for ‖∆1 ◦ Γ‖ = O(1) . . . . . . . . . . . . . . . . . . . . . . . 164

B.3 Proof of Claim 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

x



List of Tables

1.1 The number of standard tableaux of shape λ for the last seven λ in the lexico-
graphical order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1 Available operators for the construction of Γ. We distinguish three cases: both λ
and ν are the same below the first row (label “X0”), λ has one box more below
the first row than ν (label “XX1”), λ has two boxes more below the first row than
ν (labels “X2” and “XX2”). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xi



List of Figures

1.1 The Young diagram corresponding to the partition (5, 3, 3, 2). . . . . . . . . . . . . 21

1.2 Hook lengths of the boxes of the Young diagrams (5, 3, 3, 2) (left) and (m − 3, 3)
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 A standard (left) and a non-standard (right) Young tableau of shape (5, 3, 3, 2). . . 22

1.4 A tabloid of shape (2, 2, 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5 The last letter order of the standard tableaux of shape (3, 2). . . . . . . . . . . . . 27

1.6 The generating matrices of the orthogonal form ω(3,2). (Here we have omitted
entries 0.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 The circuit diagram of the standard quantum oracle. For the sake of conciseness,
in circuit diagrams we write Ox instead of O(x). . . . . . . . . . . . . . . . . . . . 41

2.2 The circuit diagram of a generic quantum query algorithm. . . . . . . . . . . . . . 42

2.3 Unitary transformations of the symmetrized algorithm Ā: (top) the transformation
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Introduction

Quantum query complexity and learning graphs

In quantum computation, one of the main questions that we are interested in is: What is the quan-
tum circuit complexity of a given computational problem? This question is hard to answer, and so
we consider an alternative question: What is the quantum query complexity of the problem? For
many problems, it is seemingly easier to upper and lower bound the number of times an algorithm
requires to access the input rather than to bound the number of elementary quantum operations
required by the algorithm. Nonetheless, the study of the quantum query complexity can give us
great insights for the quantum circuit complexity. For example, a query-efficient algorithm for Si-
mon’s Problem [Sim97] helped Shor to develop a time-efficient algorithm for factoring [Sho97].
On the other hand, Ω((n/ log n)1/5) and Ω(n1/2) lower bounds on the (bounded-error) quantum
query complexity of the Set Equality [Mid04] and the Index Erasure [AMRR11] problems,
respectively, ruled out certain approaches for constructing time-efficient quantum algorithms for
the Graph Isomorphism problem.

Currently, two main techniques for proving lower bounds on quantum query complexity are
the polynomial method developed by Beals, Buhrman, Cleve, Mosca, and de Wolf [BBC+01], and
the adversary method originally developed by Ambainis [Amb02] in what later became known as
the positive-weights adversary method. The adversary method was later strengthened by Høyer,
Lee, and Špalek [HLŠ07] by allowing negative weights in the adversary matrix. In recent re-
sults [Rei11, LMR+11], Lee, Mittal, Reichardt, Špalek, and Szegedy showed that, unlike the
polynomial method [Amb03], the general (i.e., strengthened) adversary method can give optimal
lower bounds for all function-evaluation problems.

The optimality of the adversary method was proven by, first, expressing the adversary bound
as a semidefinite program and, then, showing that each feasible solution of its dual program yields
a quantum query algorithm whose query complexity equals the objective value of the program.
Soon afterwards, Belovs introduced the computational model of learning graph [Bel12d], which
can be translated into such a feasible solution and, thus, in turn, into a quantum query algorithm.
In a series of works that followed [BL11, Zhu12, LMS12, Bel12c, LMS13], learning graphs and
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their generalizations improved upon previously best-known quantum query algorithms for various
query problems. The learning graph complexity of a problem is the minimum among complexities
of all learning graphs for the problem.

Motivation, results, and relevance

Collision and Set Equality. Once it was proven that the adversary method can always give
optimal bounds, a natural question arose: How to use it effectively? A good starting point is to
consider problems for which we do not know yet how to construct adversary bounds that would
match lower bounds obtained by other methods. Because, if one knows what bound is attainable,
one is more likely to succeed at attaining it. For about a decade, Element Distinctness and
Collision were prime examples of such problems. Given an input string z ∈ Σn, the Element
Distinctness problem is to decide whether each character of z is unique, and the Collision
problem is its special case given a promise that each character of z is either unique or appears in
z exactly twice.

The quantum query complexity of these two problems is known. Brassard, Høyer, and Tapp
first gave an O(n1/3) quantum query algorithm for Collision [BHT98]. Aaronson and Shi
then gave a matching Ω(n1/3) lower bound for Collision via the polynomial method, requir-
ing that |Σ| ≥ 3n/2 [AS04] (Aaronson [Aar02] gave the first non-trivial lower bound, Ω(n1/5),
which was then improved by Shi [Shi02]). Due to a particular reduction from Collision to
Element Distinctness, their lower bound also implied an Ω(n2/3) lower bound for Element
Distinctness, requiring that |Σ| = Ω(n2). Subsequently, Kutin (for Collision) and Ambainis
(for both) removed these requirements on the alphabet size [Kut05, Amb05]. Finally, Ambainis
gave an O(n2/3) quantum query algorithm for Element Distinctness based on a quantum walk
[Amb07], thus improving the best previously known O(n3/4) upper bound [BDH+05].

The first of these problems “to fall” was Element Distinctness: Belovs gave an Ω(n2/3)
adversary bound for the problem when |Σ| = Ω(n2) [Bel12b]. (Due to the certificate complexity
barrier [Zha05, ŠS06], the positive-weights adversary method fails to give a better lower bound
than Ω(n1/2).) As hoped, this new insight on the usage of the adversary method turned out to
be very useful, and only a few months later Belovs and Špalek gave a tight Ω(nk/(k+1)) adversary
bound for the k-Sum problem [BŠ13], improving over the best previously known lower bound. The
k-Sum problem is, given a constant k and assuming that Σ is an additive group, to decide whether
there exist k numbers among n that sum up to 0. Similarly to Element Distinctness, their
lower bound also required that the alphabet size is sufficiently large, in particular, |Σ| = Ω(nk).

Regarding the Collision problem, the hope was that a tight adversary bound for it would
help to prove the same lower bound for the closely related Set Equality problem, which is
a special case of Collision given an extra promise that each character of the first half (and,
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thus, the second half) of the input string is unique. Shi conjectured Set Equality to be as
hard as Collision [Shi02]. Unfortunately, the Ω(n1/3) lower bound for Collision obtained via
the polynomial method did not generalize to Set Equality. The best known lower bound for
Set Equality was given by Midrijānis, who showed an Ω((n/ log n)1/5) lower bound using a
combination of the positive-weights adversary and the polynomial methods [Mid04]. Due to the
property testing barrier [HLŠ07], on its own, the positive-weights adversary fails to give a better
lower bound for Collision and Set Equality than the trivial Ω(1).

In this thesis, we construct tight Ω(n1/3) adversary bounds for both Collision and Set
Equality, assuming that |Σ| = Ω(n2). This work was done in collaboration with Aleksan-
drs Belovs, and it appears in Ref. [BR14]. Independently and at about the same time, the
Ω(n1/3) lower bound for Set Equality was also proven by Zhandry [Zha13] using machinery
from Ref. [Zha12] based on the polynomial method. (Zhandry’s lower bound does not require
any assumptions on the alphabet size.) Thus, Shi’s conjecture is resolved affirmatively. The
lower bound for the Set Equality problem was used by Aaronson and Ambainis in their proof
of the polynomial relation between the randomized and quantum query complexities of partial,
permutation-invariant functions [AA11]. By improving the lower bound, we automatically im-
prove the exponent in their result, as explained in their paper.

Interestingly, our adversary constructions for the Collision and Set Equality problems
are almost identical, suggesting that the adversary method can be easier adopted for a specific
function, as soon as a lower bound for a similar function is obtained. This is in contrast to the
polynomial method, as more than ten years separated Shi’s and Zhandry’s results. Also, to the
best of our knowledge, our application of the adversary method is the first that supersedes the
property testing barrier.

Element Distinctness with small alphabet. When the adversary bound was strengthened
by allowing negative weights in the adversary matrix, it was not immediately clear how to take
advantage of these negative weights. Unlike with positive weights only, when the weight corre-
sponding to a pair of inputs generally indicated how hard it is to distinguish between the two
inputs, it was not clear how to interpret the sign of the weight. One of the first applications of
the adversary method that truly exploited negative weights was for the Index Erasure problem
[AMRR11]. In this purely quantum problem, given an injective function, one is asked to generate
a uniform superposition over its image.

In Ref. [HLŠ07], Høyer, Lee, and Špalek also showed that, without loss of generality, one
can assume that the adversary matrix respects symmetries of the problem—this is known as the
automorphism principle. Ambainis, Magnin, Rötteler, and Roland built the adversary matrix
for Index Erasure using the symmetries given by the automorphism principle, in particular,
they expressed it as a linear combination of projectors on certain irreducible representations of
the symmetric group. From this viewpoint, the difference between the general and the positive-
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weighted adversary methods is that, in the former, one can construct the adversary matrix as
any real linear combination of these projectors (in the latter, only certain linear combinations are
permitted). And one does not even attempt to calculate what are the entries of the adversary
matrix, and which of them are positive and which negative. Seeing the adversary matrix as a
linear combination of such projectors also highly simplified the evaluation of the spectral norms
of the adversary matrix and its entry-wise matrix products with the difference matrices ∆i, the
norms that are essential to the adversary bound.

In this thesis, we develop a similar, representation-theory-inspired construction for the El-
ement Distinctness problem with minimal non-trivial alphabet size, that is, |Σ| = n. This
work appears in Ref. [Ros14]. Even though a tight adversary bound for Element Distinctness
was already given by Belovs, the present result has a potential importance. For example, for
lower bounding the quantum query complexity of the k-Distinctness problem, which, given a
constant k, asks to decide whether the input string contains some character at least k times.
Belovs’ adversary bound for Element Distinctness (as well as the adversary bounds for k-
Sum, Collision, and Set Equality mentioned above) uses the technique of embedding the
adversary matrix in a larger matrix, and this technique has certain limitations:

• It requires that a random string in Σn is a negative input of the problem with a high
probability. This requirement, in turn, imposes restrictions on the size of the alphabet: for
example, |Σ| = Ω(n2) for Element Distinctness, Collision, and Set Equality, and
|Σ| = Ω(nk) for k-Sum.

• It seems to require that, with a high probability, a random negative input is “hard”. How-
ever, the hardest negative inputs for k-Distinctness, for example, seem to be the ones in
which each character appears k − 1 times, and a randomly chosen negative input is such
only with a minuscule probability. This might be a reason why an Ω(n2/3) adversary bound
for k-Distinctness [Špa13] based on the technique of the embedding does not narrow the

gap to the best known upper bound, O(n1−2k−2/(2k−1)) [Bel12c]. (The Ω(n2/3) lower bound
was already known previously via the reduction from Element Distinctness attributed
to Aaronson in Ref. [Amb07].)

Here we construct an adversary bound for Element Distinctness in the most general
setting, only assuming that it satisfies the symmetries given by the automorphism principle, which
is without loss of generality. Due to the optimality of the general adversary method, we know that
one can construct a tight adversary bound for k-Distinctness that satisfies these symmetries,
and the hope is that our construction for Element Distinctness might give insights in how
to do that. We also hope that, due to similarities between Element Distinctness and k-Sum,
this construction might help to reduce the required alphabet size in the Ω(nk/(k+1)) lower bound
for k-Sum.
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Other techniques utilizing representation theory. As evidenced by our adversary bounds
for Collision, Set Equality, and Element Distinctness, and the adversary bound for In-
dex Erasure in Ref. [AMRR11], the representation theory of the symmetric group is a powerful
toolkit for handling symmetries of a problem when studying its quantum query complexity. Re-
cently, Belovs also used the representation theory of the symmetric group when studying the
junta learning problem [Bel14]. In this thesis, we present yet another of its applications when we
study the query complexity of the Enhanced Find-Two problem. This work was done in col-
laboration with Andris Ambainis and Dominique Unruh, and it appears in Ref. [ARU14], where
it is explained how Enhanced Find-Two arises in the study of quantum proofs of knowledge.

The Enhanced Find-Two problem is defined as follows. Given n elements such that exactly
k of them are marked, the problem is to find two distinct marked elements using the following
resources: (1) one initial copy of the uniform superposition over all marked elements, (2) an oracle
that reflects across this superposition, and (3) an oracle that tests if an element is marked.

There are two reasons why the adversary method cannot address Enhanced Find-Two.
First of all, this is a relational problem, not a function evaluation; namely, every valid input has
multiple correct solutions. And, second, the proof of the adversary bound does not address non-
standard oracles (in this case, the reflection oracle (2)). Nonetheless, by borrowing some ideas
from the proof of the adversary bound and using the representation theory of the symmetric
group, we prove that the query complexity of Enhanced Find-Two is Θ(min{

»
n/k,

√
k}), the

upper bound coming, essentially, from the Gorver’s search [Gro96, BBHT98].

Learning graph complexity. There are two general types of learning graphs, non-adaptive
and adaptive, the latter being more powerful, yet more complex. Further generalizations of
learning graphs have been considered—most notably, in the best known quantum query algorithm
for the k-Distinctness problem [Bel12c]—but they are problem-specific.

The original adversary bound for Element Distinctness was inspired by an Ω(n2/3) lower
bound on its non-adaptive learning graph complexity [Bel12a]. In a collaboration with Aleksandrs
Belovs, we introduce a general method for giving lower bounds on the non-adaptive learning
graph complexity. Our work appears in Ref. [BR13a]. Our method is based on expressing the
non-adaptive learning graph complexity as a semidefinite program and constructing dual (non-
adaptive) learning graphs, that is, feasible solutions to the dual semidefinite program.

We use this method to show that the non-adaptive learning graph complexity of the Triangle
problem, which is to decide if an n-vertex graph contains a triangle, is at least Ω(n9/7/

√
log n).

This is almost optimal because, recently before this result, a non-adaptive learning graph for
Triangle of complexity O(n9/7) was given by Lee, Magniez, and Santha [LMS13]. Thus we
prove that, if one wants to improve upon their algorithm for Triangle, one has to look beyond
the model of non-adaptive learning graph. Very recently this has been done by Le Gall [LG14],
who gave an O(n5/4) quantum query algorithm for Triangle based on quantum walks. (The
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previous two improvements—O(n35/27) [Bel12d] and O(n9/7) [LMS13]—were obtained using non-
adaptive learning graphs. An O(n9/7) quantum query algorithm based on nested quantum walks
was also later discovered by Jeffery, Kothari, and Magniez [JKM13].)

In our work, we also show that non-adaptive learning graphs are exactly as powerful as quan-
tum query algorithms that only look for complete 1-certificates in the input, disregarding any
additional structure of the problem. To formalize this statement, we introduce the certificate
structure of a problem, which describes possible positions of 1-certificates in an input of the prob-
lem. The non-adaptive learning graph complexity of the problem depends only on its certificate
structure. For every certificate structure, we construct a problem having this certificate structure
whose non-adaptive learning graph and quantum query complexities are the same. (For lower
bounding its quantum query complexity, we construct an optimal adversary matrix based on
a dual learning graph.) For a special case of certificate structures generated by certificates of
bounded size, one can choose this problem to be the correpsonding Certificate-Sum problem.
This generalizes the adversary bound for the k-Sum problem from Ref. [BŠ13].

In this thesis we also present work on adaptive learning graph complexity. This work was
done in collaboration with Troy Lee, Miklos Santha, and Aarthi Sundaram, and it is currently
unpublished. As for non-adaptive learning graphs before, we express adaptive learning graph
complexity as a semidefinite program, and consider its dual program. This way, we show that the
adaptive learning graph complexity of the k-Distinctness problem is Ω(n1−2k−2/(2k−1)). Since
there is a way how to construct adversary bounds from non-adaptive dual learning graphs, the
hope is that something similar can be done in the adaptive case and this lower bound on the
adaptive learning graph complexity of k-Distinctness might help to improve lower bounds on
its quantum query complexity.

Organization of the thesis

This thesis is divided into two parts: Part I, in which we introduce the necessary preliminaries,
and Part II, in which we describe the original results. Some of the more technical proofs are also
left to appendices.

Part I – Preliminaries. In Chapter 1 we introduce basic mathematical concepts and notation
that we use is this thesis. Here we also introduce basics of the representation theory of the
symmetric group, and obtain some results necessary in the later chapters. In Chapter 2 we
introduce quantum query algorithms and describe the process of their symmetrization, as well as
the basic idea behind the adversary method. Here we also introduce learning graphs.

Part II – Results. In Chapter 3 we study the non-adaptive and adaptive learning graph com-
plexities. We first express these complexities as semidefinite programs, then we obtain their dual
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programs, and then we use the dual programs to obtain lower bounds on the learning graph com-
plexity of various problems. In Chapter 4 we construct adversary bounds based on the technique
of embedding adversary matrices into larger matrices. We first recall Belovs’ construction for
Element Distinctness, which pioneered this approach, in Section 4.1 . Then, in Section 4.2,
we construct adversary bounds for Collision and Set Equality and, in Section 4.3, we con-
struct adversary bounds for certificate structures based on dual non-adaptive learning graphs.
In Chapter 5 we construct an adversary bound for Element Distinctness with minimal non-
trivial alphabet size. Finally, in Chapter 6 we prove tight bounds for the Enhanced Find-Two
problem.
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Chapter 1

Mathematical preliminaries

Let N, Z, R, and C denote the set of positive integers, integers, real numbers, and complex
numbers, respectively. For a complex number a, let |a| and a denote, respectively, its absolute
value and its complex conjugate. For integers ` and m ≥ `, let [`..m] denote the set {`, ` +
1, . . . ,m}, and let [m] be a shorthand for [1..m] (sometimes we still use the latter notation). The
power set 2[n] is the set of all 2n subsets of [n].

Let t denote the disjoint union of sets, which we associate with the concept of a decomposition
of a set. Throughout the thesis, we use “:=” instead of “=” in equations that define or assign a
value to the term on the left hand side of “:=”. We use “∼=” to denote isomorphism.

We call every finite nonempty set denoted by Σ an alphabet. Given a string x over Σ, we use
both xi and x[[i]] to denote its i-th entry. For a string x ∈ Σn and S ⊆ [n], let xS ∈ Σ|S| denote
the projection (or restriction) of x on S, i.e., the string (x[[i1]], . . . , x[[i`]]) indexed by the elements
i1, . . . , i` of S. Suppose Σ is equipped with a total ordering ‘<’. For two strings x and y over Σ,
we say that x comes before y in the lexicographical order and we write x < y if, for i being the
first position at which x and y differ, x[[i]] < y[[i]].

1.1 Linear algebra

We assume that the reader is familiar with basic concepts of linear algebra like finite-dimensional
Hilbert spaces, eigenvalues and eigenvectors, singular value decompositions, direct sums and
tensor products, and normal, unitary, Hermitian, and positive semidefinite operators just to
name a few. (For a reference, see, for example, [Bha97, Chapter I]). The main purpose of this
section is to introduce the notation that we will be using throughout the thesis.

Every Hilbert space in this thesis is assumed to be finite-dimensional. Let Rd and Cd denote
the d-dimensional real and complex Hilbert spaces, respectively. We think of elements v ∈ Cn
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as column vectors. Unless stated otherwise, the Hilbert spaces we consider are thought to be
complex.

Suppose X and Y are Hilbert spaces. Let L(X ,Y) be the space of linear maps from X to Y, and
let L(X ) := L(X ,X ) be the space of linear operators on X . Let GL(X ) and U(X ) be, respectively,
the set of invertible and unitary linear operators on X . GL(X ) is called the general linear group
of X , and its subgroup U(X ) is called the unitary group of X . Let Tr: L(X )→ C denote the trace
and TrY : L(X ⊗ Y) → L(X ) denote the partial trace. The equality Tr(AB) = Tr(BA) is called
the cyclic property of the trace.

Given a vector v ∈ X , let ‖v‖ denote its Euclidean norm. And, given a linear mapA ∈ L(X ,Y),
let ‖A‖ := maxv∈X ‖Av‖/‖v‖ denote its spectral norm, which equals the largest singular value of
A. The spectral norm is the only matrix norm considered in this thesis. Let v∗ and A∗ denote the
conjugate transpose of v and A respectively. We think of v∗ as a row vector. Let 〈v, w〉 := v∗w
denote the inner product of two vectors u and v. The Cauchy–Schwarz inequality states that
|〈v, w〉| ≤ ‖v‖ · ‖w‖. Two maps A,B ∈ L(X ,Y) are orthogonal if both A∗B = 0 and AB∗ = 0,
and we write A ⊥ B (note: our requirement for orthogonality is stronger than Tr(A∗B) = 0).

Let A � 0 denote that an operator A is positive semidefinite. Let A � B stand for A−B � 0;
one calls � the semidefinite inequality. For a normal operator A, the support of A is the space
spanned by all the eigenvectors of A corresponding to non-zero eigenvalues.

Let dimX denote the dimension of a Hilbert space X , and suppose d = dimX . We use both
IX and Id denote the identity operator on X . Given a subspace Y ⊆ X , let ΠY ∈ L(X ) denote
the projector on Y. Note that ΠY is essentially equal to IY , but we use the notation “Π” instead
of “I” when we want to stress that we are considering a subspace of some larger space.

Let X ⊕ Y and X ⊗ Y denote the direct sum and the tensor product of spaces X and Y,
respectively. Suppose X and Y are such that Y ⊆ X . Let X	Y denote the orthogonal complement
of Y in X , so that Y⊕ (X 	Y) = X . Given an operator A ∈ L(X ) such that Av ∈ Y for all v ∈ Y,
one says that Y is stable under A. Given that Y is stable under A, define A|Y := AΠY ∈ L(Y),
which we call a restriction or a reduction of A to Y.

With every finite set X, we associate an |X|-dimensional Hilbert space denoted by CX , where,
with every element x ∈ X, we associate a unit vector x ∈ CX so that {x : x ∈ X} is an
orthonormal basis of CX , called the standard basis of CX . Note: we use the bold font for vectors
of the standard basis. We call {xy∗ : (x, y) ∈ X × Y } the standard basis of L(CY ,CX).

Given orthonormal bases of X and Y, we also think of a map A ∈ L(Y,X ) as a dimX ×dimY
matrix that one obtains by expressing A in these bases. If X := CX and Y := CY for some finite
sets X and Y and A is expressed in the standard basis, we may also say that A is an X × Y
matrix, and the rows and columns of A are labeled by X and Y , respectively. For a matrix A,
we denote its (x, y)-th entry by A[[x, y]]. Note that, if A is expressed in the standard basis, then
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A[[x, y]] = x∗Ay. Similarly, given a vector v expressed in some orthonormal basis, we denote its
x-th entry by v[[x]] or vx (which equals x∗v in the standard basis).

Let Jd denote the d × d all-ones matrix. Let ◦ be the Hadamard (i.e., entrywise) matrix
product, and note that the all-ones matrices act as the identity for this product. Let ~1` denote
the all-ones vector of length `. The Cauchy–Schwarz inequality applied to ~1` and (v1, . . . , v`)

implies that
Ä∑`

i=1 vi
ä2 ≤ ` ·∑`

i=1 v
2
i .

1.2 Semidefinite programming

The following definition is a combination of definitions from [Lov95], [Wat11], and [WSV00]. Let
“SDP” be the abbreviation for “semidefinite program”.

Definition 1.1. A general semidefinite program (in the inequality form with multiple linear
matrix inequality constraints) is an optimization problem in the form

minimize
m∑
j=1

ajxj (1.1a)

subject to
m∑
j=1

Qi,jxj � Bi for all i ∈ [n]; (1.1b)

xj ≥ 0 for all j ∈ [m], (1.1c)

where all Bi and Qi,j are Hermitian matrices of the same dimension, and all aj are real numbers.
One calls (1.1) the primal SDP (or simply, the primal, for short). Its dual semidefinite program
is

maximize
n∑
i=1

〈Bi, Yi〉 (1.2a)

subject to
n∑
i=1

〈Qi,j , Yi〉 ≤ aj for all j ∈ [m]; (1.2b)

Yi � 0 for all i ∈ [n]. (1.2c)

If for any i there is equality instead of inequality in (1.1b), then Yi is only required to be
Hermitian in (1.2c). Similarly, if for any j there is equality instead of semidefinite inequality in
(1.2b), then in (1.1c) it is only required that xj ∈ R. A solution of the primal (1.1) is strictly
feasible if it strictly satisfies all inequalities in (1.1b) and (1.1c), and similarly for the dual. Slater’s
condition implies that, if there are strictly feasible solutions for both the primal (1.1) and the
dual (1.2), then the optimal values of both (1.1) and (1.2) are equivalent (a property known as
strong duality) and they are attained by some feasible solutions of (1.1) and (1.2).
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1.3 Linear group representations

The representation theory of the symmetric group is essential to the results presented in Chapters
4, 5, and 6. In this section, we present basics of the representation theory, and we later focus
on the case of the symmetric group in Section 1.4. For more background on the representation
theory of finite groups, the reader may refer to [Ser77], and, for group theory, to [Rot95].

1.3.1 Basics of group theory and the symmetric group

Conjugacy classes, transversals, and direct products. Let ε denote the identity element
of a group G. Two elements g, g′ of the group G are said to be conjugate, if there exists h ∈ G
such that g′ = hgh−1. Conjugacy is an equivalence relation, and therefore it divides G into
equivalence classes, which we call conjugacy classes of G.

For a finite group G, let |G| denote its order, that is, the number of elements in G. Let H ≤ G
denote that H is a subgroup of G. Given H ≤ G, let G/H := {gH : g ∈ G} denote the set of left
cosets of H in G.1 Note that |G/H| = |G|/|H|. For every pair of distinct left cosets g1H 6= g2H
and every g′ ∈ G, we have g′g1H 6= g′g2H.

An element g′ ∈ gH is called a representative of the coset gH, and we have g′H = gH. A
set containing exactly one representative of each coset in G/H is called a transversal of the left
cosets of H in G, and we denote it by Rep(G/H) (note: this set is not unique; we have |H||G/H|
distinct transversals).

The direct product G × H of two groups G and H is a group itself. Let εH be the identity
element of H, an note that the groups G and G×{εH} ≤ G×H are isomorphic. Thus, by abuse
of notation, we often write G instead of G× {εH}.

Symmetric group. Let SL denote the symmetric group of a finite set L, that is, the group
with the permutations of L as elements, and composition as the operation. If m is a positive
integer, Sm denotes the isomorphism class of all symmetric groups SL with |L| = m.

A permutation π ∈ SL is called a cycle if there exists a disjoint decomposition L = L1 t L2

satisfying the following: for all `, `′ ∈ L1, there exists k ∈ N such that πk(`) = `′ and, for all
` ∈ L2, π(`) = `. We call L1 the elements of the cycle, |L1| the length of the cycle, and we denote
this cycle by a tuple (`, π(`), π2(`), . . . , π|L1|−1(`)), where ` ∈ L1; we may omit commas in the
tuple when convenient. We call two cycles non-overlapping if they have no elements in common,
and such cycles commute.

1If H is a normal subgroup of G (see [Rot95]), then G/H is a group.
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We can write each permutation a product of non-overlapping cycles, which we call its cycle
factors. And we can choose whether to write cycles of length one or not. For example, define
π ∈ S6 as

1 7→ 5, 2 7→ 6, 3 7→ 3, 4 7→ 1, 5 7→ 4, 6 7→ 2.

We can write π = (154)(26) or π = (26)(3)(415).

The study of symmetric group is closely related to the concept of a partition. A partition λ of
an integerm ∈ N is a non-increasing list (λ1, . . . , λk) of positive integers satisfying λ1+· · ·+λk = m
(we may also write λ(i) instead of λi). We denote this relation by λ ` m, or write m = |λ|. For
a partition λ = (λ1, . . . , λk) of m and an integer ` ≥ λ1, by (`, λ) we denote the partition
(`, λ1, . . . , λk) of m+ `.

For a permutation in Sm, its cycle partition is the list of lengths of its cycle factors, from
longest to shortest, including all the cycle factors of length one. Two permutations in Sm belong
to the same conjugacy class if and only if they have the same cycle partition. Hence, the number
of conjugacy classes of Sm equals the number of distinct partitions of m.

1.3.2 Basic definitions

Let X be a Hilbert space. A linear representation of a group G on X is a group homomorphism
ρ from G to the general linear group GL(X ). We often write ρg instead of ρ(g), call it a repre-
sentation operator, and, by definition, ρ satisfies ρgg′ = ρgρg′ for all g, g′ ∈ G. While, technically,
ρ is a (linear) representation and ρg is an operator, we may also refer to ρ as an operator and
ρg as a representation; their use should be clear from the context. When the map ρ is given,
we also call X a representation of G by abuse of terminology. We also refer to a representation
ρ : G→ GL(X ) as an action of G on X (which is also an abuse of terminology).

For finite groups, we extend the concept of representations to group algebras by linearity. The
group algebra CG is the vector space CG with the multiplication law in G extended to CG by
linearity. For example, the following is a multiplication of two elements in CS4:î

6ε− 3 (243)
ó
·
î
2 (13)(24) + 4 (143)

ó
= 12 (13)(24) + 24 (143)− 6 (123)− 12 (13)(24)

= 24 (143)− 6 (123),

where, for clarity, we have displayed the elements of C in italic.

The dimension of a representation ρ : G → GL(X ) is the dimension of the space X , and
we denote it dim ρ := dimX . Two representations ρ : G → GL(X ) and ρ′ : G → GL(X ′) are
isomorphic if there exists a linear isomorphism Ξ ∈ L(X ′,X ) between X ′ and X that satisfies
ρgΞ = Ξρ′g for all g ∈ G, and we write ρ ∼= ρ′ and X ∼= X ′. An isomorphism class is the set of all
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representations that are isomorphic to some given representation, and, clearly, all representations
in such a class have the same dimension.

A representation G → U(X ) is called unitary. Every representation of a finite group G
is isomorphic to some unitary representation, and, from now on, let us only consider unitary
representations. Aside from finite groups, we also consider certain unitary representations of the
unitary group U(X ) itself.

1.3.3 Subrepresentations

Given a group G and a representation ρ of G on X , a subspace Y of X is called stable under ρ (or
under G) if Y is stable under ρg for all g ∈ G. Suppose Y is stable. Then Y is also a representation
of G, that is, ρg|Y := ρgΠY is a representation of G. Note that ρg and ΠY commute because ρg
is unitary (and, thus, normal). The representation ρ|Y is called the reduction of ρ to Y, and one
also says that ρ|Y is a subrepresentation of ρ.

Suppose X is a representation of G and Y ⊂ X is stable under G. Then Y⊥ := X 	 Y
is also stable under G. Hence, one can decompose a representation X as a direct sum of two
representations: X = Y ⊕ Y⊥. Following the same procedure, if Y or Y⊥ contain proper stable
subspaces, one can recursively further decompose X as a direct sum of more than two components.
This decomposition procedure can go on until all spaces in the direct sum are irreducible.

A representation Y is called irreducible (or just irrep, for short) if it is not 0 and it does not
contain stable subspaces other than Y and 0, that is, if it does not contain proper subrepresen-
tations. A representation that is not irreducible is called reducible. An essential basic result in
the representation theory is the following

Lemma 1.2 (Schur’s Lemma). Suppose that ρ and ρ′ are two irreducible representations of a
group G on X and X ′, respectively, and that a linear map M ∈ L(X ′,X ) satisfies ρgM = Mρ′g
for all g ∈ G (that is, M is a homomorphism). If X 6∼= X ′, then M = 0. And, if X ∼= X ′, then
M is an isomorphism and it is unique up to a scalar multiplier.

Let us present some very useful consequences of Schur’s lemma.

Corollary 1.3. Suppose we are given two representations σ : G 7→ U(X ) and σ′ : G 7→ U(X ′) and
a linear map A ∈ L(X ′,X ) that satisfies σgA = Aσ′g for all g ∈ G. Also, let ρ : G 7→ U(Y) and
ρ′ : G 7→ U(Y ′) be irreducible and non-isomorphic subrepresentations of σ and σ′, respectively.
Then ΠYAΠY ′ = 0.

Proof. Recall that, for all g ∈ G, ρg = σgΠY = ΠYσg and ρ′g = σ′gΠY ′ = ΠY ′σ
′
g. Hence

ρgΠYAΠY ′ = ΠYσgAΠY ′ = ΠYAσ
′
gΠY ′ = ΠYAΠY ′ρ

′
g

for all g ∈ G, and Schur’s lemma implies the result.
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If we choose X = X ′ and A = IX in Corollary 1.3, we get

Corollary 1.4. Given a representation X and two non-isomorphic irreducible subrepresentations
Y,Y ′ ⊂ X , the spaces Y and Y ′ are orthogonal.

This result is very useful because of the following. Suppose we have decomposed a represen-
tation X of a group G as a direct sum of irreducible representations (for example, by using the
recursive procedure described above). Then we can write

X =
⊕

ρ

⊕mρ

j=1
Yρ,j , (1.3)

where ρ runs through representatives of all isomorphism classes of irreps of G (we allow mρ = 0)
and Yρ,j is an irrep isomorphic to ρ. In general, this decomposition is not necessarily unique.
However, Corollary 1.4 implies that, for all ρ, the space Yρ :=

⊕mρ
j=1 Yρ,j is unique, as is mρ =

dimYρ
¿

dim ρ.

One calls X =
⊕

ρ Yρ the canonical decomposition of X . The space Yρ is called the isotypical
subspace of X corresponding to ρ, or simply ρ-isotypical subspace of X . We provide a method for
computing the projector on this subspace in Theorem 1.9. One says that X contains mρ instances
(or copies) of ρ or that ρ appears (or occurs, or is present) in X with multiplicity mρ (or, simply,
mρ times). The representation is called multiplicity-free, if it contains each irrep at most once
(i.e., mρ ∈ {0, 1} for all ρ). The decomposition (1.3) is unique if and only if X is multiplicity-free.

1.3.4 Transporter bases of isotypical subspaces

Now let us explore how many degrees of freedom one has in decomposing an isotypical subspace
as a direct sum of irreps. First note that, given an irrep ρ : G 7→ U(Y), ΠY is an automorphism
from ρ to itself. Thus, Schur’s lemma implies that every such automorphism is proportional to
ΠY .

Claim 1.5. Suppose Y and Y ′ are two isomorphic irreps, and Ξ ∈ L(Y ′,Y) is a non-zero iso-
morphism between them. Then all the dimY singular values of Ξ are equal, namely, ΞΞ∗ ∝ ΠY
and Ξ∗Ξ ∝ ΠY ′.

Proof. Let ρ : G→ U(Y) and ρ′ : G→ U(Y ′) be the irreps in question. For every g ∈ G, we have
ρ∗g = ρ−1

g = ρg−1 and the same for ρ′g. Hence, ρgΞ = Ξρ′g implies Ξ∗ρg−1 = ρ′g−1Ξ∗. By multiplying
the corresponding sides (left and right) of the two equalities, we get ρgΞΞ∗ρg−1 = ΞΞ∗. Since this
holds for all g ∈ G, ΞΞ∗ is an automorphism of ρ, and hence it is proportional to ΠY . The proof
for Ξ∗Ξ is equivalent.

The following claim is from [AMRR11], where it was proved differently.
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Claim 1.6. Suppose Y, Y ′, and Y ′′ are isomorphic irreps. Then

Tr(ΠYΠY ′ΠYΠY ′′) = Tr(ΠYΠY ′)Tr(ΠYΠY ′′)/ dimY.

Proof. Let Y ′′′ ∈ {Y ′,Y ′′}. We use ΠY = Π2
Y and the cyclic property of the trace:

Tr(ΠYΠY ′ΠYΠY ′′) = Tr(ΠYΠY ′ΠY ·ΠYΠY ′′ΠY), Tr(ΠYΠY ′′′) = Tr(ΠYΠY ′′′ΠY).

Notice that ΠYΠY ′′′ΠY is an automorphism on Y, and therefore it is proportional to ΠY . The
coefficient of this proportionality is Tr(ΠYΠY ′′′)

¿
dimY.

Now suppose X is an isotypical subspace corresponding to some irrep ρ of G. For two irreps
Y,Y ′ ⊆ X , we define their overlap as Tr(ΠYΠY ′)/ dim ρ ∈ [0, 1]. Let X contain m instances of
the irrep ρ, and suppose we are given a fixed decomposition X =

⊕m
i=1 Yi of X into irreps (each

Yi is isomorphic to ρ). Let ρi(g) ∈ U(Yi) denote the representation operator corresponding to Yi
and g ∈ G, and let σ(g) :=

⊕m
i=1 ρi(g) denote the representation operator corresponding to X

and g ∈ G.

For i, j ∈ [m], let us call an isomorphism Ξj←i ∈ L(Yi,Yj) a transporter from the irrep Yi to
the irrep Yj if ‖Ξj←i‖ = 1, that is, if all its singular values are 1 (they are the same by Claim 1.5).
This transporter is unique up to a scalar multiple on the unit circle in the complex plane; we call
a scalar on the unit circle a global phase. When we consider real Hilbert spaces, the transporters
are unique up to a global phase ±1. We use the term ‘transporter’ only to refer to norm-one
isomorphisms between orthogonal irreps.

We call {Ξj←i : i, j ∈ [m]} a basis of transporters, where Ξj←i is a transporter from Yi to
Yj , if it satisfies the composition Ξk←jΞj←i = Ξk←i and the inversion (Ξj←i)

∗ = Ξi←j for all
i, j, k ∈ [m]. These two conditions together imply that Ξi←i = ΠYi , and note that Ξk←jΞj′←i = 0
whenever j 6= j′. Also, for every transporter Ξi←j , let us denote

Ξi↔j := Ξi←j + (Ξi←j)
∗ = Ξi←j + Ξj←i,

which is a unitary operator on Yi ⊕ Yj due to the orthogonality of Yi and Yj . A basis of
transporters always exists. It can be obtained, for example, by first arbitrarily choosing global
phases of transporters Ξi+1←i for i ∈ [m− 1], and then using the composition and the inversion
to obtain other transporters.

Claim 1.7. For any operator A ∈ L(X ) that satisfies σ(g)A = Aσ(g) for all g ∈ G, we have
A =

∑m
i,j=1 ai,jΞi←j for some scalars ai,j, where the Ξ’s are a basis of transporters. And we have

ai,j = Tr(AΞj←i)/ dim ρ.

Proof. The proof of the first statement is equivalent to the proof of Corollary 1.3. The second
statement then follows from AΞj←i =

∑m
k=1 ak,jΞk←i (due to the composition property) and

Tr(Ξk←i) = δi,k dim ρ.
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For any vector γ = (γ1, . . . , γm), let

Π(γ) :=
∑m

i,j=1
γiγjΞi←j . (1.4)

We have

Π∗(γ) = Π(γ), Π2
(γ) = ‖γ‖2Π(γ), Tr(Π(γ)) = ‖γ‖2 dim ρ, and rank Π(γ) = dim ρ

whenever γ 6= 0. We also have σ(g)Π(γ) = Π(γ)σ(g) for all g ∈ G. Hence we have the following.

Claim 1.8. Let Y ′ ⊆ X be an irrep isomorphic to ρ. There exists a vector γ such that Π(γ) = ΠY ′.
The vector γ has unit norm and it is unique up to a global phase. The converse also holds: for
any unit vector γ, Π(γ) is a projector on an irrep isomorphic to ρ.

1.3.5 Character theory

Let us introduce the basics of character theory. The character of a linear representation ρ : G→
U(X ) is the function

χρ : G→ C : g 7→ Tr(ρ(g)).

The characters of two isomorphic representations are the same. Indeed, for an isomorphism Ξ,
we have Tr(Ξ−1ρ(g)Ξ) = Tr(ρ(g)) due to the cyclic property of the trace. It is known that the
converse also holds: any two representations that have the same character are isomorphic.

Given a representation ρ, its character takes the same value on every element of a given
conjugacy class:

χρ(hgh
−1) = Tr

Ä
ρ(h)ρ(g)ρ(h)−1

ä
= Tr

Ä
ρ(g)
ä

= χρ(g)

for all g, h ∈ G. Note that χρ(g
−1) = Tr(ρ(g)∗) = χρ(g). Therefore, for the symmetric group

(our main group of interest), π ∈ Sn and π−1 belong to the same conjugacy class, and therefore
χρ(π) = χρ(π).

Suppose G is finite. The character orthogonality relations, which we do not state in this thesis,
imply that the number of irreducible representations of G (up to isomorphism) equals the number
of conjugacy classes of G. We also have the following

Theorem 1.9. [Ser77, Sec. 2.6] Let σ : G→ U(X ) be a representation of G and let ρ be an irrep
of G. The projector on the ρ-isotypical subspace of X is

dim ρ

|G|
∑
g∈G

χρ(g)σ(g). (1.5)
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1.3.6 Group action and regular representations

Suppose we are given a finite set A and a group G. The left group action of G on A is a function
φ : G × A → A that satisfies φ(ε, a) = a and φ(gh, a) = φ(g, φ(h, a)) for all g, h ∈ G and a ∈ A.
The right group action of G on A is a function ψ : A × G → A that satisfies ψ(a, ε) = a and
ψ(a, gh) = ψ(ψ(a, g), h) for all g, h ∈ G and a ∈ A.

Suppose φ and ψ are, respectively, a left and a right group action of G on A. For all g ∈ G,
let Φg and Ψg be linear operators on CA defined via their action on the standard basis of CA:
for all a ∈ A, let Φga := φ(g, a) and Ψga := ψ(a, g−1). The maps Φ: g 7→ Φg and Ψ: g 7→ Ψg

are called the permutation representations corresponding to φ and ψ, respectively, as, in the
standard basis of CA, unitary operators Φg and Ψg are permutation matrices. They are indeed
valid representations as we have

ΦgΦha = Φgφ(h,a) = φ(g,φ(h,a)) = φ(gh, a) = Φgha,

ΨgΨha = Ψgψ(a,h−1) = ψ(ψ(a,h−1), g−1) = ψ(a,h−1g−1) = ψ(a, (gh)−1) = Ψgha

for all g, h ∈ G and a ∈ A.

The one-dimensional irrep that maps every group element to the multiplicative identity 1 ∈ C
is called the trivial representation. One can see that the one-dimensional space spanned by the
all-ones vector in the standard basis (i.e.,

∑
a∈A a) is stable under Φ and Ψ, and they act on it

as the identity. Thus, this subspace corresponds to the trivial representation.

A case of particular interest is when the group G acts on itself, and the action is given
by the group operation. The representation corresponding to this action is called the regular
representation. Namely, the left regular representation R` : G → U(CG) and the right regular
representation Rr : G → U(CG) are defined as follows: R`(g)h = gh and Rr(g)h = hg−1 for
all g, h ∈ G. Both regular representations are isomorphic. Every irrep ρ of G appears in the
regular representation with multiplicity dim ρ, thus the dimension of the isotypical subspace
corresponding to ρ is (dim ρ)2.

From now on, by “group action” we mean “left group action”, except when we talk about the
right regular representation. Let

φg : A→ A : a 7→ φ(g, a).

The orbit of an element a ∈ X under the action of G (or, simply, under G) is defined as

Gφ(a) := {φg(a) : g ∈ G},

where we may choose to omit the subscript φ when it is clear which action we are referring to.
Note that a ∈ Gφ(a′) is an equivalence relation.

We extend the function φg to subsets of A, namely, φg({a1, . . . , ak}) := {φg(a1), . . . , φg(ak)}.
This way, in effect, we have defined a group action of G on the set of all subsets of A of a given
size k. And, of course, this group action also gives a rise to a representation of G.
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1.3.7 Restricted and induced representations

Suppose G is a group, H ≤ G is a subgroup of G, and ρ : G→ U(X ) is a representation of G. The
representation H → U(X ) : h 7→ ρh of H is called the restriction of ρ from G to H and denoted
by ρ ↓ H. By abuse of terminology, we may also say that ρ is a representation of H. Note that,
if ρ is irreducible, ρ ↓ H may be reducible.

For example, the symmetric group S[3] is generated by (12) and (23), thus a representation ρ
of S[3] can be completely specified by ρ(12) and ρ(23). In Section 1.4.4 we state that ρ defined via

ρ : (12) 7→
Ç
−1 0
0 1

å
and ρ : (23) 7→

Ç
1
2

√
3

2√
3

2 −1
2

å
(1.6)

is indeed a representation of S[3] and that it is irreducible. However, ρ ↓ (S{1,2} × S{3}) is not
irreducible any more, as Y = span{(0, 1)} is stable under both ρε and ρ(12) and it corresponds to
the trivial representation of S{1,2} × S{3}.

Let us introduce a concept “opposite” to the restriction. Suppose G and H ≤ G are finite
groups, σ : G→ U(X ) is a representation of G, and Y ⊆ X is stable under H. Let ρ := (σ ↓ H)|Y
be the reduction to Y of the restriction of σ to H and let Rep(G/H) be a transversal of the left
cosets of H in G. One says that the representation σ of G is induced by the representation ρ of
G if

X =
⊕

g∈Rep(G/H)

σgY. (1.7)

Note that it is irrelevant which transversal we consider, as, for every coset gH and every g′ ∈ gH,
the subspace σg′Y is the same. Also note that (1.7) implies dimX/ dimY = |G|/|H|. Let ρ ↑ G
denote a representation of G induced by a representation ρ of H. It is known that all such
representations are isomorphic.

Suppose σ : G → U(X ) is induced by ρ : H → U(Y), and Y ′ ⊂ Y is stable under H. Then,
one can see that X ′ :=

⊕
g∈Rep(G/H) σgY ′ is stable under G. Namely, G→ U(X ′) : g 7→ σgΠX ′ is

a representation of G induced by a representation H → U(Y ′) : h 7→ ρhΠY ′ of H.

The following theorem establishes a useful connection between the restriction and the induc-
tion.

Theorem 1.10 (Frobenius reciprocity). Let G and H ≤ G be finite groups, and let σ and ρ be
irreps of G and H, respectively. The number of times ρ appears in σ ↓ H equals the number of
times σ appears in ρ ↑ G.
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1.3.8 Composition of representations

Let us first consider two ways of composing representations of the same group. Let ρ : G→ U(X )
and σ : G→ U(Y). Their direct sum is the representation

ρ⊕ σ : G→ U(X ⊕ Y) : g 7→ ρg ⊕ σg
and their (inner) tensor product is the representation

ρ⊗ σ : G→ U(X ⊗ Y) : g 7→ ρg ⊗ σg.

If we are given a decomposition of each ρ and σ into irreps, it is trivial to decompose into
irreps the direct sum ρ⊕ σ. This task is not as simple for the tensor product ρ⊗ σ, and we will
later present theorems concerning particular cases that we are interested in. Note that, if σid is
the trivial representation, then ρ⊗ σid

∼= ρ.

Now let us consider representations of the direct product G×H. Suppose ρ : G→ U(X ) and
σ : H → U(Y) are representations of G and H respectively. Then, their (outer) tensor product
ρ× σ is the representation

ρ× σ : G×H → U(X ⊗ Y) : (g, h) 7→ ρg ⊗ σh.

If ρ and σ are irreps of G and H, respectively, then ρ× σ is an irrep of G×H. Conversely, every
irrep of G×H can be written as ρ× σ, where ρ and σ are irreps of G and H, respectively. Note:
given an irrep ρ of G, the outer tensor product ρ × ρ is an irrep of G × G, but the inner tensor
product ρ⊗ ρ is not necessarily an irrep of G.

Using group isomorphism, let us also think of G and H as subgroups of G × H. Suppose
ρ and σ are irreps of G and H, respectively, and X is a representation of G × H. Then the
(ρ×σ)-isotypical subspace of X equals the intersection of the ρ-isotypical subspace of X ↓ G and
the σ-isotypical subspace of X ↓ H. Also note that (ρ× σ) ↓ G consists of dimσ instances of the
irrep ρ of G.

1.4 Representation theory of the symmetric group

In this section we present basics of the representation theory of the symmetric and unitary groups.
The material presented here is based on various textbooks [JK81, Sag01, Boe63] and notes [Aud06]
on the subject. The proof of Lemma 1.11 is from Ref. [BR14], yet we do not claim its originality.

In Section 1.3.1 we already established a bijection between partitions of m and conjugacy
classes of Sm. We know that the number of conjugacy classes of a group equals the number
of irreducible representations, so now let us establish a bijection between partitions of m and
irreducible representations of Sm. And then, let us see how these partitions allow us to reason
about the representation theory of Sm.
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1.4.1 Young diagrams and Young tableaux

A partition λ = (λ1, . . . , λk) is often represented in the form of a Young diagram that consists,
from top to bottom, of rows of λ1, λ2, . . . , λk boxes aligned by the left side. For example, the
Young diagram representing (5, 3, 3, 2) ` 13 is is shown in Figure 1.1. We often use the terms
‘partition of m’ and ‘m-box Young diagram’ interchangeably.

Figure 1.1: The Young diagram corresponding to the partition (5, 3, 3, 2).

For a Young diagram λ, let λ> denote the transposed diagram of λ, i.e., the number of boxes
in the i-th row of λ> equals to the number of boxes in the i-th column of λ. Note that λ>1 is
the number of rows in λ. We say that a box (i, j) is present in λ and write (i, j) ∈ λ if λi ≥ j
(equivalently, λ>j ≥ i). The hook-length hλ(b) of a box b := (i, j) ∈ λ is the sum of the number
of boxes on the right from b in the same row (i.e., λi − j) and the number of boxes bellow b in
the same column (i.e., λ>j − i) plus one (i.e., the box b itself). For example, the hook lengths of
the boxes of the Young diagrams (5, 3, 3, 2) ` 13 and (m− 3, 3) ` m are given in Figure 1.2.

8 7 5 2 1
5 4 2
4 3 1
2 1

m−2 m−3 m−4 m−6 m−7 2 1
3 2 1

. . .

Figure 1.2: Hook lengths of the boxes of the Young diagrams (5, 3, 3, 2) (left) and (m− 3, 3) (right).

Given an m-box Young diagram λ, let us say that a box is an inner corner of λ if its hook
length is one, in other words, if the box is last in its row and last in its column. We can remove
such a box from λ, thereby obtaining an (m−1)-box Young diagram. By employing this procedure
multiple times, we can also remove multiple boxes (note: some hook lengths will change after
each removal of a box). Suppose m and n ≤ m are non-negative integers, and λ ` m and
µ ` n are two Young diagrams. We say that µ is contained in λ if µ can be obtained from λ by
removing m − n boxes, that is, if µi ≤ λi for all i. In particular, let µ ⊂ λ and µ ⊂⊂ λ denote
that a Young diagram µ is obtained from λ by removing exactly one box and exactly two boxes,
respectively. Given µ ⊂⊂ λ, let us write µ ⊂⊂r λ or µ ⊂⊂c λ if the two boxes removed from λ to
obtain µ are, respectively, in different rows or different columns. Let µ ⊂⊂rc λ be a shorthand for
(µ ⊂⊂r λ)&(µ ⊂⊂c λ).

For every m, we use “<” to denote the lexicographical order on the set of partitions of m. For
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example, the lexicographical order of the partitions of m = 5 is

(1, 1, 1, 1, 1) < (2, 1, 1, 1) < (2, 2, 1) < (3, 2) < (3, 1, 1) < (4, 1) < (5).

Given a partition λ ` m, a Young tableau (or just tableau, for short) of shape λ is a bijection
that assigns to every box of the Young diagram λ a number in [m]. For a Young tableau T of
shape λ and a box b ∈ λ, we call T(b) the entry of the box b. A Young tableau is called standard if
the numbers in every row and every column are strictly increasing. Figure 1.3 shows an example
of a standard and a non-standard tableau.

1 2 5 8 13
3 6 7
4 9 11
1012

8 6 2 12 5
3 1110
13 1 4
9 7

Figure 1.3: A standard (left) and a non-standard (right) Young tableau of shape (5, 3, 3, 2).

We will associate every irreducible representations of Sm with a partition λ ` m, and the
dimension of this irrep will be the total number of standard tableaux of shape λ. Therefore, let
us denote this number by dimλ, and it is given by the hook-length formula:

dimλ = |λ|!
¿
h(λ), where h(λ) =

∏
b∈λ

hλ(b). (1.8)

For example, the hook-length formula and Figure 1.2 tells us that there are

13!/(8 · 7 · 5 · 2 · 1 · 5 · 4 · 2 · 4 · 3 · 1 · 2 · 1) = 11 583

standard tableaux of shape (5, 3, 3, 2) and

m!/
Ä
(m− 2) · (m− 3) · (m− 4) · (m− 6)! · 3 · 2 · 1

ä
= m(m− 1)(m− 5)/6

standard tableaux of shape (m− 3, 3).

Suppose we fix the part of λ bellow the the first row and allow m to vary, namely, let
λ := (m− |µ|, µ), where µ is fixed. Then dim(m− |µ|, µ) is a polynomial in m of degree |µ| and
its leading coefficient is 1/h(µ). For example, see Table 1.1 for “dimensions” of the last seven
partitions in the lexicographical order.

The group Sm acts on the set of tableaux of shape λ ` m in the following natural way. For all
π ∈ Sm, all tableaux T of shape λ, and all boxes b ∈ λ, if T(b) = i, then π(T)(b) = π(i). (This
action corresponds to the regular representation of Sm.)
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λ dimλ

(m) 1
(m−1, 1) m− 1
(m−2, 2) m(m− 3)/2
(m−2, 1, 1) (m− 1)(m− 2)/2
(m−3, 3) m(m− 1)(m− 5)/6
(m−3, 2, 1) m(m− 2)(m− 4)/3
(m−3, 1, 1, 1) (m− 1)(m− 2)(m− 3)/6

Table 1.1: The number of standard tableaux of shape λ for the last seven λ in the lexicographical order.

1.4.2 Specht modules

Suppose λ = (λ1, . . . , λk) ` m. Given a tableau T of shape λ, let Ri(T) and Cj(T) be the set of
entries in the i-th row and j-th column of T, respectively. For brevity, let

SR(T) :=
k×
i=1

SRi(T) and SC(T) :=
λ1×
j=1

SCj(T),

which are subgroups of Sm. A tabloid of shape λ is an equivalence class of all tableaux T that
have the same Ri(T) for all i. Let {T} denote the tabloid associated to T. In other words,

{T} = SR(T)T := {π(T) : π ∈ SR(T)}.

Essentially, a tabloid is a tableau for which one ignores the order of entries in each row. We
represent tabloids like tableaux except omitting vertical boundaries of all boxes (see Figure 1.4).

2 5
1 3
4

=

{
2 5
3 1
4

,
2 5
1 3
4

,
5 2
3 1
4

,
5 2
1 3
4

}

Figure 1.4: A tabloid of shape (2, 2, 1).

For a tabloid {T} of shape λ ` m and π ∈ Sm, let π({T}) := {π(T)}, which defines a left
group action of Sm on the set of tabloids of shape λ. (Note: this action is well defined because,
for all T′ ∈ {T}, we have {π(T′)} = {π(T)}.) For now, let X λ denote the space corresponding to
the set of tabloids of shape λ. The space X λ together with the action of Sm on it is known as the
permutation module corresponding to λ, and it is well studied how X λ decomposes into irreps.
We will be interested in one particular irrep appearing in X λ.

Recall the group algebra CSm. Given a subgroup H of Sm, let

κ(H) :=
1

|H|
∑
π∈H

sgn(π)π ∈ CSm,
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where sgn(π) is the sign of the permutation π. Note that,

∀π ∈ H : sgn(π)π · κ(H) = κ(H),

thus κ(H)κ(H) = κ(H). Given a tableau T of shape λ, let κT := κ(SC(T)), and let

eT := κT{T} ∈ X λ.

For example, for

T =
1 4 3
5 2

,

we have SC(T) = S{1,5} × S{2,4} and

{T} =
1 3 4
2 5

,

therefore

eT ∝
Ä
ε− (24)− (15) + (15)(24)

ä
1 3 4
2 5

=
1 3 4
2 5

− 1 2 3
4 5

− 3 4 5
1 2

+
2 3 5
1 4

,

where we have omitted the scalar 1
4 for clarity. Let Sλ be the space spanned by all eT, where T

is a tableau of shape λ. Sλ is an irreducible representation of Sm known as the Specht module.

The only two one-dimensional representations of Sm are the following:

• The trivial representation S(m). There is only one tabloid of shape (m) and eT equals it for
all tableaux T of shape (m) because κT = ε. All π ∈ Sm map this tabloid to itself.

• The sign representation S(1m), where (1m) := (1, 1, . . . , 1). For a tableau T of shape (1m),
let sgn(T) be the sign of the unique permutation in Sm that maps i ∈ [m] to the sole entry
in i-th row of T. Then we have eT = sgn(T)

∑
T′ sgn(T′){T′}/m! and π : eT 7→ sgn(π) eT

for all π ∈ Sm.

The set of vectors eT such that T is a standard tableau of shape λ forms a basis for Sλ.
Therefore, dimSλ = dimλ, justifying the notation introduced earlier. For two distinct partitions
λ, λ′ ` m, the irreps Sλ and Sλ′ are non-isomorphic. Recall that the number of irreducible
representations (up to isomorphism) and the number of conjugacy classes are equal, and there is
a one-to-one correspondence between conjugacy classes of Sm and partitions of m. Hence, as λ
runs over all partitions of m, Sλ runs over all (up to isomorphism) irreps of Sm.

Lemma 1.11. Suppose m and k ≤ m/2 are positive integers and a1, b1, . . . , ak, bk are some
distinct fixed elements of [m]. Let

κ :=
1

2k
(ε− (a1, b1))(ε− (a2, b2)) · · · (ε− (ak, bk)) ∈ CSm.

For any µ ` k, the irrep S(m−k,µ) contains a non-zero vector v satisfying κv = v.
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Proof. Let ` = µ1, and let T be a tableau of the shape (m − k, µ) with a1, . . . , ak being the
first k elements of the first row, and b1, . . . , bk being the elements of the remaining rows, so that
b1, . . . , b` form the second row. The vector eT ∈ S(m−k,µ) is not zero and it satisfies κTeT = eT.

Take v := 2k−`κeT, which clearly satisfies κv = v as κκ = κ. Since (ai, bi) ∈ SC(T) implies
1
2(ε − (ai, bi))κT = κT for all i ≤ `, we have v = (ε − (a`+1, b`+1)) · · · (ε − (ak, bk))eT. And
v 6= 0 because no tabloid present in eT can be cancelled by other terms of v, because they have
different content of the first row.

From now on, let Sλ denote equivalence class of all irreps of S|λ| isomorphic to the Specht

module Sλ. Note that Lemma 1.11 holds for all irreps in the isomorphism class.

1.4.3 Induction and restriction of representations

Given an irrep Sµ of Sm, where µ ` m, the branching rule states that

Sµ ↓ Sm−1
∼=
⊕

ν⊂µ
Sν

and, by Frobenius reciprocity,
Sµ ↑ Sm+1

∼=
⊕

λ⊃µ
Sλ. (1.9)

Note that, since |Sm+1|/|Sm| = m+ 1, the branching rule implies that

dimµ =
∑

ν⊂µ
dim ν and (m+ 1) dimµ =

∑
λ⊃µ

dimλ.

The branching rule states what happens when one induces from Sm−1×S1 to Sm (or restricts
in the opposite direction). The more general Littlewood–Richardson rule describes, for every
k ∈ [0..m], what happens when one induces from Sm−k × Sk to Sm. To state the Littlewood–
Richardson rule fully, we would have to introduce concepts such as skew shapes, semistandard
tableaux, the weight of such tableaux, and others. We choose not to do that because we will
employ only two special cases of the rule:

1. Let λ ` m, so that Sλ is an irrep of Sm. We have

Sλ ↓ (Sm−2 × S2) ∼=
⊕

ν⊂⊂cλ
(Sν × S(2))⊕

⊕
ν⊂⊂rλ

(Sν × S(1,1)), (1.10)

and the Frobenius reciprocity then tells us what happens when one induces from Sm−2×S2

to Sm: for ν ` m− 2, we have

(Sν × S(2)) ↑ Sm ∼=
⊕

λ⊃⊃cν
Sλ and (Sν × S(1,1)) ↑ Sm ∼=

⊕
λ⊃⊃rν

Sλ. (1.11)
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2. Let ν = (ν1, ν2, . . . , ν`) ` k and let Λ(ν) be the set of all Young diagrams µ that can be
obtained from ν by removing at most one box per column (in other words, µ such that
(ν2, . . . , ν`) is contained in µ and µ is contained in ν). We have

(S(m−k) × Sν) ↑ Sm ∼=
⊕

µ∈Λ(ν)
m−|µ|≥µ1

S(m−|µ|,µ). (1.12)

(Recall that S(m−k) is the trivial representation of Sm−k.)

1.4.4 The orthogonal form of Sλ

In Section 1.4.2, we presented the irrep Sλ by considering the action of the group algebra CS|λ|
on tabloids of shape λ. Here we present Sλ in another useful form: we define ωλ ∼= Sλ known as
the orthogonal form of Sλ. The irrep ωλ acts on the space corresponding to the set of standard
tableaux of shape λ, which we here denote by X λ (do not mistake it for the permutation module
discussed in and only in Section 1.4.2). We will express the operators ωλ as unitary matrices
in an orthonormal basis, whose basis vectors are labeled by the standard tableaux of shape λ
ordered according to the last letter order.

Given a partition λ ` m, the last letter order ‘<’ on the set of standard tableaux of shape λ
is a total ordering defined as follows. For T and T′ being two standard tableaux of shape λ, one
defines T < T′ if there exists i ∈ [m] such that both

1. for all j > i, j appears in the same row (and the same column) in both T and T′;

2. i appears in T in a higher row than in T′.

Namely, for a standard tableau T of shape λ ` m and j ∈ [m], let Tj be the standard tableau
obtained from T by removing boxes corresponding to j, j + 1, . . . ,m and let µ(Tj) ` j − 1 be its
shape. We have T < T′, if the exists i ∈ [m] such that

∀j > i : µ(Tj) = µ(T′j) and µ(Ti) < µ(T′i),

where, for the comparison of shapes, the lexicographical order is used. For example, Figure 1.5
illustrates the last letter order of all five standard tableaux of shape (3, 2).

The axial distance between two boxes b = (i, j) and b′ = (i′, j′) is defined as

d(b, b′) := (i′ − i) + (j − j′).

Similarly, we call |i− i′|+ |j − j′| the distance between b and b′. Note that, if b′ is below b (i.e.,
i′ > i), to the left from b (i.e., j′ < j), or both, then d(b, b′) > 0. On the other hand, if b′ is
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1 3 5
2 4

<
1 2 5
3 4

<
1 3 4
2 5

<
1 2 4
3 5

<
1 2 3
4 5

Figure 1.5: The last letter order of the standard tableaux of shape (3, 2).

ω(3,2) : (12) 7→


−1

1

−1

1

1

 ,

ω(3,2) : (23) 7→



1
2

√
3

2√
3

2 −1
2

1
2

√
3

2√
3

2 −1
2

1

 ,

ω(3,2) : (34) 7→


−1

1
1

1
3

2
√

2
3

2
√

2
3 −1

3

 ,

ω(3,2) : (45) 7→



1
2

√
3

2
1
2

√
3

2√
3

2 −1
2√

3
2 −1

2
1

 .

Figure 1.6: The generating matrices of the orthogonal form ω(3,2). (Here we have omitted entries 0.)

above b (i.e., i′ < i), to the right from b (i.e., j′ > j), or both, then d(b, b′) < 0. Also note that
d(b, b′) = −d(b′, b).

Given a tableau T and i ∈ [m], let bT(i) be the box in T containing i. For a transposition
(i, i+ 1), where i ∈ [m− 1], the operator ωλ(i,i+1) acts on the standard basis of X λ as follows: for
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a standard tableau T of shape λ,

ωλ(i,i+1) : T 7→ 1

d(bT(i+ 1), bT(i))
T +

Ã
1− 1∣∣∣d(bT(i+ 1), bT(i))

∣∣∣2 (i, i+ 1)T.

Note that, since T is a standard tableau, we have the following, where we suppose that T′ :=
(i, i+ 1)T.

• If i and i + 1 are in the same row or the same column of T, then they are adjacent and
we have ωλ(i,i+1) : T 7→ T or ωλ(i,i+1) : T 7→ −T, respectively. That is, one does not have to

worry about the fact that T′ is a non-standard tableaux in this case.

• If i and i+ 1 are in different rows and different columns, then T′ is also a standard tableau.
For simplicity, denote

d := d(bT(i+ 1), bT(i)) = −d(bT′(i+ 1), bT′(i)).

We have d ≥ 2 if T < T′ and d ≤ −2 if T > T′. Assuming the former case (i.e., d is
positive), the submatrix of ωλ(i,i+1) corresponding to the coordinates (T,T′) isÑ

1
d

√
d2−1
d

√
d2−1
d −1

d

é
.

The set of transpositions {(1, 2), (2, 3), . . . , (m− 1, 1)} generates Sm, therefore we have specified
the action of ωλπ on X λ for all π ∈ Sm. For example, the four generating matrices of ω(3,2) are
given in Figure 1.6 (this example is from [JK81, Sec. 3.4], and, for clarity, we present it below
Figure 1.5). Another example, the orthogonal form ω(2,1), was already given in (1.6).

First, in order to understand the orthogonal form better, let us show how it yields the branch-
ing rule. Afterwards, we use the orthogonal form to prove an equality that we will require later
in the thesis.

In every standard tableau of shape λ ` m, the box containing the entry m is an inner corner.
The box containing m − 1 is either adjacent to the box containing m or it is an inner corner as
well. Suppose b and b′ are two distinct inner corners of λ (assume λ 6= (m) and λ 6= (1m)). Let
λ \ b ` m − 1, λ \ b′ ` m − 1, and λ \ bb′ ` m − 2 denote, respectively, the Young diagrams
obtained from λ by removing b, b′, and both b and b′. Let X λb ⊆ X λ be the subspace spanned
by all basis vectors T such that T(b) = m, let X λbb′,b ⊆ X λb spanned by all T such that T(b) = m

and T(b′) = m− 1, and let X λb′ and X λbb′,b′ be defined analogously.

The space X λb is stable under ωλ(i,i+1) for all i ∈ [m− 2] as these operators do not “move” the

entry m, and therefore it is stable under ωλπ for all π ∈ Sm−1. We can ignore the “fixed” box
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b, and we have (ωλ ↓ Sm−1)|Xλ
b

= ωλ\b, where we use “=” instead of “∼=” to stress that these

matrices are identical (for all π ∈ Sm−1). Since every µ ⊂ λ equals λ \ b for a unique inner corner
b ∈ λ, this is the branching rule.

Similarly, the restriction of ωλ to Sm−2 contains two instances of the irrep Sλ/bb′ , and X λbb′ :=
X λbb′,b ⊕X λbb′,b′ is the isotypical subspace of X λ corresponding to Sλ/bb′ . We have

(ωλ ↓ Sm−2)|Xλ
bb′,b

= (ωλ ↓ Sm−2)|Xλ
bb′,b′

= ωλ\bb
′
.

Note that we can write the projectors Πλ
bb′,b and Πλ

bb′,b′ on X λbb′,b and X λbb′,b′ , respectively, as

Πλ
bb′,b =

∑
T : T(b)=m,T(b′)=m−1

TT∗ and Πλ
bb′,b′ =

∑
T : T(b′)=m,T(b)=m−1

TT∗,

and note that
Ξλbb′,b′←bb′,b :=

∑
T : T(b)=m,T(b′)=m−1

((m− 1,m)T)T∗

is a transporter from X λbb′,b to X λbb′,b′ . Suppose b is above and to the right of b′, implying that
(λ \ b) < (λ \ b′) in the lexicographical order and d(b, b′) ≥ 2. Then, all basis vectors T spanning
X λbb′,b appear in the ordered basis of X λ before all basis vectors T′ spanning X λbb′,b′ (i.e., T < T′

in the last letter order). The Sλ/bb′-isotypical subspace X λbb′ is invariant under ωλ(m−1,m), and we
have

ωλ(m−1,m)|Xλ
bb′

=
1

d(b, b′)
Πλ

bb′,b −
1

d(b, b′)
Πλ

bb′,b′ +

»
d(b, b′)2 − 1

d(b, b′)
Ξλbb′,b′↔bb′,b. (1.13)

The equality (1.13) plays a mayor role in both the adversary lower bound for the Collision
and Set Equality problems (Chapter 4) and the adversary lower bound for the Element
Distinctness problem with small range (Chapter 5). In Chapter 5 we will also have to consider
the restriction of an irrep of Sm to Sm−3, and, using the orthogonal form, we handle that case
similarly.

Note that, due to isomorphism, an equality analogous to (1.13) holds for every irrep in the
isomorphism class Sλ. Also, here we essentially reasoned about Sm = S[m] and we considered the
restrictions of S[m] to S[m−1] and then further to S[m−2]. Due to symmetry, the equality still holds
when we consider instead the restrictions of S[m] to S[m]\{i} and then further to S[m]\{i,j} for any
i, j ∈ [m] (i.e., no element in [m] is “more special” than any other element in [m]).

1.4.5 Decomposition of inner tensor products

Suppose λ, µ ` m, and we interested how a representation Sλ⊗Sµ of Sm decomposes into irreps.
For general λ and µ, this can be done using the determinantal form of irreps of Sm and the general
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version of the Littlewood–Richardson rule. In this thesis we choose to introduce neither, because
we will be interested only in the special case given by the following lemma.

Lemma 1.12. Consider Sm and suppose 1 < i, j < m/2. The multiplicity of the irrep Sν
in S(m−i,i) ⊗ S(m−j,j) equals the multiplicity of Sν in S(m−j,j) ↓ (Sm−i × Si) ↑ Sm minus the
multiplicity of Sν in S(m−j,j) ↓ (Sm−i+1 × Si−1) ↑ Sm.

In particular, we will care only about the case when i = 1 (and the trivial i = 0 or j = 0).

Corollary 1.13. For 1 ≤ j ≤ m/2− 1, we have

S(m−1,1) ⊗ S(m−j,j) ∼= S(m−j+1,j−1) ⊕ S(m−j,j) ⊕ (S(m−j,j−1,1))⊕ S(m−j−1,j+1) ⊕ S(m−j−1,j,1),

where we omit the term S(m−j,j−1,1) when j = 1 as (m− 1, 0, 1) is not a partition.

Proof. For i = 1, Sm−1 × S1
∼= Sm−1 and Sm−0 × S0

∼= Sm. By the branching rule:

S(m−j,j) ↓ Sm−1
∼= S(m−j,j−1) ⊕ S(m−j−1,j),

and

S(m−j,j−1) ↑ Sm ∼= S(m−j+1,j−1) ⊕ S(m−j,j) ⊕ (S(m−j,j−1,1)),

S(m−j−1,j) ↑ Sm ∼= S(m−j,j) ⊕ S(m−j−1,j+1) ⊕ S(m−j−1,j,1).

From the direct sum of these, we have to “substract” S(m−j,j) ↓ Sm ↑ Sm = S(m−j,j).

1.4.6 Representation theory of the unitary group

Suppose Yr is a Hilbert space of dimension r, and consider the unitary group U(Yr). A repre-
sentation of ρ : U(Yr) → U(X ) is called polynomial (or, by some authors, integral) if the matrix
elements of ρ(U) are polynomials in the elements of the represented matrix U ∈ U(Yr) (in some
fixed bases of Yr and X ). There is one-to-one correspondence between polynomial irreps of U(Y)
and partitions λ = (λ1, . . . , λk) having k ∈ [r] (i.e., Young diagrams having at most r rows).
For such a partition λ, let Wλ

r denote the corresponding irrep of U(Y). It is known as the Weyl
module.

Let m be a positive integer, and consider the space Y⊗mr . Then U ∈ U(Yr) acts on this space
by simultaneous matrix multiplication, that is,

U : v1 ⊗ . . .⊗ vm 7→ Uv1 ⊗ . . .⊗ Uvm = U⊗m(v1 ⊗ . . .⊗ vm). (1.14)
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The symmetric group Sm acts on Y⊗mr by permuting the tensor factors, that is, for π ∈ Sm, we
have

π : v1 ⊗ . . .⊗ vm 7→ vπ−1(1) ⊗ . . .⊗ vπ−1(m). (1.15)

These actions of U(Yr) and Sm commute, thus, they define a representation of their direct product,
U(Yr)× Sm.

Theorem 1.14 (Schur–Weyl duality). The above representation of U(Yr) × Sm on Y⊗mr can be
decomposed as a direct sum of irreps Wλ

r ×Sλ taken over all λ ` m such that the Young diagram
λ has at most r rows.

1.5 Association schemes

Definition 1.15. An association scheme is a set {A0, A1, . . . , Ak} of symmetric (0, 1)-matrices
of the same dimensions d× d such that

1. A0 is the identity matrix Id,

2. AiAj = AjAi for all i and j,

3.
∑k
i=0Ai is the all-ones matrix Jd.

The second condition ensures that all these matrices share the same eigenspaces, and we
call them the eigenspaces of the association scheme. Let us introduce here the basic theory of
two widely used association schemes: the Hamming scheme and the Johnson scheme. For more
background on association schemes, refer to [God05].

1.5.1 Hamming scheme

Suppose Σ is a finite alphabet. For two strings x and y over Σ of the same length, their Hamming
distance is the number of positions at which the corresponding entries of x and y differ, and it is
denoted by |x− y|. Assuming Σ contains the zero-symbol, the Hamming weight of a string string
x over Σ, denoted by |x|, is the number of positions in x containing a non-zero symbol.

Definition 1.16. Let Σ be a finite alphabet of size q and let n be a positive integer. The

Hamming (association) scheme is the set of qn × qn matrices {A(n)
0 , A

(n)
1 , . . . , A

(n)
n } whose rows

and columns are labeled by all strings x ∈ Σn and A
(n)
i [[x, y]] = 1 if and only if |x− y| = i.
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Suppose Σ is ordered, which provides the lexicographical order of Σn. And suppose the rows

and the columns of all A
(n)
i are ordered according to this lexicographical order. Then, for all i,

we have

A
(n)
i =

∑
b∈{0,1}n : |b|=i

n⊗
j=1

Abj

where are A0 := A
(1)
0 = Iq and A1 := A

(1)
1 = Jq − Iq. Since Π0 := Jq/q and Π1 := Iq − Π0 are

projectors on the eigenspaces of A0 and A1, one can see that, for all i ∈ [0..n],

Π
(n)
i :=

∑
b∈{0,1}n : |b|=i

n⊗
j=1

Πbj (1.16)

projects on an eigenspace of the Hamming scheme.

1.5.2 Johnson scheme

Definition 1.17. Let n and k ≤ n/2 be positive integers. The Johnson (association) scheme is
the set of

(n
k

)
×
(n
k

)
matrices {A0, A1, . . . , Ak} whose rows and columns are labeled by all subsets

x of [n] of size k and Ai[[x, y]] = 1 if and only if |x \ y| = i.

Let Lj denote the set of all subsets of [n] of size j. Hence, the matrices Ai can be thought to
act on the space X := CLk , and we can write

Ai =
∑

x,y∈Lk : |x\y|=i
xy∗. (1.17)

The symmetric group S[n] acts on Lk in a natural way as follows:

π ∈ S[n] : {x1, . . . , xk} 7→ {π(x1), . . . , π(xk)}.

This action defines a permutation representation P : S[n] → U(X ). In order to see how the
representation P decomposes into irreps, let us use induction.

Fix x ∈ Lk and consider the one dimensional space Xx := span{x}. The subspace Xx is stable
under the subgroup Sx × S[n]\x of S[n], and the action of this group corresponds to the trivial

representation, that is, Xx ∼= S(k) × S(n−k). For every x′ ∈ Lk, there exists π ∈ S[n] such that
π(x) = x′, and dimX/ dimXx = |S[n]|/|Sx × S[n]\x|. Hence,

X = Xx ↑ S[n]
∼= (S(k) × S(n−k)) ↑ Sn ∼=

⊕k

h=0
S(n−h,h), (1.18)

where the last isomorphism is due to the Littlewood–Richardson rule (1.12). Let Πh be the
projector on the subspace of X isomorphic to S(n−h,h).
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Note that PπAiP
−1
π = Ai for all π ∈ S[n]. Since, according to (1.18), P is multiplicity-free,

Schur’s lemma implies that we can express Ai as a linear combination of Πh. To present the
coefficients in this linear combination, it helps to introduce the matrices

Cj :=
∑
z∈Lj

ζzζ
∗
z (1.19)

for all j ∈ [0..k], where
ζz :=

∑
x∈Lk : z⊆x

x. (1.20)

It is known that

∀i : Ai =
k∑

j=k−i
(−1)j−k+i

Ç
j

k − i

å
Cj and ∀j : Cj =

k−j∑
i=0

Ç
k − i
j

å
Ai, (1.21)

and also

∀j : Cj =
j∑

h=0

Ç
n− j − h
n− k − h

åÇ
k − h
j − h

å
Πh (1.22)

[God05, Chp. 7]. Hence, we can express Ai uniquely as a linear combination of orthogonal
projectors Πh, and the coefficients corresponding to these projectors are the eigenvalues of Ai.

In Chapter 6, we are interested in the converse: expressing Π1 and Π2 as linear combinations
of Ai. From (1.22) one can see that

Πh = (n− 2h+ 1)
h∑
j=0

(−1)j−h
(k−j
h−j
)

(k − j + 1)
(n−j−h+1
n−k−h

)Cj (1.23)

for h = 0, 1, 2 (a symbolic calculation for h up to 6 suggests that (1.23) might hold for all h).
From (1.23) and the right hand side of (1.21) we get

Π1 =
1(n−2
k−1

) k∑
i=0

Ç
(k − i)− k2

n

å
Ai, (1.24)

Π2 =
1(n−4
k−2

) k∑
i=0

ÇÇ
k − i

2

å
− (k − 1)2

n− 2
(k − i) +

k2(k − 1)2

2(n− 1)(n− 2)

å
Ai. (1.25)
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Chapter 2

Quantum query complexity

In this chapter we introduce quantum query complexity and concepts related to it. It is rec-
ommended (but not necessary) that the reader has at least introductory knowledge on quantum
computing. For more background on quantum computing, one may refer to [NC00].

This chapter is organized as follows. In Section 2.1 we introduce the main computational
problems considered in this thesis and concepts related to certificates. Then, in Section 2.2, we
define the quantum query algorithm and we describe how one can “symmetrize” it and run it on
a superposition of inputs. In Section 2.3 we define the adversary bound, sketch the idea behind
its proof, and present some tools that simplify its application. We also give the basic intuition
behind adversary bounds presented in later chapters. Finally, in Section 2.4, we introduce a
computational model of learning graph.

2.1 Computational problems

Definition 2.1. We define a computational problem to be a binary relation P ⊆ Σn ×R, where
n ∈ N is called the input length, Σ is a finite set called the input alphabet (or, simply, the alphabet),
elements in Σ are called symbols or characters, andR is a finite set called the codomain. A family of
computational problems is a function that maps (not necessarily every) n ∈ N to a computational
problem of input length n (we allow the input alphabet and the codomain to depend on n.)

We call x ∈ Σn an input or an input string. For i ∈ [n], we call xi an input variable when we
do not have a specific value (i.e., a symbol in Σ) of xi in mind. We call r ∈ R an output. We
interpret (x, r) ∈ P as r being a correct solution to a problem P on an input x, and we do not
ask this solution to be unique. Let us also use the notation

P(x) := {r ∈ R : (x, r) ∈ P}.
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The domain of the problem P is

D := {x ∈ Σn : P(x) 6= ∅},

and, given an input x ∈ D, the task of an algorithm for P is to output a correct solution r ∈ P(x).

Without loss of generality, we assume that Σ is a group in order to later define an oracle that
will allow us to interact with the input (see (2.1)). Some problems, like k-Sum and Trangle-
Sum, require Σ to be a group regardless of how one chooses to access the input.

A problem P is a function if, for every x ∈ D, there exists a unique r ∈ R such that
(x, r) ∈ P, and we write P(x) = r instead of P(x) = {r} and P : Σn → R (or P : D → R) instead
of P ⊆ Σn ×R. For a function P, let

P−1(r) := {x ∈ D : P(x) = r},

and note that, for two distinct r, r′ ∈ R, P−1(r)∩P−1(r′) = ∅. We also commonly use the notation
Dr instead of P−1(r), so that D =

⊔
r∈RDr. Boolean-valued functions, that is, functions for which

R = {0, 1}, are also referred to as decision problems. We call x ∈ P−1(1) a yes-input, a positive
input, or a 1-input and y ∈ P−1(0) a no-input, a negative input, or a 0-input. For decision
problems, we typically use x and y to refer to a yes-input and a no-input, respectively. We may
also use x to refer to a general input, or use z for this purpose.

Problems for which D 6= Σn are called promise problems. Functions that are promise problems
are called partial functions, and functions for which D = Σn are called total functions.

2.1.1 Common computational problems

Let us introduce the main computational problems that we consider in this thesis. For some
computational problems, the custom is to call the size of the problem a quantity other than the
input length. In such cases, let n denote the size of the problem, and we will explain how it
relates to the input length.

In this thesis, we consider in detail only one computational problem that is not a function:
the Find-Two problem. This problem is closely related to the (unstructured) Search, so let
us introduce both of them. For Search and Find-Two, the input alphabet is binary (i.e.,
Σ := {0, 1}), and we call i ∈ [n] marked if xi = 1.

1. The Search problem is to find a marked index i (if such index exists).

2. The Find-Two problem is to find a pair of marked indices i, j, where i 6= j (if such a pair
exists).
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All the other problems that we consider in detail are functions; in particular, they are decision
problems. Let us now introduce them.

3. The Threshold-k problem is to decide whether the Hamming weight of a binary input
string is at least k (answer: ‘yes’) or strictly less than k (‘no’). The Or function is equal
to Threshold-1 and the And function is equal to Threshold-n, where n is the length
of the input.

4. The Element Distinctness problem is to decide whether there is a symbol in Σ that
appears in the input string at least twice (‘yes’) or each symbol in the input string is unique
(‘no’).

5. The k-Distinctness problem is a generalization of Element Distinctness that asks
whether there is a symbol that appears in the input string at least k-times (‘yes’) or each
symbol appears at most k − 1 times (‘no’).

6. For the k-Sum problem, we require that Σ is an additive group, and the problem is to decide
whether there exists k distinct indices i1, i2, . . . , ik ∈ [n] such that xi1 + xi2 + · · ·+ xik = 0
(‘yes’) or not (‘no’).

For the Collision, Set Equality, and Hidden Shift problems, let the length of the input be
2n.

7. The Collision problem is to decide whether each symbol present in the input string is
unique (‘no’) or appears in it exactly twice (‘yes’), given a promise that either case holds.

8. The Set Equality problem is a special case of Collision given an additional promise
that each symbol of the first half of the input string is unique (thus, each symbol of the
second half is unique too).

9. The Hidden Shift (decision) problem is a special case of Set Equality given an ad-
ditional promise that, for all yes-inputs x, there exists a unique s ∈ [n] such that, for all
i ∈ [1..n] and all j ∈ [n+ 1..2n], xi = xj if and only if j ≡ i+s mod n. (The “non-decision”
version of the problem is to find the hidden shift s).

For the Triangle and Trangle-Sum problems, let the length of the input be
(n

2

)
and let the

input variables be labeled as xij where 1 ≤ i < j ≤ n. Here n represents an order of a graph and
i ∈ [n] represents a vertex in the graph. A pair (i, j) with 1 ≤ i < j ≤ n represents an undirected

edge, and an input x ∈ Σ(n2) effectively assigns a symbol to every edge.
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10. For the Triangle problem, Σ = {0, 1}, and we interpret xij as the indicator function
whether there is (xij = 1) or is not (xij = 0) an edge between vertices i and j. The
Triangle problem is to decide whether the graph given by x contains a triangle (‘yes’)
or not (‘no’), that is, decide whether there is a triple 1 ≤ a < b < c ≤ n such that
xab = xac = xbc = 1.

11. For the Trangle-Sum problem, similarly to k-Sum, we require that Σ is an additive
group, and the problem is to decide whether there is a triple 1 ≤ a < b < c ≤ n such that
xab + xac + xbc = 0 (‘yes’) or not (‘no’).

When we think of k-Distinctness and k-Sum as families of problems, we think of k as a constant
independent from n. For Element Distinctness and k-Distinctness, we assume that |Σ| ≥ n
and |Σ| ≥ n/(k − 1), respectively, as these problems become trivial for smaller input alphabets.
We later generalize k-Sum and the Trangle-Sum problems as Certificate-Sum problems and
further as Orthogonal Array problems.

2.1.2 Certificates for decision problems

We can think of every input string x ∈ Σn as a function [n]→ Σ that assigns to every index i in
[n] the symbol xi. For this reason, Σ is also commonly called the range. Given a subset of indices
S ⊆ [n], let a ∈ ΣS denote a function S → Σ that assigns a character to every index in S; we
call such a function a (partial) assignment. Recall that, given x ∈ Σn, xS ∈ ΣS is the restriction
of x to S. (Note that we can also further restrict partial assignments.) We say that x ∈ Σn is
compatible with a ∈ ΣS if xS = a.

Suppose P : Σn → {0, 1} is a decision problem with domain D = D0 t D1. For a value
b ∈ {0, 1} and a subset S ⊆ [n], the partial assignment a ∈ ΣS is called a b-certificate if P(x) = b
for all x ∈ D such that xS = a; one also says that a is a certificate of x. Given x ∈ Db, let
Mx ⊆ 2[n] be the set of all subsets S ⊆ [n] such that xS is a b-certificate. Note that Mx is closed
under taking supersets: if S ∈ Mx, then S′ ∈ Mx for all S′ ⊇ S. We call a subset M ⊆ 2[n] that
is closed under taking supersets a certificate placement.

Example 2.2. Consider the 4-bit And-of-Or’s function: P(x) := (x1∨x2)∧ (x3∨x4). For two
1-inputs x := (1, 1, 0, 1) and x := (0, 1, 0, 1), their corresponding certificate placements are

M(1,1,0,1) =
¶
{1, 4}, {2, 4}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}

©
,

M(0,1,0,1) =
¶
{2, 4}, {1, 2, 4}, {2, 3, 4}, {1, 2, 3, 4}

©
.

The certificate complexity C(x) of an input x ∈ Db is the minimum among the sizes of
certificates of x, namely, minS∈Mx |S|. For b ∈ {0, 1}, the b-certificate complexity of the problem
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P is defined as
Cb := max

x∈Db
C(x).

We will be particularly interested in problems having small 1-certificates. Note that it is
the case for all decision problems we introduced above in Section 2.1.1. Because of this, most
common algorithms for such problems try to look for a 1-certificate, and the result they output
is determined depending on whether they succeed to find one.

Definition 2.3 (Certificate Structure). A certificate structure C on n variables is a collection of
non-empty certificate placements M ⊆ 2[n]. We say that a decision problem P : D → {0, 1} has
certificate structure C if, for every x ∈ D1, one can find M ′ ∈ C such that M ′ ⊆ Mx, that is, xS
is a 1-certificate for all S ∈M ′.

A decision problem can have multiple certificate structures. For example, all decision prob-
lems on n variables have the trivial certificate structure {{[n]}}. Every problem P also has the
certificate structure {Mx : x ∈ D1}, which we call its full certificate structure. If we take the
inclusion-wise minimal elements of the full certificate structure, we obtain the minimal certificate
structure of the problem, which we denote by CP . The minimal certificate structure, in some
sense, corresponds to 1-inputs that are hardest to distinguish from 0-inputs.

Example 2.4. Consider again the funcion P(x) = (x1 ∨ x2) ∧ (x3 ∨ x4). Its minimal certificate
structure is

C =
{¶
{1, 3}, {1, 2, 3}, {1, 3, 4}, {1, 2, 3, 4}

©
,¶

{1, 4}, {1, 2, 4}, {1, 3, 4}, {1, 2, 3, 4}
©
,¶

{2, 3}, {1, 2, 3}, {2, 3, 4}, {1, 2, 3, 4}
©
,¶

{2, 4}, {1, 2, 4}, {2, 3, 4}, {1, 2, 3, 4}
©}
.

Each row in this expression is a certificate placement.

Assuming that the size of the input alphabet Σ is sufficiently large, both k-Distinctness and
k-Sum share the same minimal certificate structure (which is also the minimal certificate structure
of Threshold-k):

Definition 2.5. The k-subset certificate structure C on n elements with k = O(1) is defined as
follows. It has

(n
k

)
elements and, for each subset A ⊆ [n] of size k, there exists a unique certificate

placement M ∈ C such that S ∈M if and only if A ⊆ S ⊆ [n].

One could define the unique certificate structure of a function to be its minimal certificate
structure. All the results presented in this thesis would still hold in this case, because they all
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consider functions of large input alphabets Σ. Nonetheless, the proofs of these results would
become slightly more complex, because, when we design a function to have some given certificate
structure, for smaller input alphabets, the function might become “simpler” and its minimal
certificate structure might change. For example, when |Σ| < n/k, the minimal certificate structure
of k-Distinctness becomes {2[n]}.

For each Collision, Set Equality, and Hidden Shift, its full and minimal certificate
structure is the same and defined as follows. Note that every positive input x of these problems
decomposes the set of indices [2n] as a disjoint union of pairs {µi,1, µi,2} such that x[[µi,1]] = x[[µi,2]].

Definition 2.6. Each of the following certificate structures is defined on 2n input variables. In
the collision certificate structure, there is a unique certificate placement M for each decomposition

[2n] = {µ1,1, µ1,2} t {µ2,1, µ2,2} t · · · t {µn,1, µn,2},

and S ∈ M if and only if S ⊇ {µi,1, µi,2} for some i ∈ [n]. The set equality certificate structure
contains only those M from the collision certificate structure that correspond to decompositions
with µi,1 ∈ [1..n] and µi,2 ∈ [n+ 1..2n] for all i. Finally, the hidden shift certificate structure con-
tains only those M from the set equality certificate structure that correspond to decompositions
such that s ∈ [n] exists with the property µi,2 ≡ µi,1 + s mod n for all i ∈ [n].

Example 2.7. The collision certificate structure for n = 2 is

C =
{¶
{1, 2}, {3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}

©
,¶

{1, 3}, {2, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}
©
,¶

{1, 4}, {2, 3}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}
©}
.

To further illustrate that a problem can have multiple certificate structures, notice that both
2-Distinctness (i.e., Element Distinctness) and Collision have the 2-subset certificate
structure, but, between them, only Collision has the collision certificate structure.

Recall that, for Triangle and Trangle-Sum, the input variables correspond to edges of
an undirected graph. The minimal certificate structure for Triangle and (assuming sufficiently
large Σ) Trangle-Sum is as follows.

Definition 2.8. The triangle certificate structure C on n vertices is a certificate structure on
(n

2

)
variables defined as follows. Assume that the variables are labelled as xij where 1 ≤ i < j ≤ n.
The certificate structure has

(n
3

)
elements, and, for every triple 1 ≤ a < b < c ≤ n, there exists a

unique certificate placement M ∈ C such that S ∈M if and only if S ⊇ {ab, bc, ac}.

Let us generalize the k-Sum and Trangle-Sum problems. For that reason, we consider a
certain type of certificate structures.
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Definition 2.9. A certificate structure C is boundedly generated if, for every M ∈ C, there is a
(unique) subset AM ⊆ [n] such that |AM | = O(1), and S ∈M if and only if S ⊇ AM .

Given a boundedly generated certificate structure C, the C-Sum problem is: given x ∈ Σn,
decide whether there exists M ∈ C such that

∑
j∈AM xj = 0 (‘yes’) or not (‘no’). When we

do not have a specific boundedly generated C in mind, we call C-Sum a Certificate-Sum
problem. Note that k-Sum and Trangle-Sum correspond to C being the k-subset and the
triangle certificate structure, respectively. We further generalize Certificate-Sum problems as
Orthogonal Array problems in Chapter 4.

2.2 Quantum query algorithm

Let us now define quantum query algorithms. Since in this thesis we only consider query complex-
ity, we ignore aspects of quantum query algorithms that are only of importance when quantum
circuit complexity is considered. For example, we do not consider qubits, which are basic units of
quantum information, and, instead of defining a register of a quantum algorithm to be a collection
of qubits, we will simply define it as a finite-dimensional space. We also do not worry about the
implementation costs of unitary transformations.

For the illustrative examples of quantum circuits (Figures 2.1, 2.2, 2.3, 2.4, and 2.5), we
assume that the reader is familiar with the basic notation of quantum circuit diagrams (see,
e.g., [NC00]). In these diagrams, the computation proceeds from the left to the right and each
wire (i.e., horizontal line) corresponds to one quantum register.

2.2.1 Registers and states of the computation

An algorithm will access the input x ∈ Σ[n] via an oracle, and we call each such access a query.
Informally, an oracle receives an index i ∈ [n] and returns the i-th entry of the input, i.e., xi ∈ Σ.
In order to make this operation reversible, we require the alphabet Σ to be a group.

Given a computational problem P ⊆ Σn×R, let XQ′ := C[n], XQ′′ := CΣ, and XQ := XQ′⊗XQ′′ .
We call theses spaces—as well as similar spaces XW, XR, XA, XI, XS introduced later—registers.
We call XQ the query register, XQ′ the query index (or, simply, index) register, and XQ′′ the query
symbol register. The (standard) oracle is a function O that for every x ∈ Σn assigns the unitary
O(x) ∈ U(XQ) defined as

O(x) : i⊗ a 7→ i⊗ (a+ xi) (2.1)

for all i ∈ [n] and a ∈ Σ (see Figure 2.1), where, according to our notation, (a+xi) is the vector
in the standard basis of CΣ that corresponds to (a + xi) ∈ Σ. We also use the term ‘oracle’ to
refer to the operator O(x).
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XQ′′ a a+ xi


Figure 2.1: The circuit diagram of the standard quantum oracle. For the sake of conciseness, in circuit
diagrams we write Ox instead of O(x).

For now, let us simply refer to computational problems as ‘problems’. Later, in Chapter 6, we
consider the Enhanced Find-Two problem, which is technically not a computational problem.
There we will also consider other (i.e., non-standard) oracles, as well as, provide an algorithm
with additional information on the input.

Recall that R denotes the codomain of P. Similarly to the query register, let XR := CR,
which is called the output register. A vector in a register is called a state of this register if it
has unit norm, and similarly for vectors in tensor products of registers. In order to clarify that
a state belongs to (or an operator acts on) a register Xreg, where reg is a subscript identifying
the register, we frequently use the same subscript for the state (or the operator) itself. This also
allows us to change the order of registers in expressions, when convenient. For example, given
u ∈ XQ and v ∈ XR, we think of uQ⊗ vR and vR⊗uQ as the same state in XQ⊗XR. We may also
concatenate subscripts when we address multiple registers at once, for example, we may write
IQR instead of IQ ⊗ IR.

For simplicity, let Trreg denote a partial trace over Xreg (instead of TrXreg). Given a state
w ∈ Xreg1

⊗Xreg2
, we refer to the density operator Trreg2

(ww∗) as the state of the register Xreg1
or as

the Xreg1
-part of the state w. We say that Xreg1

and Xreg2
are entangled if rank (Trreg2

(ww∗)) > 1.

Definition 2.10. A quantum query algorithm A for a problem P ⊆ Σn ×R is a quadruple

A :=
Ä
XW, φ0 ∈ XA, T ∈ N, {Vt ∈ U(XA) : t ∈ [0..T ]}

ä
,

where XW is a finite, non-zero Hilbert space, XA := XQ ⊗ XW ⊗ XR, and ‖φ0‖ = 1. We call XW

the work register and XA the algorithm registers. The state φ0 is called the initial state of the
algorithm, T is the number of queries. V0 and VT are called, respectively, the initial and the final
unitary transformation, and, for t ∈ [T − 1], Vt is called the unitary transformation between the
queries (number) t and t+ 1. We also refer to T as the quantum query complexity of A.

The circuit diagram of a generic quantum query algorithm A is given in Figure 2.2. Let φt(x)
be the state of A just after the query t and ψt(x) the state of A just before the query t+ 1. And
let ψT (x) be the final state of the algorithm A.

More formally, for t ∈ [0..T ], we define the states φt(x) and ψt(x) in XA recursively as follows.
As the base case, we use the initial state φ0(x) = φ0. (Note: for the Enhanced Find-Two
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Figure 2.2: The circuit diagram of a generic quantum query algorithm.

problem considered in Chapter 6, the initial state φ0(x) will depend on x. It is also the case in
state conversion problems considered in [LMR+11].) Then, let

∀t ∈ [0..T ] : ψt(x) := Vtφt(x) and ∀t ∈ [1..T ] : φt(x) := (O(x)⊗ IWR)ψt−1(x). (2.2)

Note that
〈ψt(x), ψt(y)〉 = 〈Vtφt(x), Vtφt(y)〉 = 〈φt(x), φt(y)〉. (2.3)

At the end of the computation, the algorithm A returns r with the probability

‖(IQW ⊗ rR)∗ψT (x)‖2,

which, in the standard terminology of quantum computing, is the probability that, upon a mea-
surement of ψT (x) in the standard basis of XR, the outcome of the measurement is r (see [NC00]).
The algorithm is successful if the returned value r is a correct solution on the input x. Hence,
the success probability of A on an input x is

pA(x) :=
∑

r∈P(x)

‖(IQW ⊗ rR)∗ψT (x)‖2, (2.4)

and we call 1 − pA(x) the error probability. We study the worst case success probability of A,
which is defined as pA := min{pA(x) : x ∈ D}. We say that A solves the problem P with the
error probability 1− pA.

Given 0 < ε < 1/2, the ε-error quantum query complexity of a problem P is the minimum
number of queries (i.e., T ) required by any algorithm that solves P with the error probability at
most ε, and we denote this complexity by Qε(P). We define the bounded-error quantum query
complexity (or, simply, the quantum query complexity) of P to be Q1/3(P).

If P is a function, the choice for the constant ε = 1/3 is arbitrary in the following sense. We are
typically interested in a family of problems {Pn : n ∈ N}, and we only care about the asymptotic
query complexity. Given any constant ε > 0 independent from n, we can run an algorithm of
error probability 1/3 multiple times and take the majority of answers, thereby reducing the error
probability below ε. (The number of times we have to repeat the algorithm depends only on ε,
so this number is a constant with respect to n.)
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We define the quantum query complexity of a certificate structure as the maximum bounded-
error quantum query complexity over all decision problems possessing this certificate structure.

Remark 2.11. We could have also allowed quantum query algorithms to have a “control” register
XC := C{0,1} that determines whether to query the oracle: query the oracle if XC is in the state
1 and do not query the oracle if XC is in the state 0. Nevertheless, such a register would not
increase the power of quantum query algorithms because we can simulate this controlled oracle
using the fact that

O(x)(i⊗ ξ) = i⊗ ξ (2.5)

for all x ∈ Σn and i ∈ [n], where

ξ :=
1»
|Σ|

∑
a∈Σ

a.

To perform this simulation, we introduce an ancillary register X ′Q′′ isomorphic to XQ′′ that is
initialized to ξ. Then, right before and right after each query, we swap the registers XQ′′ and X ′Q′′
if and only if XC is in the state 0. This simulation works because, as shown by (2.5), applying
the oracle to i⊗ ξ is equivalent to not querying the oracle at all.

2.2.2 Automorphisms of problems and symmetrization

Many problems that we are interested in, including all the problems we defined above, possess
many symmetries. We describe this symmetry using automorphism groups. The automorphism
principle, which we present in Section 2.3.2, states that, without loss of generality, one can assume
that adversary matrices are symmetric under automorphism groups [HLŠ07]. This symmetry
was heavily utilized for the Ω(n1/2) lower bound for the Index Erasure problem [AMRR11].
Automorphism groups also play a role in the symmetrization of algorithms, which we present
later is this section.

In order to define automorphism groups, let us consider the (left) group actions of S[n], SΣ,
and S[n] × SΣ on the set of inputs Σn defined as follows. Given a permutation of indices π ∈ S[n]

and a permutation of symbols τ ∈ SΣ, we define the group actions of S[n] and SΣ as, respectively,

π : (x1, . . . , xn) 7→
Ä
xπ−1(1), . . . , xπ−1(n)

ä
, (2.6)

τ : (x1, . . . , xn) 7→
Ä
τ(x1), . . . , τ(xn)

ä
. (2.7)

These two actions commute, π(τ(x)) = τ(π(x)), so we define the group action of S[n] × SΣ as

(π, τ) : (x1, . . . , xn) 7→
Ä
τ(xπ−1(1)), . . . , τ(xπ−1(n))

ä
. (2.8)

Let UQ′,π ∈ U(XQ′) and UQ′′,τ ∈ U(XQ′′) be the permutation representations corresponding
to the group actions π : i 7→ π(i) and τ : a 7→ τ(a), respectively, where i ∈ [n] and a ∈ Σ. They
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are known as the natural representations of the symmetric group. Let UQ,(π,τ) := UQ′,π ⊗ UQ′′,τ ,
which is a representation of S[n] × SΣ.

Definition 2.12. An automorphism of a problem P ⊆ Σn ×R is a subgroup G ≤ S[n] × SΣ such
that there exists a group action ω : G×R→ R satisfying

∀γ ∈ G, ∀x ∈ Σn : ωγ(P(x)) = P(γ(x)), (2.9)

where γ(x) is defined in (2.8). We call the automorphism G of P an oracle automorphism if

UQ,γ · O(x) · U−1
Q,γ = O(γ(x)) (2.10)

for all x ∈ D and all γ ∈ G.

Example 2.13. Consider the Element Distinctness problem. The group G := S[n] × SΣ

together with the trivial group action (namely, ωγ(r) = r for all γ ∈ G and r ∈ {0, 1}) is an
automorphism for Element Distinctness. However, it is not an oracle automorphism. For
τ ∈ SΣ, the action of UQ,(ε,τ)O(x)U−1

Q,(ε,τ) on the standard basis is

i⊗ a τ−1

7−→ i⊗ τ−1(a)
O(x)7−→ i⊗ (τ−1(a) + xi)

τ7−→ i⊗ τ (τ−1(a) + xi),

while, for O((ε, τ)(x)), it is

i⊗ a O(τ(x))7−→ i⊗ (a+ τ (xi)),

where ε is the identity element of S[n]. These actions are not necessarily equal. For example,
consider Σ = {0, 1, 2, . . . , |Σ| − 1} with the addition modulo |Σ| as the group operation and the
transposition τ := (0, 1). Then, for a = 1 and xi = 0, we have

τ(τ−1(a) + xi) = 1 and a+ τ(xi) = 2,

therefore (2.10) does not hold.

While automorphisms play a role in the adversary bound, oracle automorphisms, which are
more restricted, play a role in the symmetrization of algorithms. The condition (2.10) does not
hold for the standard oracle O, unless τ(a) + τ(a′) = τ(a+ a′) for all a, a′ ∈ Σ and all (π, τ) ∈ G.
On the other hand, consider automorphisms in the form G? × {ε}, where G? is a subgroup of
S[n] and ε is the identity element of SΣ. For π ∈ G?, the action of UQ,(π,ε)O(x)U−1

Q,(π,ε) on the
standard basis is

i⊗ a π−1

7−→ π−1(i)⊗ a O(x)7−→ π−1(i)⊗ (a+ xπ−1(i)) = π−1(i)⊗ (a+ π(x)i)

π7−→ i⊗ (a+ π(x)i),
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which equals the action of O((π, ε)(x)). Hence, the condition (2.10) holds.1

Suppose G is an oracle automorphism of a problem P with a group action ωγ on R, and
let UR,γ be the permutation representation of G corresponding to ωγ . Given a quantum query
algorithm A for P, one can “symmetrize” it so that the symmetrized algorithm Ā performs equally
well within each orbit G(x), no worse that A in the worst case, and uses the same number of
queries as A. To use symmetrization as a tool for proving lower bounds was first considered by
Ambainis in [Amb10], and later used in [AŠdW09]. We “symmetrize” A as follows.

Without loss of generality, we assume that the initial state satisfies

(UQ,γ ⊗ IWR)φ0 = φ0 (2.11)

for all γ ∈ G. (In Chapter 6, where φ0(x) depends on x, we will require

(UQ,γ ⊗ IWR)φ0(x) = φ0(γ(x))

for all x ∈ D and all γ ∈ G.) Consider γ ∈ G. Let the algorithm A(γ) be obtained from A by
replacing Vt with

V
(γ)
t := (UQ,γ ⊗ IWR)−1Vt(UQ,γ ⊗ IWR)

for all t ∈ [0..T − 1] and VT with

V
(γ)
T := (IQW ⊗ UR,γ)−1VT (UQ,γ ⊗ IWR).

Hence, because of the conditions (2.10) and (2.11), the state of A(γ) running on an input x just
before the query t+ 1 is

(UQ,γ ⊗ IWR)−1ψt(γ(x)), (2.12)

where ψt(γ(x)) is the state of A on γ(x) just before the query t+ 1. Similarly, the final state of
A(γ) on x is

(IQW ⊗ UR,γ)−1ψT (γ(x)).

Because of the condition (2.9) on ωγ , the success probability of A(γ) on x equals the success
probability of A on γ(x).

To average out success probabilities within each orbit G(x), let us effectively run algorithms
A(γ) in superposition over all γ ∈ G. Namely, we add the symmetrization register XS := CG to
the registers of the algorithm A. (To see that this fits with Definition 2.10, one can think of
XS ⊗XW as the new work register.) Initially, let XS hold the uniform superposition

1»
|G|

∑
γ∈G

γ

1Suppose, aside from the standard oracle O, we were also given the oracle O−1. Then, a pair of one query to
O(x) and one query to O−1(x) can simulate a query to O(γ(x)) for all γ ∈ S[n]×SΣ (see, for example, [AMRR11]).
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•
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UQ,γ

Vt
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Q,γ

V̄T :=

•
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UQ,γ
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U−1
R,γ

Figure 2.3: Unitary transformations of the symmetrized algorithm Ā: (top) the transformation between
the queries t and t+1, if t ∈ [T−1], or the initial transformation, if t = 0; (bottom) the final transformation
(i.e., t = T ). The controlled unitary transformations are controlled by γ ∈ G.

over all “permutations” γ ∈ G. And, for Ā, we substitute each unitary Vt ∈ U(XA) of A with

V̄t :=
∑
γ∈G

γγ∗ ⊗ V (γ)
t ∈ U(XS ⊗XA)

(see Figure 2.3). Thereby we ensure that, for all x ∈ Σn,

pĀ(x) =
1

|G(x)|
∑

x′∈G(x)

pA(x′) ≥ min
x′∈G(x)

pA(x′) ≥ pA.

2.2.3 Algorithms with an input register

We just described how, using the symmetrization register, we can run multiple algorithms in
superposition on one given input x. Analogously, we now consider how to run one given algorithm
on a superposition of inputs. This argument is the basis of the adversary lower bound method as
well as the lower bound we will prove for the Enhanced Find-Two problem in Chapter 6.

Given a problem P : D → R and a unit vector (δx ∈ C : x ∈ D), let us recast A into a different
form A+, introducing the input register XI := CD that stores the input. The initial state of the
algorithm A+ is

φ+
0 :=

∑
x∈D

δxxI ⊗ φ0(x)A ∈ XIA. (2.13)

For A+, each oracle O is replaced by

O+ :=
∑

x∈D
(xx∗)I ⊗O(x)Q, (2.14)
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which we also call an oracle (see Figure 2.4), and each unitary transformation Vt ∈ U(XA) by
II⊗Vt ∈ U(XIA). Similarly to (2.2), let ψ+

t := (II⊗Vt)φ+
t and φ+

t := (O+⊗IWR)ψ+
t−1. Since II⊗Vt

does not interact with the XI register and the state of XI only controls which input to consider,
we have

φ+
t =

∑
x∈D

δxxI ⊗ φt(x)A and ψ+
t =

∑
x∈D

δxxI ⊗ ψt(x)A

for all t ∈ [0..T ].

XI

O+

XQ

:=
•

Ox

Figure 2.4: The oracle controlled by the input.

Let
ρt := TrA(φ+

t (φ+
t )∗) =

∑
x,y∈D

δxδyxy
∗〈φt(y), φt(x)〉, (2.15)

and, note that, due to (2.3), we also have

ρt = TrA(ψ+
t (ψ+

t )∗) =
∑
x,y∈D

δxδyxy
∗〈ψt(y), ψt(x)〉. (2.16)

That is, the state ρt of the register XI stays the same between the queries t and t+1 (interpreting
the queries −1 and T + 1 as the beginning and the end of the algorithm, respectively).

The final state of the algorithm A+ is ψ+
T , and we define the success probability of A+ as

pA+ :=
∑

(x,r)∈P
‖(xI ⊗ IQW ⊗ rR)∗ψ+

T ‖
2. (2.17)

From the definition (2.4) of the success probability of A on x, one can see that

pA+ =
∑
x∈D
|δx|2pA(x) ≥ pA.

Therefore, if one lower bounds the number of queries to O+ required by any A+ in order to err
with probability at most ε, this is automatically a lower bound on Qε(P).

2.2.4 Symmetries of the input register

Now suppose we add both registers XI and XS to the algorithm A, that is, we both symmetrize
the algorithm and run it in superposition over multiple inputs. Let Ā+ denote the resulting
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algorithm, whose circuit diagram is given in Figure 2.5. Again suppose that G is an oracle
automorphism of a problem P with UR being the permutation representation corresponding to
the group action of G on R, and suppose (δx) is the unit vector determining the superposition
over inputs. Let us assume that δx is the same within each orbit of G, namely, δx = δγ(x) for all
x ∈ D and γ ∈ G.

∑
x δxx • • • 

1√
|G|
∑
γ γ • • • •

V
(γ)

0

Ox

V
(γ)

1

Ox

V
(γ)

2

· · · Ox

V
(γ)
T

φ0




Figure 2.5: The circuit diagram of a generic quantum query algorithm with the input and symmetrization
registers.

Note that, for γ = (π, τ) ∈ S[n]× SΣ and ` = (i, a) ∈ [n]×Σ, the unitary transformation UQ,γ

corresponds to the group action γ : ` 7→ (π(i), τ(a)). Let us write the state of the algorithm A on
x just before the query t+ 1 as

ψt(x) =
∑

`∈[n]×Σ

`Q ⊗ ψt,`(x)WR,

where ψt,`(x) may be unnormalized. Therefore, the state of the algorithm A(γ) on x just before
the query t+ 1, according to (2.12), is∑

`∈[n]×Σ

γ−1(`)Q ⊗ ψt,`(γ(x))WR,

and the state of the algorithm Ā+ just before the query t+ 1 is

ψ̄+
t =

∑
x∈D

δxxI ⊗
1»
|G|

∑
γ∈G

γS ⊗
∑

`∈[n]×Σ

γ−1(`)Q ⊗ ψt,`(γ(x))WR. (2.18)

Let UI,γ ∈ U(XI) be the representation corresponding to the group action (2.8), and let US,γ ∈
U(XS) be the right regular representation of G. Similarly as before, for any two representations
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Ureg1,γ and Ureg2,γ of G, let Ureg1reg2,γ := Ureg1,γ ⊗ Ureg2,γ . For all κ ∈ G, we have

(UISQ,κ ⊗ IWR)ψ̄+
t =

∑
x∈D

δxκ(x)I ⊗
1»
|G|

∑
γ∈G

γκ−1
S ⊗

∑
`∈[n]×Σ

κγ−1(`)Q ⊗ ψt,`(γ(x))WR

=
∑
x∈D

δκ(x)κ(x)I ⊗
1»
|G|

∑
γ∈G

γκ−1
S ⊗

∑
`∈[n]×Σ

(γκ−1)−1(`)Q ⊗ ψt,`((γκ−1)(κ(x)))WR = ψ̄+
t .

(2.19)

Let ρ′t := TrSWR

Ä
ψ̄+
t (ψ̄+

t )∗
ä

for t ∈ {0, 1, . . . , T − 1} and let ρ′T := TrSQW

Ä
ψ̄+
T (ψ̄+

T )∗
ä
, so that

TrQ(ρ′t) = ρt and TrR(ρ′T ) = ρT . Due to (2.19), for all t ∈ [0..T − 1], we have

UIQ,γρ
′
tU
−1
IQ,γ = ρ′t and UI,γρtU

−1
I,γ = ρt for all γ ∈ G. (2.20)

Similarly to (2.19), one can show that

(UISR,κ ⊗ IQW)ψ̄+
T = ψ̄+

T for all γ ∈ G, (2.21)

and, thus,
UIR,γρ

′
TU
−1
IR,γ = ρ′T and UI,γρTU

−1
I,γ = ρT for all γ ∈ G. (2.22)

We will use the symmetries (2.19), (2.20), (2.21), (2.22) in Chapter 6.

2.3 Adversary bound

Let us now introduce the main lower bound technique studied in this thesis, the adversary bound.
The adversary bound addresses the bounded-error quantum query complexity of function evalu-
ation. Consider a function P : Σn → R, and let D be the domain of P.

Definition 2.14. An adversary matrix for P is a non-zero, real, symmetric |D| × |D|-matrix Γ
whose rows and columns are symmetrically labeled by inputs x ∈ D and which satisfies

Γ[[x, y]] = 0 whenever P(x) = P(y). (2.23)

For i ∈ [n], the difference matrices ∆i and ∆i are the matrices of the same dimensions and the
same row and column labeling as Γ that are defined by

∆i[[x, y]] :=

{
0, if xi = yi,

1, if xi 6= yi,
and ∆i[[x, y]] :=

{
1, if xi = yi,

0, if xi 6= yi.
(2.24)
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Theorem 2.15 (Adversary bound, [HLŠ07]). In the notation of Definition 2.14, the ε-error
quantum query complexity of P satisfies

Qε(P) ≥ 1− 2
√
ε

2
Adv(P), (2.25)

where

Adv(P) := max
Γ

‖Γ‖
maxi ‖∆i ◦ Γ‖

. (2.26)

Hence, the bounded-error quantum query complexity of P is Q(P) = Ω(Adv(P)). If R = {0, 1},
one can use 2

»
ε(1− ε) instead of 2

√
ε in (2.25).2

We can always scale the adversary matrix Γ so that the denominator in (2.26) is at most 1,
therefore, Adv(P) is equivalent to the optimal value of the optimization problem

maximize ‖Γ‖ (2.27a)

subject to ‖∆i ◦ Γ‖ ≤ 1 for all i ∈ [n], (2.27b)

where the maximization is over all adversary matrices Γ for P. In fact (2.27) is a semidefinite
program (see [Rei09]), and, for decision problems, we consider its dual in Section 2.4.

We prefer to use (2.27) over (2.26). Note that every feasible solution to the semidefinite
program (2.27) yields a lower bound on the quantum query complexity of P. In practice, we
typically care only about the asymptotic behaviour of the adversary bound and we use the
condition ‖∆i ◦ Γ‖ = O(1) instead of ‖∆i ◦ Γ‖ ≤ 1. Also note that ∆i ◦ Γ = Γ−∆i ◦ Γ.

The adversary bound was first introduced by Ambainis in [Amb02], essentially considering
the case when each entry of the adversary matrix Γ is either 0 or 1. Many generalizations of
the bound were subsequently proposed, which were later all shown to be equivalent to the case
when all entries (also called weights) of Γ are non-negative [ŠS06]. This version of the bound is
known as the positive-weights adversary bound, and it suffers certain limitations we describe in
Section 2.3.4. The adversary bound was further generalized in [HLŠ07] by allowing both positive
and negative weights in Γ. Reichardt et al. showed that the (general) adversary bound is optimal
for every function (up to a constant depending only on ε) [Rei11, LMR+11].

We do not repeat the proof of the adversary bound in this thesis. Instead, we provide the
basic intuition behind it, which partially also applies for the lower bound for the Enhanced
Find-Two problem considered in Chapter 6.

2The adversary bound in [HLŠ07] had 2
√
ε(1− ε) + 2ε instead of 2

√
ε in (2.25). The proof having 2

√
ε can be

found in [Bel13].
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2.3.1 Intuition behind the bound

Consider a quantum query algorithm A for a problem P. As in Section 2.2.3, let A+ be the
query algorithm running A on a superposition of inputs determined by a unit vector (δx : x ∈ D).
All quantum query lower bounds that we prove in this thesis are based on the following three
observations regarding the entanglement between the input register XI and the algorithm registers
XA. Informally,

1. At the beginning of the algorithm, XI and XA are not very entangled (for the problems that
we consider, they are not entangled at all, except for the Enhanced Find-Two problem
in Chapter 6).

2. In order for the algorithm to err with small probability, at the end of the algorithm, XI and
XA (in particular, its output “subregister” XR) have to be highly entangled.

3. A single query to the oracle cannot increase the entanglement between XI and XA by more
than a certain amount, and unitary transformations Vt do not affect this entanglement
whatsoever.

Of course, we need quantitative means for measuring this entanglement, and we will consider
somewhat different measures for function evaluation and the Enhanced Find-Two problem.
Once we lower bound the total difference in the entanglement required between the beginning
of the algorithm and the end of the algorithm and upper bound the possible change of the
entanglement per one query, the fraction of these two bounds yields a lower bound on the quantum
query complexity of P. We will discuss the Enhanced Find-Two problem in Chapter 6, and
now let us focus on our other interest: function evaluation.

Let P : Σn → R be a function, and let D be the domain of P. Suppose that A is a quantum
query algorithm for P with worst case error probability at most ε < 1/2, and suppose that A+

is the query algorithm running A on a superposition of inputs determined by a unit vector (δx).
Without loss of generality, let all unitary transformations Vt used by A have real entries and let
δx be real for all x. In particular, given an adversary matrix Γ for P, we choose (δx) to be a
principal eigenvector of Γ.

Suppose x, y ∈ D are two inputs such that P(x) 6= P(y), and recall that 〈ψt(x), ψt(y)〉 =
〈φt(x), φt(y)〉 for all t. At the beginning of the algorithm, since χ is constant for standard query
problems, we have 〈φ0(x), φ0(y)〉 = 1. At the end of the algorithm, however, we need that
〈ψT (x), ψT (y)〉 is small as ψT (x) must lay mostly within the subspace XQW ⊗P(x)R and ψT (y)

within XQW⊗P(y)R. More precisely, we need that |〈ψT (x), ψT (y)〉| ≤ 2
»
ε(1− ε). The adversary

lower bound method is essentially based on the observation that is hard to reduce these inner
products simultaneously for all pairs of x, y ∈ D satisfying P(x) 6= P(y). On the other hand, if
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P(x) = P(y), we can make no useful claims about 〈ψT (x), ψT (y)〉, which is the reason behind the
condition (2.23) on the adversary matrix.

Recall from (2.15) and (2.16) the density matrix ρt describing the state of the input register
XI between the queries t and t + 1. The need to reduce the inner products 〈φt(x), φt(y)〉 for all
x, y ∈ D satisfying P(x) 6= P(y) motivates the definition of the progress function:

Wt :=
∑
x,y∈D

P(x)6=P(y)

Γ[[x, y]] · δxδy〈φt(x), φt(y)〉 = Tr(Γρt),

where the latter equality is from (2.23). The progress function Wt, in a way, quantifies the
entanglement between XI and XA. Since the unit vector (δx) is the principal eigenvector of Γ, we
get

W0 =
∑
x,y∈D

Γ[[x, y]] · δxδy = ±‖Γ‖.

On the other hand, one can show that in order for the algorithm to err with probability at most
ε, we must have |WT | ≤ 2

√
ε‖Γ‖ (for the proof, refer to [Bel13]).

Regarding the denominator maxi ‖∆i ◦ Γ‖ in (2.26), reducing 〈φt(x), φt(y)〉 corresponds to
distinguishing between inputs x and y, which can be done only by querying indices i ∈ [n] such
that xi 6= yi. Thereby one can show that |Wt+1 −Wt| ≤ 2‖∆i ◦ Γ‖ for all i (refer to [HLŠ07]).
This together with |WT −W0| ≥ (1− 2

√
ε)‖Γ‖ yields the adversary bound.

2.3.2 Simplification tools

When constructing an adversary bound for a problem, it is hard to choose a good adversary
matrix Γ and, once the adversary matrix is chosen, it is often hard to estimate the norms ‖Γ‖
and ‖∆i ◦ Γ‖. Here we present some tools that simplify both of these tasks.

First of all, let us use the notations ∆i and ∆i to denote any matrices whose rows and
columns correspond to inputs x ∈ Σn and that are defined according to the definition (2.24) of
the difference matrices, and we may use the name “difference matrices” for them too. We call
∆i ◦ A the action of ∆i on a matrix A, and the row and column labeling of A determines which
∆i in particular we are considering.

In this thesis, we consider only adversary bounds for decision problems. Suppose we are
given a decision problem P : D → {0, 1}, and, as before, let us decompose its domain D ⊆ Σn as
D1 t D0.

Reduction of the adversary bound to a quadrant. Suppose Γ is an adversary matrix for
the decision problem P, and let Γ′ be its |D1| × |D0|-submatrix corresponding to rows labeled by
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yes-inputs D1 and columns labeled by no-inputs D0. Due to (2.23), we have

Γ =

Ç
0 Γ′

(Γ′)> 0

å
and ∆i ◦ Γ =

Ç
0 ∆i ◦ Γ′

(∆i ◦ Γ′)> 0

å
,

where the first block of rows and columns correspond to D1 and the second to D0. “Bipartiteness”
of these matrices implies that ‖Γ‖ = ‖Γ′‖ and ‖∆i ◦ Γ‖ = ‖∆i ◦ Γ′‖. By abuse of terminology,
we call Γ′ an adversary matrix for P, and we remove the prime symbol (′) from its notation for
simplicity, as the value Adv(P) given by (2.27) stays the same for this submatrix.

Restriction to hard-to-distinguish inputs. Often, when we prove lower bounds for function
evaluation, it suffices to consider inputs that have different values, yet are hard to distinguish
one from another (i.e., they are equal in most positions). For example, for the Or function, one
typically has to compare only the input 0n and the inputs containing a unique 1.

Remark 2.16. If one restricts a problem to its subdomain, the restricted (promise) problem can
only become easier. Therefore, any lower bound for the restricted problem is also a lower bound
for the original problem.

For the adversary method, this restriction is manifested by restricting the adversary matrix
to rows and columns corresponding to only those inputs that we care about. (This is equivalent
to placing only zeros in all the rows and columns corresponding the inputs that we ignore.)

Automorphism principle. Recall that an element γ = (π, τ) of the group S[n] × SΣ acts on
an input x ∈ D according to (2.8). Suppose G ≤ S[n] × SΣ is an automorphism of P (we do not
require G to be an oracle automorphism, namely, we do not require conditions (2.10) and (2.11)
to hold). And let us assume that P(γ(x)) = P(x) for all x ∈ D and γ ∈ G (i.e., the group action
ω in (2.9) is trivial). The automorphism principle, introduced in [HLŠ07], states that without
loss of generality, we can assume that the adversary matrix Γ is fixed under G. More precisely,
one can restrict the maximization in (2.27) to adversary matrices Γ satisfying

Γ[[x, y]] = Γ[[γ(x), γ(y)]] for all x ∈ D1, y ∈ D0, γ ∈ G (2.28)

without affecting the optimal value of Adv(P).3

We also view Γ as a linear map in L(CD0 ,CD1). Let U0,γ ∈ U(CD0) and U1,γ ∈ U(CD1) be
the permutation representations of G corresponding to its group action (2.8) on D0 and D1,
respectively. Then (2.28) is equivalent to

U1,γΓ = ΓU0,γ (2.29)

3Since we are proving lower bounds, the automorphism principle is not formally needed, as we can assume the
symmetry (2.28) without it.
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for all γ ∈ G. Schur’s lemma (Lemma 1.2) and (2.29) imply that we can write Γ as a linear
combination of transporters from irreps of G in CD0 to isomorphic irreps in CD1 .

One says that G is P-transitive if, for every x, y such that P(x) = P(y), there is γ ∈ G such
that γ(x) = y. The automorphism principle also states that, if G is P-transitive, without loss
of generality, one can restrict the maximization in (2.27) to adversary matrices whose both right
and left principal singular vectors are the all-ones vectors (see [HLŠ07]). These singular vectors
correspond to the unique trivial representations in U0,γ and U1,γ , respectively, and the transporter

between them is the |D1| × |D0|-matrix Ξid of all entries equal to 1
¿»
|D0|·|D1|.

Automorphisms G that we will consider (explicitly or implicitly) for the Element Distinct-
ness, Collision, and Set Equality problems will all be transitive, and the adversary matrices
that we will construct for these problems will all satisfy (2.28),(2.29). While we will not show that
the all-ones vectors correspond to the highest singular values of these adversary matrices, when
constructing these matrices as a linear combination of transporters, the coefficient we assign to
Ξid will be the target value of our desired adversary bound.

Adversary matrices with reoccurring rows labels. The adversary bound still holds if we
allow multiple rows of the adversary matrix Γ to correspond to the same yes-input x ∈ D1 [BŠ13].
In this case, we label each row of the matrices Γ and ∆i by a pair (x, a), where x ∈ D1 and a
serves to distinguish pairs with the same first element. Now, technically, ∆i[[(x, a), y]] = 1 if and
only if xi 6= yi. (We can simultaneously do the same for columns and no-inputs, but that will not
be necessary in our applications.)

When considering symmetries of this generalized adversary matrix using the automorphism
principle, we now also have to consider how the group S[n] × SΣ acts on labels a. This will be

done in a natural way as every a will essentially correspond to a subset of the power set 2[n].

Embedded adversary matrices. It is sometimes helpful to embed the adversary matrix Γ
into a larger matrix Γ̃, as it becomes easier to argue about properties of Γ and ∆i ◦ Γ using Γ̃
and ∆i ◦ Γ̃ instead. This approach was first introduced in [Bel12b] for the Element Distinct-
ness problem, and later used for k-Sum [BŠ13] and other problems [Špa13]. We use the same
approach for constructing and analyzing adversary matrices for the Collision, Set Equality,
and Orthogonal Array problems.

We label the columns of Γ̃ by all inputs in Σn—yes-inputs, no-inputs, and the inputs outside
the domain D—and rows by yes-inputs and certain inputs outside the domain. As discussed
above, we allow multiple rows to correspond to the same input. We call rows and columns of Γ̃
that correspond to input outside D1 and D0, respectively, illegal. We extract Γ from Γ̃ by deleting
all the illegal rows and columns. Figure 2.6 illustrates these concepts.
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adversary matrix Γ embedding of Γ in Γ̃

Figure 2.6: Embedding the adversary matrix Γ into a larger matrix Γ̃.

Because ∆i ◦ Γ is a submatrix of ∆i ◦ Γ̃, we clearly have

‖∆i ◦ Γ‖ ≤
∥∥∥∆i ◦ Γ̃

∥∥∥ (2.30)

If we could show that ‖Γ‖ is not much smaller than ‖Γ̃‖, that would allow us to use Γ̃ instead of
Γ in the adversary bound, Theorem 2.15. (Note: we are interested only in the asymptotic value
of Adv(P).) That is not true for every choice of Γ̃, however. For instance, if Γ̃ contains non-zero
entries only in illegal rows or columns, then Γ = 0. Nevertheless, in our applications, we will
ensure that ‖Γ‖ ≈ ‖Γ̃‖, and, for that, the condition that D0 and Σn have approximately the same
size will be essential.

We will construct “adversary matrices” Γ̃ using the projectors on the eigenspaces of the Ham-
ming scheme (see (1.16) in Section 1.5.1) or similar projectors (namely, (4.4)). The orthogonality
of these projectors is the main reason why it is much easier to evaluate the norms of Γ̃ and ∆i ◦ Γ̃
rather than those of Γ and ∆i ◦ Γ.

Approximation of the ∆-action. Precise calculation of ‖∆i ◦ Γ‖ may be tedious, but we
can upper bound ‖∆i ◦ Γ‖ using the following trick first introduced in [Bel12b] and later used
in [BŠ13, Špa13]. By considering a matrix norm called the γ2 norm, [LMR+11] shows that

Lemma 2.17. For any matrix A whose rows and columns correspond to inputs in Σn,

‖∆j ◦A‖ ≤ 2 ‖A‖ .

55



For any matrix A, we call a matrix B satisfying

∆i ◦B = ∆i ◦A ( = ∆i ◦∆i ◦A )

an approximation of ∆i ◦ A and denote it ∆i � A. Or, we write A
∆i

ù B. From Lemma 2.17, it
follows that

‖∆i ◦A‖ = ‖∆i ◦ (∆i �A)‖ ≤ 2 ‖∆i �A‖ .

Note that we can always choose ∆i �A = A and

∆i � (α′A′ + α′′A′′) = α′(∆i �A′) + α′′(∆i �A′′).

In order to show that ‖∆i ◦ Γ‖ = O(1), it suffices to show that ‖∆i � Γ‖ = O(1) for any ∆i �Γ.
(Note: the approximations that we will consider will depend on i.) That is, it suffices to show
that we can change entries of Γ with xi = yi in a way that the spectral norm of the resulting
matrix is constantly bounded.

2.3.3 Structure of adversary constructions

In this section, we present the high level ideas behind adversary bounds in Chapters 4 and 5,
which complement matrix embedding, approximate ∆-action, and other simplification tools from
the previous section. For some adversary constructions, these ideas are followed explicitly, for
some, only implicitly. Most arguments in this section are informal and only serve to establish
intuition behind the constructions.

As mentioned in the introduction, negative weights allow to construct the adversary matrix
as any linear combination of matrices of the same dimensions. We construct the adversary
matrix as a linear combination Γ :=

∑
` α`W`, where W` are mutually orthogonal matrices of

(spectral) norm approximately 1. For problems with many symmetries (Element Distinctness,
Collision, Set Equality), indices ` run over integers in [n], for other problems (Certificate-
Sum, Orthogonal Array), over subsets of [n]. Due to the orthogonality of the W` matrices,
the norm of Γ is approximately max` |α`|.

The adversary bound requires that the norm of ∆i ◦ Γ is O(1) for all i ∈ [n]. After the
application of ∆i, the matrices ∆i ◦W` are not orthogonal any more. For example, a “part” of
∆i ◦W` may also appear in ∆i ◦W`′ for some `′ 6= `, but with the opposite sign. Thus, if the
coefficients α` and α`′ are close, this part cancels out in ∆i ◦ Γ =

∑
` α`(∆i ◦W`). (Sometimes

more than two W`’s may be required to cancel out a certain part, as this part may appear with
different “weights” in different (∆i ◦W`)’s.) Thus, even though each ∆i ◦W` may have norm
close to 1 and α` = ω(1), we can still have ‖∆i ◦ Γ‖ = O(1) because of the cancellation.
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Problems with many symmetries. We construct adversary matrices for Element Dis-
tinctness, Collision, and Set Equality (implicitly or explicitly) as a linear combination

Γ :=
∑T

k=1
αkWk, (2.31)

where T is the target bound we aim to prove, W0 is a matrix with all entries equal, and, as before,
Wk’s are mutually orthogonal and ‖Wk‖ ≈ 1.

When analyzing ∆i ◦ Γ, we decompose Wk into three parts,

Wk = Xk + Yk + Zk,

with the exception of W0 = X0. (This decomposition of Wk depends on i.) We choose these
matrices so that, informally,

1. ∆i ◦Xk ≈ Xk, ∆i ◦ Yk ≈ Yk, and ∆i ◦ Zk ≈ −Xk−1;

2. Xk’s are mutually orthogonal and of norm approximately 1;

3. Yk’s are mutually orthogonal, their norm is o(1), but it increases as k increases.

Due to Points 1 and 2, the “part” Xk almost completely cancels out in ∆i ◦ Γ if Wk and Wk+1

appear in (2.31) with similar coefficients, namely, |αk − αk+1| = O(1) (see Figure 2.7). For this
reason, in (2.31), we choose

αk := T − k. (2.32)

Now consider the “part” Yk of ∆i ◦Wk that does not cancel out with anything. These parts are
the main reason why we cannot choose an arbitrarily large T . Namely, since ‖Yk‖ grows with k
and we need ‖αkYk‖ ≤ 1, the coefficients αk have to be small for large k. This holds only if T is
not too large in (2.32).

Cancellation among irreps. For Collision (Section 4.2) and Element Distinctness with
small range (Chapter 5), one can decompose each Wk as a sum

Wk =
∑

λ`n : λ1=n−k
Wλ,

where Wλ corresponds to the irrep Sλ of S[n].
4 (There is also a similar decomposition for Set

Equality.) More formally, we have U1,πWλ = WλU0,π for all π ∈ S[n], where, for b ∈ {0, 1},
Ub,π ∈ U(CDb) is the permutation representation of S[n] as in (2.29) of the automorphism principle

4Note: in Section 4.2, where one considers Collision and Set Equality, Wk in (2.31) is denoted W̄k, as,
there, the notation Wk corresponds to a matrix related to W̄k. And, instead of n, one uses 2n.
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W0

=

X0

W1

=

X1

+

Y1

+

Z1

W2

=

X2

+

Y2

+

Z2

W3

=

X3

+

Y3

+

Z3

· · ·

· · ·

Figure 2.7: Decomposition of Wk as the sum of three matrices. Wiggly arrows connect matrices that
cancel out after the application of ∆i.

(here, by abuse of notation, we write Ub,π instead of Ub,(π,ε), where ε is the identity permutation

of SΣ). Wλ is such that its column and row spaces are contained in the Sλ-isotypical subspaces
of CD1 and CD0 , respectively. Thus, Schur’s lemma implies that the matrices Wλ are orthogonal
for different λ.

Regarding the application of ∆i, we have

∆i ◦Wλ = Wλ −∆i ◦Wλ = Wλ −
∑
a∈Σ

Π̂
(i,a)
1 WλΠ̂

(i,a)
0 ,

where, for b ∈ {0, 1},
Π̂

(i,a)
b :=

∑
z∈Db : zi=a

zz∗.

Note that
Ub,πΠ̂

(i,a)
b U−1

b,π = Π̂
(i,a)
b

for all π ∈ S[n]\{i}, which means that the space corresponding to Π̂
(i,a)
b can be decomposed into

irreps of S[n]\{i}. Because of this, the column and row spaces of ∆i◦Wλ are respectively contained

in the direct sum of the isotypical subspaces of CD1 and CD0 corresponding to irreps Sµ of S[n]\{i}
such that µ ⊂ λ (i.e., the Young diagram corresponding to µ can be obtained from the one
corresponding λ by removing a box). Hence, for λ, λ′ ` n, the matrices ∆i ◦Wλ and ∆i ◦Wλ′ are
orthogonal and no cancellation can occur between them unless there is (a unique) µ ` n− 1 such
that both µ ⊂ λ and µ ⊂ λ′ (see Figure 2.8). And that can only happened when λ1 and λ′1 differ
by at most 1.

The following claim will ensure that all entries of all matrices Wλ that we consider are real.

Claim 2.18. Suppose Sn acts on a finite set A, so that CA is a permutation representation of
Sn. In the standard basis of CA, for all λ ` n, all entries of the projector on the Sλ-isotypical
subspace of CA are real.
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(n) (n−1,1)

(n−2,2)

(n−2,1,1)

(n−3,3)

(n−3,2,1)

(n−3,1,1,1)

(n−4,4)

(n−4,3,1)

(n−4,2,2)

(n−4,2,1,1)

(n−4,1,1,1,1)

· · ·

k = 4k = 3k = 2k = 1k = 0

Figure 2.8: The matrix Wk corresponds to Young diagrams λ with k boxes below the first row. Wiggly
arrows connect Young diagrams λ whose corresponding matrices ∆i ◦Wλ have a potential for cancellation.

Proof. Let Uπ ∈ U(CA) be the corresponding representation operator, whose entries in the stan-
dard basis are either 0 or 1. Recall from Section 1.3.5 that all characters of the symmetric group
are real. Thus, the claim holds because of (1.5), which is the projector under consideration.

2.3.4 Limitations of positive-weights adversary bound

Until recently, the vast majority of adversary lower bounds were obtained using the positive-
weights version of the bound. However, the positive-weights adversary bound is subject to some
severe constraints like the property testing barrier [HLŠ07] and the certificate complexity bar-
rier [ŠS06, Zha05]:

• The property testing barrier states that, if every yes-input differs from every no-input in at
least an α fraction of the input variables, no positive-weights adversary can prove a lower
bound better than Ω(1/α).

• The certificate complexity barrier states that no positive-weights adversary can prove a
lower bound better than Ω(

»
n·min{C0, C1}) and, if P is a total function, Ω(

√
C0 ·C1).
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We note that, by the property testing barrier, no positive-weights adversary can give a non-
trivial (i.e., better than Ω(1)) lower bound for Collision or Set Equality. And, by the
certificate complexity barrier, no positive-weights adversary can give a lower bound for Element
Distinctness, k-Distinctness, and k-Sum better than Ω(

√
n).

In Ref. [HLŠ07] that originally introduced the general adversary bound, Høyer, Lee, and
Špalek provide an intuition why negative weights in the adversary matrix may improve the bound:

“While it is clear that ADV± is always least as large as ADV, it might at first seem
surprising that ADV± can achieve bounds super-linear in ADV. An intuition for
why negative weights help is that it is good to give negative weight to entries with
large Hamming distance, entries which are easier to distinguish by queries. Consider
an entry (x, y) where x and y have large Hamming distance. This entry appears in
several Γ ◦ Di matrices but only appears in the Γ matrix once. Thus by giving this
entry negative weight we can simultaneously decrease ‖Γ ◦ Di‖ for several i’s, while
doing relatively little damage to the large Γ matrix.”

Here they use ADV± to denote the general adversary, ADV to denote the positive-weights ad-
versary, and Di instead of ∆i.

2.4 Span programs and learning graphs

As we mentioned before, the maximization problem (2.27) yielding the adversary bound Adv(P)
can be expressed as an SDP, and it is called the adversary SDP (for the function P). Recall that
every feasible solution to the adversary SDP—an adversary matrix Γ—gives a lower bound on the
quantum query complexity of P. The dual program of the adversary SDP is simply called the dual-
adversary SDP. Every feasible solution to the dual-adversary SDP yields a quantum algorithm
for P having the quantum query complexity of the objective value of the SDP [LMR+11]. (The
feasible solutions of the dual-adversary SDP are commonly called span programs.) The strong
duality of these SDPs implies the optimality of the adversary bound.

For illustrative purposes, let us present the dual-adversary SDP for decision problems. For a
decision problem P with domain D = D0 t D1, the dual-adversary SDP is

minimize max
x∈D

∑
i∈[n]

Xi[[x, x]] (2.33a)

subject to
∑

i : xi 6=yi
Xi[[x, y]] = 1 for all x ∈ D1 and y ∈ D0; (2.33b)

Xi � 0 for all i ∈ [n], (2.33c)

60



where, just like for the adversary matrix Γ (according to its original definition, Definition 2.14),
rows and columns of positive semidefinite matrices Xi are labeled by inputs x ∈ D.

Constructing feasible solutions to the dual-adversary SDP is already a hard task, let alone
trying to minimize the objective value. For Boolean-valued functions, Belovs developed the
computational model of learning graph [Bel12d] that, by its design, can be translated into a
feasible solution of the dual-adversary SDP (i.e., a span program) [Bel12d, BL11], so one can
focus on minimizing the objective value.

Informal description. Informally speaking, a learning graph for a function P : D → {0, 1} with
D ⊆ Σn is a collection of directed probabilistic walks on an n-dimensional weighted hypercube
whose vertices (or nodes) are subsets S of input indices (i.e., S ⊆ [n]) and whose edges (or arcs)
are of the form (S, S ∪ {j}). For every yes-input x ∈ D1, the walk originates from the empty set
∅, it learns the value of xj when it follows an edge (S, S ∪ {j}), and it culminates in a vertex
S′ such that xS′ is a 1-certificate (i.e., the walk has learned that the value of the function is 1).
When the walk follows (S, S∪{j}), we say that the learning graph loads j. There is a complexity
associated with each learning graph.

Formal definition. For S ⊂ [n], let j /∈ S be short for j ∈ [n] \ S and (S, j) be short for
(S, S ∪ {j}). Let E := {(S, j) : S ⊂ [n], j /∈ S} be the set of all edges of the hypercube described
above. Formally, the learning graph for a Boolean-valued function P : D → {0, 1} is a pair of two
functions—the weight function w and the flow function p—that are defined as follows.

The weight function w maps every edge (S, j) ∈ E and every assignment a ∈ ΣS of S to a
non-negative weight wS,j(a). Essentially, the weight of an edge “originating” from a vertex S can
depend on xS ∈ ΣS , that is, the symbols of x ∈ D that one has “learned” so far. We consider
that the edges of weight 0 are not present in the graph.

The flow function p maps every yes-input x ∈ D1 to a unit flow p(x) on the hypercube such
that S = ∅ is the only source of the flow and only nodes S such that xS is a 1-certificate can
be sinks. More precisely, p maps every edge (S, j) ∈ E and every yes-input x ∈ D1 to a flow
pS,j(x) ∈ R that satisfies

• ∑j∈[n] p∅,j(x) = 1 for all x ∈ D1;

• ∑j∈S pS\{j},j(x) =
∑
j /∈S pS,j(x) for all x ∈ D1 and S 6= ∅ such that xS is not a 1-certificate;

• pS,j(x) = 0 whenever wS,j(xS) = 0 (that is, we do not allow any flow on absent edges).
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Learning graph complexity. Suppose we are given a learning graph G of a decision problem
P. For every yes-input x ∈ D1 and every no-input y ∈ D0, their respective complexities in the
learning graph are

LG1(G, x) :=
∑

(S,j)∈E

pS,j(x)2

wS,j(xS)
and LG0(G, y) :=

∑
(S,j)∈E

wS,j(yS), (2.34)

where we assume 0/0 = 0. The 1-complexity and the 0-complexity of the learning graph are

LG1(G) := max
x∈D1

LG1(G, x) and LG0(G) := max
y∈D0

LG0(G, y), (2.35)

respectively. The complexity of the learning graph is their geometric mean:

LG(G) :=
»
LG1(G)·LG0(G). (2.36)

Note that, if we multiply all weights by the same scalar c > 1, LG1(G) decreases c times, LG0(G)
increases c times, and LG(G) remains unchanged.

A learning graph is said to be non-adaptive if its the weight function wS,j(a) is independent
from a. If this restriction is not imposed, the learning graph is said to be adaptive. Adaptive
learning graphs can be more powerful, meaning that their complexity can be smaller. The non-
adaptive (adaptive) learning graph complexity of the function P is the minimum complexity among
all non-adaptive (adaptive) learning graphs for P. The translation from learning graphs to span
programs implies

Theorem 2.19 ([Bel12d, BL11]). The quantum query complexity of a Boolean-valued function
P is at most the adaptive learning graph complexity of P. (Note: the non-adaptive learning graph
complexity is least as big as the adaptive learning graph complexity.)

Remark 2.20. For functions with binary input alphabet, adaptive learning graphs can be gen-
eralized so that the weight of an edge (S, j) ∈ E , in addition to xS , can also depend on xj⊕P(x),
where ⊕ stands for the exclusive or (see [Bel12c]). However, it is not clear how to extend this
generalization to functions with non-binary input alphabets.

Examples of non-adaptive and adaptive learning graphs. Let us present a non-adaptive
learning graph for the Or function and an adaptive learning graph for the Threshold-2 function,
therefore proving the following two upper bounds.

Proposition 2.21. The non-adaptive learning graph complexity of Or is O(
√
n).

Proof. Let us construct a non-adaptive learning graph G for Or by specifying the weight and
the flow functions. We set w∅,j := 1 for all j ∈ [n] and wS,j := 0 whenever S 6= ∅ (here we omit

62



a ∈ ΣS from the notation wS,j(a) as the weights do not depend on a). And, for all x ∈ D1, we
set

p∅,j(x) :=

 1
|x| , if xj = 1

0, if xj = 0
for all j ∈ [n]

and pS,j(x) := 0 whenever S 6= ∅, where |x| is the Hamming weight of x. One can see that pS,j(x)
satisfies all the necessary conditions of a flow. According to (2.34), we have

LG1(G, x) =
∑
j∈[n]

p∅,j(x)2

w∅,j
=

∑
j : xj=1

1

|x|2
=

1

|x|
≤ 1

for all x ∈ D1 and
LG0(G, 0n) =

∑
j∈[n]

w∅,j = n,

where the all-zeros input 0n is the unique negative input of Or. Thus from (2.35) and (2.36) one
can see that the complexity of this learning graph is at most

√
n.

Proposition 2.22. The adaptive learning graph complexity of Threshold-2 is O(
√
n).

Proof. Let us construct an adaptive learning graph G for Threshold-2. We set w∅,j(ε) := 1 for
all j ∈ [n], where ε denotes the empty string, w{i},j(1) := 1 and w{i},j(0) := 0 for all i, j ∈ [n]
(with i 6= j), and wS,j(a) := 0 whenever |S| ≥ 2. And, for all positive inputs x ∈ D1 (i.e., inputs
with the Hamming weight |x| ≥ 2), we set

p∅,j(x) :=

 1
|x| , if xj = 1

0, if xj = 0
and p{i},j(x) :=


1

|x|2−|x| , if xi = xj = 1

0, otherwise
for all i, j ∈ [n],

and pS,j(x) := 0 whenever |S| ≥ 2. According to (2.34), for x ∈ D1, we have

LG1(G, x) =
∑
j∈[n]

(p∅,j(x)2

w∅,j(ε)
+
∑
i : i 6=j

p{j},i(x)2

w{j},i(xj)

)
=

∑
j : xj=1

1

|x|2
+

∑
i,j : i 6=j,
xi=xj=1

1

(|x|2 − |x|)2
=

1

|x|
+

1

|x|2 − |x|
≤ 1.

On the other hand, for the all-zeros input 0n ∈ D0, we have

LG0(G, 0n) =
∑
j∈[n]

w∅,j = n,
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and, for y(i) ∈ D0 being the negative input having the unique one in the position i, we have

LG0(G, y(i)) =
∑
j∈[n]

w∅,j(ε) +
∑
j : j 6=i

w{i},j(1) = 2n− 1.

Hence, the complexity of this learning graph G is at most
√

2n.

The minimal certificate structure of the Threshold-2 function is the 2-subset certificate
structure (see Definition 2.5). Thus, Proposition 3.4 shows that the non-adaptive learning graph
complexity of Threshold-2 is Ω(n2/3), in particular, it has the same non-adaptive learning
graph complexity as the Element Distinctness problem. On the other hand, Proposition 2.22
shows that the adaptive learning graph complexity of Threshold-2 is O(

√
n). This shows that

adaptive learning graphs are strictly stronger than non-adaptive learning graphs.

In turn, quantum query algorithms are strictly stronger than adaptive learning graphs. To
see that, consider the And function. In Section 3.3.1 we show that the adaptive learning graph
complexity of And is Ω(n), yet Grover’s search algorithm (see [Gro96, BBHT98]) can solve this
function using only O(

√
n) queries.

Notice that the learning graph complexities (both, adaptive and non-adaptive) of Or and
And differ. That is a consequence of the fact that the definition of the learning graph do not
“treat” positive inputs and negative inputs the same way.
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Part II

Results

65



Chapter 3

Lower bounds on learning graph
complexity

In this chapter we obtain general results on both non-adaptive and adaptive learning graph com-
plexity, as well as problem-specific results. We start by expressing the learning graph complexity
as a semidefinite program, which allows us to obtain its dual program. Dual learning graphs are
lower bounds on the learning graph complexity, and in Chapter 4 they will help us to obtain
general results on the quantum query complexity of certificate structures.

3.1 Learning graph complexity as a semidefinite program

Let us first consider the general case, adaptive learning graphs. The semidefinite program for
non-adaptive learning graphs will be very similar.

3.1.1 SDPs for adaptive learning graph complexity

Recall the definitions of the learning graph and the learning graph complexity from Section 2.4.
Consider a decision problem P : Σn → {0, 1} with a domain D = D0 tD1. Suppose we are given

a learning graph G for P, and its complexity is
√
K :=

»
LG1(G)·LG0(G), where LG1(G) and

LG0(G) are defined via (2.34) and (2.35). Let G′ be the learning graph of the same complexity
as G that is obtained from G by multiplying all its weights by LG1(G). Therefore LG1(G′, x) ≤ 1
and LG0(G′, y) ≤ K for all x ∈ D1 and y ∈ D0. Since we can do this for any learning graph G,
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the adaptive learning graph complexity of P is the optimal value of the optimization problem

minimize
√
K (3.1a)

subject to
∑

(S,j)∈E

pS,j(x)2

wS,j(xS)
≤ 1 for all x ∈ D1; (3.1b)

∑
(S,j)∈E

wS,j(yS) ≤ K for all y ∈ D0; (3.1c)

∑
j∈S

pS\{j},j(x) =
∑
j /∈S

pS,j(x)
for all x ∈ D1 and all S 6= ∅ such

that xS is not a 1-certificate;
(3.1d)

∑
j∈[n]

p∅,j(x) = 1 for all x ∈ D1; (3.1e)

pS,j(x) ∈ R, wS,j(a) ≥ 0 for all (S, j) ∈ E , x ∈ D1, and a ∈ ΣS , (3.1f)

where 0/0 in (3.1b) is defined to be 0 and, as before, (S, j) ∈ E is short for S ⊂ [n] and j ∈ [n]\S.

This optimization problem can be expressed as an SDP. To express it in the form (1.1), let us
consider this optimization problem with its objective value squared, namely, K instead of

√
K.

The form (1.1) will allow us to obtain the dual of (3.1).

Note that we can rewrite (3.1b) as two conditions∑
(S,j)∈E

rS,j(x) ≤ 1 for all x ∈ D1;Ç
rS,j(x) pS,j(x)
pS,j(x) wS,j(xS)

å
� 0 for all (S, j) ∈ E and x ∈ D1.

Note that the latter condition already implies that rS,j(x) ≥ 0, thus it suffices to require that
the variable rS,j(x) is real.1. Also note that this respects the 0/0 = 0 condition. That is, if
wS,j(xS) = 0, we have to choose pS,j(x) = 0, and then there is no benefit in setting rS,j(x) to
anything but 0. Technically, to comply with the form (1.1), one would have to useÇ

rS,j(x) pS,j(x)
pS,j(x) wS,j(xS)

å
= rS,j(x)

( 1 0
0 0

)
+ wS,j(xS)

( 0 0
0 1

)
+ pS,j(x)

( 0 1
1 0

)
,

since variables in (1.1) are numbers, not matrices. Noting this equality, the SDP (3.1) with its

1Similarly we could remove the requirement wS,j(xS) ≥ 0, but we do not because it would place stricter
conditions on the dual. In particular, it would result in having equality in (3.7c)
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objective value squared in the form (1.1) is

minimize K (3.3a)

subject to

Ç
rS,j(x) pS,j(x)
pS,j(x) wS,j(xS)

å
� 0 for all (S, j) ∈ E and x ∈ D1; (3.3b)

−
∑

(S,j)∈E
rS,j(x) ≥ −1 for all x ∈ D1; (3.3c)

K −
∑

(S,j)∈E
wS,j(yS) ≥ 0 for all y ∈ D0; (3.3d)

∑
j∈S

pS\{j},j(x)−
∑
j /∈S

pS,j(x) = 0
for all x ∈ D1 and all S 6= ∅ such

that xS is not a 1-certificate;
(3.3e)

∑
j∈[n]

p∅,j(x) = 1 for all x ∈ D1; (3.3f)

pS,j(x) ∈ R, rS,j(x) ∈ R for all (S, j) ∈ E and x ∈ D1; (3.3g)

K ≥ 0, wS,j(a) ≥ 0 for all (S, j) ∈ E and a ∈ ΣS . (3.3h)

Here (and in its dual (3.4) below) we do not distinguish scalars from 1 × 1 matrices, and, for
them, we can use ‘≥’ and ‘�’ interchangeably.

To construct a strictly feasible solution of (3.3), first choose any pS,j(x) ∈ R satisfying (3.3e)
and (3.3f) and any rS,j > 0 strictly satisfying (3.3c). Then choose wS,j(a) > 0 lagre enough to
strictly satisfy (3.3b). And, finally, choose K large enough to strictly satisfy (3.3d).

Using the duality of (1.1) and (1.2), we obtain the dual of (3.3) as follows. We introduce the
following variables for the dual: let variables

( φS,j(x) ρS,j(x)
ρS,j(x) ωS,j(x)

)
, µ(x), κy, νS(x), and ν∅(x)

correspond to the conditions (3.3b), (3.3c), (3.3d), (3.3e), and (3.3f) of the primal, respectively.
On the other hand, let conditions (3.4b), (3.4c), (3.4d), (3.4e) of the dual correspond to the
variables

K, rS,j(x), wS,j(a), pS,j(x)

of the primal, respectively. Finally, suppose that xS is not a 1-certificate, but xS∪{j} is. That
means that pS,j(x) is contained only in two conditions of the primal, corresponding to the variables

( φS,j(x) ρS,j(x)
ρS,j(x) ωS,j(x)

)

68



and νS(x) of the dual. Thus the variable νS∪{j}(x) never appears in the dual and we must force
it to be 0 in (3.4e), and we do that by enforcing the condition (3.4f). Hence, the dual of (3.3) is

maximize −
∑
x∈D1

µ(x) +
∑
x∈D1

ν∅(x) (3.4a)

subject to
∑
y∈D0

κy ≤ 1; (3.4b)

φS,j(x)− µ(x) = 0 for all (S, j) ∈ E and x ∈ D1; (3.4c)∑
x∈D1
xS=a

ωS,j(x)−
∑
y∈D1
yS=a

κy ≤ 0 for all (S, j) ∈ E and a ∈ ΣS ; (3.4d)

2ρS,j(x) + νS∪{j}(x)− νS(x) = 0 for all (S, j) ∈ E and x ∈ D1; (3.4e)

νS(x) = 0 whenever xS is a 1-certificate; (3.4f)( φS,j(x) ρS,j(x)
ρS,j(x) ωS,j(x)

)
� 0 for all (S, j) ∈ E and x ∈ D1; (3.4g)

µ(x) ≥ 0, νS(x) ∈ R, κy ≥ 0 for all S ⊆ [n], x ∈ D1, and y ∈ D0. (3.4h)

Here, in (3.4c), (3.4d), (3.4e) we have already expanded the inner product of
( φS,j(x) ρS,j(x)
ρS,j(x) ωS,j(x)

)
and, respectively,

( 1 0
0 0

)
,
( 0 0

0 1

)
,
( 0 1

1 0

)
.

To construct a strictly feasible solution of (3.4), first choose any κy > 0 strictly satisfying
(3.4b) and any µ(x) > 0. Also choose ρS,j = 0 and νS(x) = 0. And, finally, choose any
ωS,j(x) > 0 strictly satisfying (3.4d) and φS,j(x) = µ(x). Hence, we have the strong duality and
both (3.3) and (3.4) attain the same optimal value.

Notice that (3.4c) requires us to have φS,j(x) = µ(x) ≥ 0, therefore the conditions (3.4c),
(3.4e), and (3.4g) can be replaced by a single condition

µ(x)ωS,j(x) ≥
Ä
νS(x)− νS∪{j}(x)

ä2¿
4 for all (S, j) ∈ E and x ∈ D1,

eliminating the variables φS,j(x) and ρS,j(x) in the process. Now, let us substitute

αS(x) := νS(x)
¿Ä

2
»
µ(x)

ä
(3.5)
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to obtain the following problem equivalent to (3.4):

maximize
∑
x∈D1

(2
»
µ(x)α∅(x)− µ(x)) (3.6a)

subject to
∑
y∈D1

κy ≤ 1; (3.6b)

∑
x∈D1
xS=a

ωS,j(x) ≤
∑
y∈D1
yS=a

κy for all (S, j) ∈ E and a ∈ ΣS ; (3.6c)

αS(x) = 0 whenever xS is a 1-certificate; (3.6d)

ωS,j(x) ≥
Ä
αS(x)− αS∪{j}(x)

ä2
for all (S, j) ∈ E and x ∈ D1; (3.6e)

µ(x) ≥ 0, αS(x) ∈ R, κy ≥ 0 for all S ⊆ [n], x ∈ D1, and y ∈ D0. (3.6f)

One can verify that we do not need to be concerned about µ(x) being 0 in (3.5). In order to
maximize (3.6a), we have to choose µ(x) = α∅(x)2. And there is also no loss in choosing ωS,j(x)
as small as possible, namely, so that there is equality in (3.6e).

Recall that we obtained (3.3) from (3.1) by squaring the objective value. So, by doing the
reverse, that is, taking the square root of (3.6a), we get that the dual of the adaptive learning
graph complexity is

maximize

√∑
x∈D1

α∅(x)2 (3.7a)

subject to
∑
y∈D1

κy ≤ 1; (3.7b)

∑
x∈D1
xS=a

(αS(x)− αS∪{j}(x))2 ≤
∑
y∈D1
yS=a

κy for all (S, j) ∈ E , and a ∈ ΣS ; (3.7c)

αS(x) = 0 whenever xS is 1-certificate; (3.7d)

αS(x) ∈ R, κy ≥ 0 for all S ⊆ [n], x ∈ D1, and y ∈ D0. (3.7e)

3.1.2 SDPs for learning graph complexity of certificate structures

Again, consider a decision problem P : Σn → {0, 1} with a domain D = D0 t D1. Just like the
adaptive learning graph complexity, the non-adaptive learning graph complexity of P is given by
(3.1), except now we require that wS,j(a) is independent from a; we simply denote it by wS,j .
Hence, the 0-complexity LG0(G, y) becomes the same for all y ∈ D0, and we can assume that the
variable K in (3.1) equals it.

Suppose we have fixed all the weights wS,j , and recall from Section 2.1.2 the minimal certificate
structure CP of P. If x ∈ D1 is such that Mx ∈ CP , then all sinks of the flow p(x) must be in
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Mx. If x ∈ D1 is such that Mx /∈ CP , then there is x′ ∈ D1 with Mx′ ⊆ Mx, and we can choose
p(x) = p(x′), yielding LG1(G, x) = LG1(G, x′). Hence, to compute the non-adaptive learning
graph complexity of P, it suffices to consider flows ending in each certificate placement of the
minimal certificate structure. Because of this fact, it is useful to define the (non-adaptive) learning
graph complexity of a certificate structure.

Definition 3.1. The learning graph complexity of a certificate structure C on n variables is equal
to the optimal value of the following semidefinite program:

minimize
√ ∑

(S,j)∈E
wS,j (3.8a)

subject to
∑

(S,j)∈E

pS,j(M)2

wS,j
≤ 1 for all M ∈ C; (3.8b)

∑
j∈S

pS\{j},j(M) =
∑
j /∈S

pS,j(M) for all M ∈ C and S ∈ 2[n] \ (M ∪ {∅}); (3.8c)

∑
j∈[n]

p∅,j(M) = 1 for all M ∈ C; (3.8d)

pS,j(M) ∈ R, wS,j ≥ 0 for all (S, j) ∈ E and M ∈ C, (3.8e)

where 0/0 in (3.8b) is defined to be 0.

Claim 3.2. Suppose C is a certificate structure of a decision problem P. The non-adaptive
learning graph complexity of P is at most the learning graph complexity of C, with equality achieved
if C = CP .

Proof. Suppose we are given a learning graph for C (i.e., a feasible solution of (3.8)). We construct
a non-adaptive learning graph for P by using exactly the same weights and, for x ∈ D1, we choose
p(x) = p(M ′), where M ′ is a certificate placement satisfying M ′ ⊆ Mx (such M ′ exists by the
definition of certificate structures). Hence, the complexity of the constructed learning graph for
P is at most that of the original learning graph for C. And we have already considered the C = CP
case above Definition 3.1.

This claim shows that, for example, Threshold-k, k-Distinctness, and k-Sum have the
same non-adaptive learning graph complexity, and so do Triangle and Trangle-Sum. Analo-
gously to Theorem 2.19, we have

Theorem 3.3 ([Bel12d], [BL11]). The quantum query complexity of a certificate structure is at
most a constant times its learning graph complexity.
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In Section 4.3, using the dual of (3.8), we prove the reverse statement for all certificate
structures. We can obtain the dual the same way as we did for adaptive learning graphs in
Section 3.1.1, and we omit these derivations. (In fact, now the process of obtaining the dual is
simpler, as the primal has less variables.) The dual of (3.8) is

maximize

…∑
M∈C

α∅(M)2 (3.9a)

subject to
∑

M∈C

Ä
αS(M)− αS∪{j}(M)

ä2 ≤ 1 for all (S, j) ∈ E ; (3.9b)

αS(M) = 0 whenever S ∈M ; (3.9c)

αS(M) ∈ R for all S ⊆ [n] and M ∈ C. (3.9d)

Again, one can see that (3.8) and (3.9) are strongly dual. We call a feasible solution of (3.9) a
dual learning graph of a certificate structure C.

3.2 Learning graph complexity of certificate structures

In this section, we construct dual learning graphs for certificate structures considered in Sec-
tion 2.1.2. Let T be the target objective value of (3.9), namely, the lower bound we want to
prove. We construct αS(M) for all certificate structures C, implicitly or explicitly, in the form

αS(M) :=

{
max{T − |S| −

∑m

i=1
gi(S,M), 0}

¿»
|C|, if S /∈M , (3.10a)

0, otherwise, (3.10b)

where gi(S,M) is a function satisfying gi(S,M) ≥ 0 and gi(∅,M) = 0. The objective value (3.9a)

is therefore indeed
»∑

M∈C T 2/|C| = T . In Section 3.3, when constructing lower bounds on the
adaptive learning graph complexity, we use a form very similar to (3.10) (in particular, see (3.20)
and (3.26)).

In practice, we care only about asymptotic behaviour of the learning graph complexity, and,
instead of (3.9b), we use∑

M∈C

Ä
αS(M)− αS∪{j}(M)

ä2
= O(1) for all (S, j) ∈ E . (3.11)

From (3.10), by the Cauchy–Schwarz inequality, we getÄ
αS(M)− αS∪{j}(M)

ä2 ≤ m+ 2

|C|

Ç
1 +

∑m

i=1

Ä
gi(S ∪ {j},M)− gi(S,M)

ä2
+

{
T 2, if S /∈M and S ∪ {j} ∈M
0, otherwise

å
,

(3.12)
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where 1 comes from (|S ∪ {j}| − |S|)2. Thus, if m = O(1), we can add the term |S| in (3.10a)

without loss of generality as
»∑

M∈C 1/|C| = 1. If m = ω(1), as in Section 3.2.2 below, one
requires to scale down all αS(M) of (3.10) by a factor of

√
m, thus scaling down the objective

value to T /
√
m.

The term |S| in (3.10a) ensures that we never have to consider the condition (3.11) for S
of size larger than T . The purpose of this term together with the gi(S,M) terms is to ensure
that not many M ∈ C experience the “jump” from the first case (3.10a) for αS(M) > 0 to the
second case (3.10b) for αS∪{j}(M). We want to limit the number of such jumps as each jump
may contribute to the left hand side of (3.11) as much as T 2.

3.2.1 Lower bounds for the k-subset and hidden shift certificate structures

Using the dual learning graph (3.9), let us construct lower bounds on the learning graph com-
plexity of the k-subset and hidden shift certificate structures. For both certificate structures, we
construct αS(M) as in (3.10) without any gi(S,M) terms (i.e., m = 0). As discussed above, this
means that the objective value (3.9a) is T , and all we have to do is to show that (3.11) holds.

Proposition 3.4. Given a constant k, the learning graph complexity of the k-subset certificate
structure is Ω(nk/(k+1)).

Proof. Let C be the k-subset certificate structure. Note that |C| =
(n
k

)
, and let T := nk/(k+1).

Take any (S, j) ∈ E . If |S| ≥ T = nk/(k+1), then αS(M) = αS∪{j}(M) = 0, and we are done.

Thus, we further assume |S| < nk/(k+1). There are at most
( |S|
k−1

)
≤ nk(k−1)/(k+1) choices of M ∈ C

such that S /∈ M and S ∪ {j} ∈ M . For each of them, the value of αS(M) changes by at most(n
k

)−1/2nk/(k+1). Thus, the sum of (3.12) over all M ∈ C is∑
M∈C

(αS(M)− αS∪{j}(M))2 ≤ 2
Ä
nk(k−1)/(k+1)T 2 + |C|·1

ä¿
|C| = O(1).

Proposition 3.5. The learning graph complexity of the hidden shift (and, hence, the set equality
and the collision) certificate structure is Ω(n1/3).

Proof. Let C be the hidden shift certificate structure. Note that |C| = n, and let T := n1/3. Take
any (S, j) ∈ E , and again we may assume that |S| < T = n1/3. There are at most |S| = n1/3

choices of M ∈ C such that S /∈M and S ∪ {j} ∈M . Thus,∑
M∈C

(αS(M)− αS∪{j}(M))2 ≤ 2
Ä
n1/3T 2 + |C|·1

ä¿
|C| = O(1).
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For the set equality and the collision certificate structures, just assign αS(M) = 0 for all M that
are not in the hidden shift certificate structure (this is a case of Remark 2.16).

The results of Propositions 3.4 and 3.5 are tight. Belovs, Lee, and Zhu show an O(nk/(k+1))
upper bound for the k-subset certificate structure [BL11, Zhu12], and an O(n1/3) upper bound
for the collision (and, hence, the set equality and the hidden shift) certificate structure can be
derived by similar methods (we omit here the construction of the corresponding learning graph).

As illustrated by the proofs of the two propositions above, in general, one can choose T such
that |S| < T ensures that the number of M ∈ C such that S /∈ M and S ∪ {j} ∈ M is at most
|C|T 2. For the triangle certificate structure, this allows us to choose the value of T no higher
than n (recall that the number of input variables for this structure is

(n
2

)
).

3.2.2 Lower bound for the triangle certificate structure

In this section we prove an almost tight lower bound on the learning graph complexity of the
triangle certificate structure. The best known upper bound O(n9/7) was given by Lee, Magniez,
and Santha [LMS13], improving upon an O(n35/27) upper bound by Belovs [Bel12d].

Theorem 3.6. The learning graph complexity of the triangle certificate structure (and, thus, the
non-adaptive learning graph complexity of Triangle) is Ω(n9/7/

√
log n).

The proof of this lower bound is rather bulky. It resulted from a weaker, yet non-trivial Ω(n5/4)
lower bound. The Ω(n5/4) lower bound can be found in Ref. [Bel13], and it too is constructed in
the form (3.10).

Proof of Theorem 3.6. Let E = {uu′ | 1 ≤ u < u′ ≤ n} be the set of input variables (potential
edges of the graph); this is not to be confused with E , the set of arcs of the learning graph. Let C be
the triangle certificate structure. For eachM ∈ C, fix three vertices a = a(M), b = b(M), c = c(M)
forming the triangle: S ∈ M if and only if ab, ac, bc ∈ S. (Technically a, b, and c are functions,
but, whenever M is clear from the context, we can think of them as vertices.) Let L := {a, b, c},
where we think of v ∈ L as an indicator which function (a, b, or c) to consider (that is, the set L
is independent from M , while {a(M), b(M), c(M)} is not). All definitions and arguments made
for v = a translate to v = b and v = c by symmetry.

We construct the dual learning graph (3.9) in the form

αS(M) :=

{
max

¶
n−3/14 −∑m

i=0

∑
v∈L gi,v(S,M), 0

©
, S /∈M,

0, otherwise,
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where gi,v(S,M) is a function satisfying 0 ≤ gi,v(S,M) ≤ n−3/14 and gi,v(∅,M) = 0. Hence the

objective value (3.9a) is
»(n

3

)
n−3/14 = Ω(n9/7). The hard part will be to show that (3.9b) holds

up to logarithmic factors.

We define
g0,v(S,M) := min{n−3/2|S|, n−3/14}

(corresponding to the |S| term in (3.10)). Hence, αS(M) = 0 if |S| ≥ n9/7, and from now on we
assume |S| ≤ n9/7. We will define gi,v(S,M) for i ∈ [1..m] later.

For S ⊂ E and j ∈ E \ S, let F (S, j) ⊂ C denote the set of M ∈ C such that S /∈ M , but
S ∪ {j} ∈M . We decompose

F (S, j) =
m⊔
i=1

⊔
v∈L

Fi,v(S, j)

as follows. Let deg a = degS a be the degree of a vertex a in the graph with edge set S. A
certificate placement M ∈ F (S, j) belongs to F1,a(S, j) if j = bc and deg a ≤ n3/7 and, for i ≥ 2,
to Fi,a(S, j) if j = bc and 2i−2n3/7 < deg a ≤ 2i−1n3/7. Hence, m ≈ (4/7) log2 n.

For all i ∈ [1..m], we will define gi,v(S,M) so that, for all v ∈ L, S ⊂ E of size at most n9/7,
and j ∈ E \ S: ∑

M∈C\F (S,j)

Ä
gi,v(S,M)− gi,v(S ∪ {j},M)

ä2
= O(1) (3.13)

and ∑
M∈Fi,v(S,j)

Ä
n−3/14 − gi,v(S,M)

ä2
= O(1). (3.14)

Note that (3.13) also holds for i = 0. Even more, we will show that the set I := I(S, j) of
i ∈ [0..m] such that (3.13) is non-zero has size O(1). Thus, for the left hand side of (3.9b), we
will have∑

M∈C
(αS(M)− αS∪{j}(M))2 =

∑
M∈C\F (S,j)

(∑
i∈I

∑
v∈L

Ä
gi,v(S,M)− gi,v(S ∪ {j},M)

ä)2

+
m∑
i=1

∑
v∈L

∑
M∈Fi,v(S,j)

Ä
αS(M)

ä2
≤ |3I|

∑
i∈I

∑
v∈L

∑
M∈C\F (S,j)

Ä
gi,v(S,M)− gi,v(S ∪ {j},M)

ä2
(3.15)

+
m∑
i=1

∑
v∈L

∑
M∈Fi,v(S,j)

Ä
n−3/14 − gi,v(S,M)

ä2
, (3.16)

which comes from the Cauchy–Schwarz inequality and the fact that

|αS(M)| ≤ |n−3/14 − gi,v(S,M)|.
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Due to (3.13) and (3.14), the sum (3.15) is O(1) and the sum (3.16) is O(log n). By scaling all
αS(M) down by a factor of O(

√
log n), we obtain a feasible solution to (3.9) with the objective

value Ω(n9/7/
√

log n).

It remains to construct the functions gi,v(S,M) for i ∈ [1..m] that satisfy (3.13) and (3.14).
In the following, let µ(x) be the median of 0, x, and 1, i.e., µ(x) = max{0,min{x, 1}}.

Case i = 1. Let us define

g1,a(S,M) =

{
n−3/14 µ(2− n−3/7 deg a), ab, ac ∈ S,

0, otherwise.
(3.17)

Clearly, 0 ≤ g1,a(S,M) ≤ n−3/14 and g1,a(∅,M) = 0. We distinguish two cases how g1,a(S,M)
may be influenced by “loading” j when S ∪ {j} 6∈ M . We show that the total contribution
to (3.13) is O(1).

• It may happen if |{ab, ac}∩S| = 1 and j ∈ {ab, ac}, i.e., the transition from the second case
of (3.17) to the first one happens. Moreover, g1,a(S,M) changes (i.e., g1,a(S ∪ {j},M) 6=
g1,a(S,M)) only if deg a ≤ 2n3/7. Then j identifies two vertices of the triangle, and the
third one is among the neighbours of an end-point of j having degree at most 2n3/7. Thus,
the total number of M satisfying this scenario is at most 4n3/7. The contribution to (3.13)
is at most O(n3/7)(n−3/14)2 = O(1).

• Another possibility is that ab, ac ∈ S and deg a changes. In this case, a is determined as
an end-point of j, and b and c are among its at most 2n3/7 neighbours. The number of M
influenced is O(n6/7), and the contribution is O(n6/7)(n−9/14)2 = o(1), where n−9/14 is the
coefficient of deg a in (3.17).

Finally, we have to show that (3.14) holds. If M ∈ F1,a, then ab, ac ∈ S and deg a ≤ n3/7.
However, (3.17) implies that, in this case, the left hand side of (3.14) is 0.

Case i ≥ 2. For d := 2i−2n3/7 ≥ n3/7, define a piece-wise linear function τ as follows

τ(x) =



0, x < d/2;

(2x− d)/d, d/2 ≤ x < d;

1, d ≤ x < 2d;

(5d− 2x)/d, 2d ≤ x ≤ 5d/2;

0, x ≥ 5d/2.
0

OO τ(x)

//
x

1

d/2 d 2d 5d/2

������������ 333333333333
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It can be interpreted as a continuous version of the indicator function that a vertex has a right
degree (i.e., a degree between d and 2d). Define

ν(S,M) = νi,a(S,M) :=
∑

u∈N(b)∩N(c)

τ(deg u),

where the sum is over the common neighbours of b and c. Let

gi,a(S,M) := n−3/14 µ
(
min

®
2 deg a

d
,
ν(S,M)

n3/7

´
− 1

)
. (3.18)

Let us consider how gi,a(S,M) may change by loading j when S ∪ {j} 6∈ M and how this
contributes to (3.13). Now there are three cases how gi,a(S,M) may be influenced. We again
show that the total contribution to (3.13) is O(1).

• It may happen that j is incident to a common neighbour of b and c, and thus ν(S,M) may
change. This means b and c are among the neighbours of an end-point of j of degree at most
5d/2. Hence, this affects O(nd2) differentM . The contribution is O(nd2)(n−9/14/d)2 = o(1),
where n−9/14 is the coefficient of ν(S,M) in (3.18) and ν(S,M) changes by at most 1/d.

• The set N(b) ∩ N(c) may increase. This causes a change in gi,a(S,M) only under the
following circumstances. The new edge j is incident to b or c. The second vertex in {b, c}
is among Θ(d) neighbours of the second end-point of j. Finally, deg a ≥ d/2, that together
with |S| ≤ n9/7 implies that there are O(n9/7/d) choices for a. Altogether, the number of
M affected by this is O(n9/7), and the change in gi,a(S,M) does not exceed n−9/14. The
contribution is O(1).

• The degree of a may change. Let us calculate the number P of possible pairs b and c
affected by this. There is a change in gi,a(S,M) only if b and c are connected to at least
n3/7 vertices of degrees between d/2 and 5d/2. Denote the set of these vertices by A. Since
|S| ≤ n9/7, we have |A| = O(n9/7/d).

Let us calculate the number of paths of length 2 in S having the middle vertex in A. On
one hand, this number is at least Pn3/7, as each pair b and c has at least n3/7 common
neighbours. On the other hand, it is at most O(d2|A|) = O(dn9/7). Thus, P = O(dn6/7).
Since a is determined as an end-point of j, the contribution is O(dn6/7)(n−3/14/d)2 = O(1),
as d ≥ n3/7.

Finally, j may be the last edge of the triangle: S ∪ {j} ∈ M . If M ∈ Fi,a(S, j), then deg a > d,

implying that, in this case, gi,a(S,M) = n−3/14 µ
(
ν(S,M)n−3/7 − 1

)
. Hence, either n−3/14 −

gi,a(S,M) = 0, or ν(S,M) ≤ 2n3/7, in which case, there are O(n3/7) choices of a satisfying the
condition. Hence, the left hand side of (3.14) is O(n3/7)(n−3/14)2 = O(1).
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Regarding the set I = I(S, j), note that, if gi,a(S,M)−gi,a(S∪{j},M) 6= 0, then either i = 0,
i = 1, or the degree of one of the end-points of j must be between approximately d/2 and 5d/2,
where d = 2i−2n3/7. Hence, the set I has constant size, as required.

3.3 Lower bounds on adaptive learning graph complexity

3.3.1 Adaptive learning graph complexity of the And function

Proposition 3.7. The adaptive learning graph complexity of And is Ω(n).

Proof. Let us construct a feasible solution of (3.7), whose objective value gives a lower bound on
the adaptive learning graph complexity of And. The And function has only one positive input,
the all-ones string 1n, so D1 = {1n}. Let Y ⊂ D0 be the set of negative inputs that contain
exactly one zero and n − 1 ones. We set κy = 1/|Y | = 1/n for all y ∈ Y and κy = 0 for all
y ∈ D0 \ Y (here we essentially exploit Remark 2.16), thereby saturating the condition (3.7b).

It remains to set αS(1n) for all S. Note that, if a ∈ {0, 1}S contains at least one zero, then
the left hand side of (3.7c) equals 0, and the condition (3.7c) is satisfied. On the other hand, if
a = 1|S|, the condition (3.7c) becomes

|αS(1n)− αS∪{j}(1n)| ≤
 
n− |S|
n

for all (S, j) ∈ E , (3.19)

because there are exactly n− |S| inputs y ∈ Y such that yS = 1|S|. We set

αS(1n) :=

{
3n/8− |S|/2, if |S| < 3n/4;

0, otherwise.
(3.20)

This clearly satisfies (3.19), as the right hand side of (3.19) is at least 1/2 whenever |S| < 3n/4.
The objective value (3.7a) is 3n/8, which concludes the proof.

3.3.2 Adaptive learning graph complexity of k-Distinctness

Recall the k-Distinctness problem from Section 2.1.1. Let us construct a feasible solution
to (3.7), yielding the following lower bound on the adaptive learning graph complexity of k-
Distinctness.

Theorem 3.8. Given a constant k, the adaptive learning graph complexity of the k-Distinctness
problem is Ω(n1−2k−2/(2k−1)).
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Notice that this lower bound matches the best known upper bound on the quantum query com-
plexity of k-Distinctness by Belovs [Bel12c]. This upper bound, however, uses span programs
that are more general than adaptive learning graphs. An adaptive learning graph of complexity
O(n1−2k−2/(2k−1)) was given by Lee and Belovs assuming that, for all i < k, one knows approx-
imately how many characters in Σ appear in an input x exactly i times [BL11]. For the inputs

that we consider in the following proof, we have such knowledge, therefore Ω(n1−2k−2/(2k−1)) is
the best possible lower bound one can obtain is this setting.

Proof of Theorem 3.8. Note that both sides of (3.7c) are zero whenever a is a 1-certificate, so we
are concerned only with the case when it is not. Since k is constant, for notational convenience,
we assume that the length of the input is (k − 1)n. Without loss of generality, we also assume
that the size of the input alphabet Σ is n; the case |Σ| < n is trivial and a lower bound for |Σ| = n
is also a lower bound whenever |Σ| > n.

Let Y := D0 be the set of all negative inputs. Due to our choice of the alphabet size, all
negative inputs are the same up to an index permutation—every negative input y contains each
character exactly k − 1 times (we also say: each character has multiplicity k − 1 in y). Due to
this symmetry, we choose κy = 1/|Y | for all y ∈ Y to saturate the condition (3.7b).

Let X ⊂ D1 be the set of positive inputs that contain one character 2(k − 1) times, n − 2
characters k − 1 times, and does not contain one character at all. We choose αS(x) = 0 for all
x ∈ D1 \X and all S. (Essentially, we exploit Remark 2.16 here.)

Cardinalities of various sets of inputs. It is rather simple to compute cardinalities of X
and Y , for example,

|Y | = ((k − 1)n)!

((k − 1)!)nn!
,

but, in fact, we will only need to know the ratio of these two cardinalities. Therefore, let us
consider the following procedure that from one negative input constructs n(n−1) positive inputs.

Procedure 3.9. Given a negative input y ∈ Y , first choose a character v ∈ Σ, then choose a
character v′ 6= v, and then substitute each occurrence of v′ in y with v. Let P be the function
that takes y as an input and outputs the set of n(n− 1) positive x ∈ X constructed this way.

One can see that, for every positive input x ∈ X, there are exactly
(2(k−1)
k−1

)
negative inputs

y ∈ Y such that x ∈ P (y). Hence,

|X|
|Y |

=

Ç
2(k − 1)

k − 1

å−1

n(n− 1) = Θ(n2). (3.21)
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Fix arbitrary (S, j) ∈ E (i.e., S ⊂ [(k − 1)n] and j ∈ [(k − 1)n] \ S) and a ∈ ΣS . For i ≥ 0,
let `i(a) be the number of characters that has multiplicity i in a. Note that

`0(a) = n−
∑

i≥1
`i(a) (3.22)

is the number of characters that do not appear in a. Let us assume that |S| = o(n) and that each
character appears in a at most k − 1 times (as in Section 3.2 for non-adaptive learning graphs,
we later define αS(x) to be 0 whenever S is large).

Let Y (a) ⊆ Y be the set of negative inputs compatible with a and, for i ∈ [0..k − 2], let
Yi(a, j) be its subset consisting of y ∈ Y (a) such that the character yj has multiplicity i in a.

Claim 3.10. For i ∈ [0..k − 2], we have

|Yi(a, j)|
|Y (a)|

=
(k − 1− i) · `i(a)

(k − 1)n− |S|
= Θ

(`i(a)

n

)
. (3.23)

Proof. It is clear that the cardinality of Yi(a, j) is independent from which j ∈ [(k − 1)n] \ S
one considers. Hence, if we choose any y consistent with a and uniformly at random choose
j ∈ [(k − 1)n] \ S, then the ratio (3.23) is the probability that yj has multiplicity i in a.

Analogously, for i ∈ [0..k − 1], let Xi(a, j) be the set of positive inputs x ∈ X such that x is
compatible with a and the character xj has multiplicity i in a (i.e., xS = a and `i+1(xS∪{j}) =
`i+1(xS) + 1). The case i = k − 1 is special, as it implies that xS∪{j} is a 1-certificate. For all
other i, we have the following.

Claim 3.11. For i ∈ [0..k − 2], we have

|Xi(a, j)|
|Yi(a, j)|

≤ n(n− 1).

Proof. For every x ∈ Xi(a, j), there exists y ∈ Yi(a, j) such that x ∈ P (y). Hence,

Xi(a, j) ⊆
⋃
y∈Yi(a,j)

P (y),

and |P (y)| = n(n− 1) completes the proof.

Hence, Claims 3.10 and 3.11 together imply that

|Xi(a, j)|
|Y (a)|

= O(n`i(a)). (3.24)

We are left to consider the special case i = k − 1, and we have
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Claim 3.12.
|Xk−1(a, j)|
|Y (a)|

≤ `k−1(a). (3.25)

Proof. The character that has multiplicity 2(k − 1) in x ∈ Xk−1(a, j) has to be one of `k−1(a)

characters that has multiplicity k− 1 in a. Fix one such character v. Let X
(v)
k−1(a, j) be the set of

positive inputs x ∈ Xk−1(a, j) that contain v with multiplicity 2(k − 1). Consider the following
two-step procedure:

1. choose x ∈ X(v)
k−1(a, j) and let v′ be the character not present in x;

2. obtain y(x) ∈ Y (a) by substituting all k − 1 occurrences of v outside S by v′.

Note that y(x)j = v′ because xj = v, and one can see that y(x) 6= y(x′) for all x, x′ ∈ X(v)
k−1(a, j)

such that x 6= x′. Hence, |X(v)
k−1(a, j)| ≤ |Y (a)|, and there are `k−1(a) possible choices for v.

Choosing values of α’s. Due to symmetry, we choose α∅(x) to be the same for all x ∈ X. If

T is the target objective value of (3.7), from (3.7a) we get α∅(x) = T /
»
|X|. We construct αS(x)

in the form

αS(x) =

{
0, if xS is a 1-certificate;

max
¶
T −∑k−1

i=1 γi`i(xS), 0
©¿»

|X|, otherwise.
(3.26)

When we optimize the coefficients T and γi later, we choose

1 = γ1 � γ2 � . . .� γk−1 � T � n,

where γ � γ′ stands for γ = o(γ′). Hence, αS(x) = 0 whenever |S| ≥ T .

Let us now consider the condition (3.7c). Again, fix arbitrary S ⊂ [(k−1)n] of size |S| = o(n),
j ∈ [(k − 1)n] \ S, and a ∈ ΣS that is not a 1-certificate. The right hand side of (3.7c) is equal
to |Y (a)|

¿
|Y |, so let us now consider the left hand side.

First note that we always have αS∪{j}(x) ≤ αS(x) because γi+1 > γi for all i. Indeed, there is
a unique i such that `i(xS∪{j}) = `i(xS)−1, `i+1(xS∪{j}) = `i+1(xS)+1, and `i′(xS∪{j}) = `i′(xS)
for all i′ /∈ {i, i + 1}. This also implies that, if αS(x) = 0, then αS∪{j}(x) = 0 too. So let us
assume that αS(x) > 0 and also xS = a. This enforces

`i(a)γi < T ∀i ∈ {1, . . . , k − 1}, and `0(a) = n− o(n) (3.27)

is due to (3.22) and |S| = o(n).
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For i ∈ [0..k − 1], there are exactly |Xi(a, j)| positive inputs consistent with a such that
`i+1(xS∪{j}) = `i+1(xS) + 1. Hence, from the definition (3.26) of αS(x) we get that the left hand
side of (3.7c) is at most

∑k−2

i=0
|Xi(a, j)|

(γi+1 − γi)2

|X|
+ |Xk−1(a, j)|(T − γk−1)2

|X|

= O
(∑k−2

i=0
n`i(a)|Y (a)|

γ2
i+1

n2|Y |
+ `k−1(a)|Y (a)| T

2

n2|Y |

)
=
|Y (a)|
|Y |

·O
(

max
{
γ2

1 ,
T γ2

2

γ1n
,
T γ2

3

γ2n
, . . . ,

T γ2
k−1

γk−2n
,
T 3

γk−1n2

})
,

where γ0 = 0, the first Big-O relation comes from (3.21), (3.24), and (3.25), and the second from
(3.27) and the fact that k is constant. In order for (3.7c) to hold, we need to have

max
{
γ2

1 ,
T γ2

2

γ1n
,
T γ2

3

γ2n
, . . . ,

T γ2
k−1

γk−2n
,
T 3

γk−1n2

}
= O(1),

which is saturated by choosing

T = n1−2k−2/(2k−1) and γi = n(2k−2−2k−1−i)/(2k−1) ∀i ∈ {1, . . . , k − 1}.

This concludes the proof.
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Chapter 4

Adversary bounds using matrix
embedding

In Section 2.3.2 we described multiple tools that simplify construction of adversary bounds, i.e.,
adversary matrices Γ in Theorem 2.15. To various degrees, we will use all of those tools in this
chapter. Most notably, rows and columns of adversary matrices Γ will correspond to positive
inputs and negative inputs, respectively, and we will embed Γ in larger matrices Γ̃.

Suppose we are given a decision problem P : Σn → {0, 1}. In this chapter, let q denote the
size of the input alphabet. Here we also assume that Σ := [q] (except in Section 4.3.5, where
we will have to consider a more elaborate input alphabet). For all decision problems considered
in this chapter, we have that, if q is large enough, an input string chosen from [q]n uniformly at
random is a negative input of P with constant probability. All matrices Γ̃ considered here will
have columns labeled by all input strings in [q]n.

To choose a random input, one can independently and uniformly at random choose each of
its symbols. This independence makes the construction of adversary bounds much easier. For
example, the adversary bound for Element Distinctness with large range (Section 4.1) is much
simpler than the adversary bound for Element Distinctness with minimal range (Chapter 5).
In the latter case, the probability of a random input being negative is the minuscule n!/nn.

Let H := C[q] be the space corresponding to all symbols of the input alphabet. Recall that
{j : j ∈ [q]} is the standard basis of H, and, for a vector v ∈ H given in the standard basis,
vj = v[[j]] = j∗v denotes its j-th entry. An e-basis of H is an orthonormal basis e0, e1, . . . , eq−1

satisfying e0[[j]] = 1/
√
q for all j ∈ [q]. The precise choice of the remaining basis elements is

irrelevant (except in Section 4.3.5).

Let H = H0 ⊕H1, where

H0 := span{e0} and H1 := span{e1, . . . , eq−1}.
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Let us agree on a notational convention that Π with arbitrary sub- and superscripts denotes the
orthogonal projector onto the space denoted by H with the same sub- and superscripts. Thus,
for instance, Π0 = e0e

∗
0 = Jq/q and Π1 = Iq − Jq/q (recall that Jq is the all-ones matrix in the

standard basis).

The standard basis vectors of the space H⊗n correspond to possible input strings x ∈ [q]n,
and the i-th multiplier in H⊗n corresponds to the i-th variable xi. Suppose H corresponds to the
i-th variable. The difference matrix ∆i in the standard basis of H is thus Jq − Iq, and

∆i ◦Π0 = Π0 − Iq/q and ∆i ◦Π1 = −Π0 + Iq/q. (4.1)

As described in Section 2.3.2, we can approximate this ∆i-action as

∆i �Π0 := Π0 and ∆i �Π1 := −Π0, (4.2)

because ∆i ◦ IH = 0. We choose to use these approximations because they have better “orthog-
onality properties” than (4.1). All approximations used in this chapter are essentially based on
(4.2) or the trivial approximation ∆i �A := A, where rows and columns of A correspond to input
strings.

Similarly as for H, an e-basis of H⊗n consists of n-fold tensor products of the vectors in
{ei}. In Sections 4.1 and 4.2 for the Element Distinctness, Collision, and Set Equality
problems, the vector e0 in the tensor product is called the zero component. The weight of the
basis vector is the number of non-zero components in the product. We use the decomposition

H⊗n =
⊕n

k=0H
(n)
k , where

H(n)
k :=

⊕
c∈{0,1}n, |c|=k

Hc1 ⊗ . . .⊗Hcn (4.3)

is the space spanned by all the e-basis elements of weight k. (For m 6= n, we define the subspace

H(m)
k ⊂ H⊗m the same way.) Note that, for k ∈ [0..n], Π

(n)
k is a projector on an eigenspace of the

Hamming scheme (see Section 1.5.1, in particular, (1.16)). Let us also define Π
(n)
−1 := 0 to avoid

exception handling.

In Section 4.3 for the Certificate-Sum and Orthogonal Array problems, we use the
decomposition H⊗n =

⊕
S⊆[n]HS , where, given that sj = 1 if j ∈ S and sj = 0 otherwise, we

define HS :=
⊗
j∈[n]Hsj . Therefore,

ΠS =
⊗

j∈[n]
Πsj . (4.4)

4.1 Adversary bound for Element Distinctness

Let us start by consturcting the adversary bound for the Element Distinctness problem when
the size of the input alphabet q is at least Ω(n2). The adversary matrix that we construct here is
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almost exactly the same as the one originally given by Belovs [Bel12b] (Remark 4.1 will explain
the difference). Nevertheless, we choose to present it here because it provides some intuition be-
hind adversary bounds for Collision and Set Equality (Section 4.2), Certificate-Sum and
Orthogonal Array (Section 4.3), and Element Distinctness with small range (Chapter 5).

4.1.1 Construction of the adversary matrix

For every positive input x of Element Distinctness, there exists a pair of indices i 6= j such
that x[[i]] = x[[j]]. For the sake of constructing the adversary matrix, we represent each such pair
as follows. Let

µ := ((µ1,1, µ1,2), µ2, µ3, . . . , µn−1)

be a tuple such that
{µ1,1, µ1,2, µ2, µ3, . . . , µn−1} = [n],

µ1,1 < µ1,2, and µi < µi+1 for all i ∈ [2..n− 2]. We call µ a pair, having in mind Ûµ := {µ1,1, µ1,2}.
The map µ 7→ Ûµ is a bijection between the set of all such pairs µ and the set of size-two subsets
of [n]. Due to this bijection and by abuse of notation, let N denote both of these sets.

As described in Section 2.3.2, we initially embed the adversary matrix Γ into a larger |N |qn−1×
qn matrix Γ̃. Columns of Γ̃ are labeled by all possible inputs in [q]n. The rows of Γ̃ are split
into blocks corresponding to the pairs in N . Inside a block corresponding to a pair µ, the rows
correspond to all possible inputs x ∈ [q]n such that x[[µ1,1]] = x[[µ1,2]]. We label rows by specifying
both the input and the block, i.e., like (x, µ).

Let N := CN . Then, Γ̃ can be considered as a linear map from H⊗n to N ⊗ H⊗(n−1)

if we identify a standard basis element (µ, z) ∈ N ⊗ H⊗(n−1) with the row in the µ-block of Γ̃
corresponding to positive input x such that x[[µ1,1]] = x[[µ1,2]] = z1 and x[[µi]] = zi for i ∈ [2..n− 1].

The adversary matrix Γ̃ is constructed as a linear combination

Γ̃ :=
∑

k
αkWk, (4.5)

where, for each k, Wk is a linear map from H(n)
k to N ⊗H(n−1)

k and we optimize the coefficients
αk later. Recall that the matrix Γ̃ can be decomposed into blocks corresponding to different pairs
µ ∈ N . We first define one block of the matrix. Let

Ψ0 := Π0 ⊗ e∗0 = e∗0 ⊗Π0 and Ψ1 := e∗0 ⊗Π1 + Π1 ⊗ e∗0 (4.6)

be two linear maps from H⊗H to H. In the standard basis, we think of the rows of Ψ0 and Ψ1

to correspond to (a, a), where a ∈ [q], and columns to (a, b) ∈ [q]2. For example, for q = 3, the
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two matrices constituting Ψ1 are

e∗0 ⊗Π1 =

Ö (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

(1,1) 2 −1 −1 2 −1 −1 2 −1 −1
(2,2) −1 2 −1 −1 2 −1 −1 2 −1
(3,3) −1 −1 2 −1 −1 2 −1 −1 2

è/
33/2, (4.7)

Π1 ⊗ e∗0 =

Ö (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

(1,1) 2 2 2 −1 −1 −1 −1 −1 −1
(2,2) −1 −1 −1 2 2 2 −1 −1 −1
(3,3) −1 −1 −1 −1 −1 −1 2 2 2

è/
33/2. (4.8)

For every k ∈ [n] and every µ ∈ N , define the linear map Wµ,k ∈ L(H⊗n,H⊗(n−1)) by

Wµ,k :=
∑

c∈{0,1}n−1, |c|=k
Ψc1 ⊗Πc2 . . .⊗Πcn−1 = Ψ0 ⊗Π

(n−2)
k + Ψ1 ⊗Π

(n−2)
k−1 , (4.9)

where Ψc1 maps the µ1,1-th and the µ1,2-th multiplier in H⊗n to the 1-st multiplier in H⊗(n−1)

and, for i ∈ [2..n− 1], Πci maps the µi-th multiplier in H⊗n to the i-th multiplier in H⊗(n−1).

To gain intuition on the matrix Wµ,k, it is best to consider µ = {{1, 2}, 3, 4, . . . , n}. Let the
rows and columns of Wµ,k be labelled according to the lexicographical order: columns by all
strings y ∈ [q]n and rows by all strings x ∈ [q]n such that x[[1]] = x[[2]]. Then, for this µ, the
tensor products in (4.9) can be viewed as Kronecker products. The matrices Wµ,k for other µ
can be obtained by symmetry.

The matrix Wµ,k is also closely related to the Hamming scheme. In particular, the matrices

Π
(n−2)
k and Π

(n−2)
k−1 in (4.9) project on eigenspaces of the Hamming scheme (see (1.16)). And

Ψ0 and Ψ1 are obtained from
√
qΠ

(2)
0 and

√
qΠ

(2)
1 , respectively, by removing all the rows that

correspond to pairs (a, a′) ∈ [q]2 such that a 6= a′.

We define Wk by specifying each of its blocks:

the block of the matrix Wk corresponding to µ ∈ N is defined by
1»
|N |

Wµ,k (4.10)

(see Figure 4.1). Let us split Wk = WA,k + WB,k, where, as in (4.10), we define WA,k and WB,k
via blocks

WA,µ,k := Ψ0 ⊗Π
(n−2)
k and WB,µ,k := Ψ1 ⊗Π

(n−2)
k−1 ,

respectively. In accordance with (4.5), this also splits Γ̃ = Γ̃A + Γ̃B.

Remark 4.1. The matrix Γ̃ considered here differs only slightly from the one used by Belovs
in [Bel12b]. Here, when constructing it as a linear combination of WA,k and WB,k (see (4.5)),
we choose the same coefficient for WA,k and WB,k, while Belovs chooses the same coefficient for

WA,k and WB,k+1. (Notice that WA,µ,k +WB,µ,k+1 = (Ψ0 + Ψ1)⊗Π
(n−2)
k .)
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Wk :=

1√
|N |
W{1,2},k

1√
|N |
W{1,3},k

1√
|N |
W{n−1,n},k

...

qn−1

qn

Figure 4.1: The decomposition of Wk into blocks. Here, by abuse of notation, we write WÛµ,k instead of

Wµ,k.

Suppose we fix i and we want to study the action of ∆i on Γ̃ and Wk. Let Γ̃′ and Γ̃′′ be the
part of Γ̃ corresponding to all µ such that i ∈ Ûµ and all µ such that i /∈ Ûµ, respectively. We use
analogous single and double prime notation for Γ̃A, Γ̃B, Wk, WA,k, and WB,k. We exploit the
fact that ‖∆i ◦ Γ̃‖ = O(1) if and only if both ‖∆i ◦ Γ̃′‖ = O(1) and ‖∆i ◦ Γ̃′′‖ = O(1). Also,
‖∆i ◦ Γ̃′′‖ = O(1) if both ‖∆i ◦ Γ̃′′A‖ = O(1) and ‖∆i ◦ Γ̃′′B‖ = O(1). (See Figure 4.2 for the case
when i = 1.)

∆1 ◦ Γ̃ =

Ûµ = {1, 2}, {1, 3}, . . . , {1, n}

Ûµ = {2, 3}, {2, 4}, . . . , {n− 1, n}

∆1 ◦ Γ̃′

∆1 ◦ Γ̃′′A
+

∆1 ◦ Γ̃′′B

Figure 4.2: The decomposition of ∆1 ◦ Γ̃ for the sake of estimating its norm. The top part of the matrix
on the right consists of n− 1 blocks, the bottom part to

(
n−1

2

)
blocks.

Due to symmetry, ‖∆i ◦ Γ̃′‖ = ‖∆j ◦ Γ̃′‖ and ‖∆i ◦ Γ̃′′‖ = ‖∆j ◦ Γ̃′′‖ for all i, j. For notational
convenience, let us consider ‖∆1 ◦ Γ̃′‖ and ‖∆n ◦ Γ̃′′‖.
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4.1.2 Bounding ‖∆1 ◦ Γ̃′‖

For µ such that 1 ∈ Ûµ (that is, µ1,1 = 1), let Wµ,k = X ′µ,k + Y ′µ,k + Z ′µ,k, where

X ′µ,k := Ψ0 ⊗Π
(n−2)
k , Y ′µ,k := (e∗0 ⊗Π1)⊗Π

(n−2)
k−1 , Z ′µ,k := (Π1 ⊗ e∗0)⊗Π

(n−2)
k−1 .

We define X ′k, Y
′
k, and Z ′k similarly to (4.10), but consisting of n− 1 blocks like Γ̃′. Due to (4.2),

we can choose
X ′k

∆1
ù X ′k, Y ′k

∆1
ù Y ′k, Z ′k

∆1
ù −X ′k−1.

(Example (4.8) helps to illustrate that ∆1 ◦ (Π1⊗ e∗0) = −∆1 ◦Ψ0, justifying the last approxima-
tion.) By linearity, we therefore have

∆1 � Γ̃′ =
∑

k
αk(X

′
k + Y ′k −X ′k−1) =

∑
k
(αk−1 − αk)X ′k−1 +

∑
k
αkY

′
k.

(Y ′k)∗Y ′k equals 1/|N | times the sum of (Y ′µ,k)
∗Y ′µ,k over all n− 1 pairs µ satisfying 1 ∈ Ûµ, and

it has to be proportional to Π0 ⊗Π
(n−1)
k . Since

Tr
Ä
Π0 ⊗Π

(n−1)
k

ä
=

Ç
n− 1

k

å
(q − 1)k and Tr

Ä
(Y ′µ,k)

∗Y ′µ,k
ä

=

Ç
n− 2

k − 1

å
(q − 1)k,

we have

(Y ′k)∗Y ′k =
n− 1

|N |

(n−2
k−1

)(n−1
k

)Π0 ⊗Π
(n−1)
k =

k

|N |
Π0 ⊗Π

(n−1)
k ,

implying ‖Y ′k‖ = Θ(
√
k/n). The same way we show ‖X ′k‖ = Θ(1/

√
n).

Since X ′k ⊥ Y ′k′ for all k, k′ and X ′k ⊥ X ′k′ and Y ′k ⊥ Y ′k′ whenever k 6= k′, the requirement
‖∆1 � Γ̃′‖ = O(1) imposes two conditions on the coefficients αk:

|αk−1 − αk| = O(
√
n) and |αk| = O(n/

√
k). (4.11)

4.1.3 Bounding ‖∆n ◦ Γ̃′′‖.

For a label c ∈ {A,B} and for µ such that n /∈ Ûµ (that is, µn−1 = n), let

Wc,µ,k = X ′′c,µ,k + Z ′′c,µ,k,

where

X ′′A,µ,k := Ψ0 ⊗Π
(n−3)
k ⊗Π0, Z ′′A,µ,k := Ψ0 ⊗Π

(n−3)
k−1 ⊗Π1,

X ′′B,µ,k := Ψ1 ⊗Π
(n−3)
k−1 ⊗Π0, Z ′′B,µ,k := Ψ1 ⊗Π

(n−3)
k−2 ⊗Π1.
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Similarly to (4.10), we define X ′′k and Z ′′k , each consisting of
(n−1

2

)
blocks. We can choose

X ′′c,k
∆n
ù X ′′c,k and Z ′′c,k

∆n
ù −X ′′c,k−1

because of (4.2), therefore we have

∆n � Γ̃′′c =
∑

k
αk(X

′′
c,k −X ′′c,k−1) =

∑
k
(αk−1 − αk)X ′′c,k−1.

Note that X ′′c,k ⊥ X ′′c,k′ whenever k 6= k′ and X ′′A,k ⊥ X ′′B,k′ for all k, k′. Since

‖X ′′A,µ,k‖ = ‖Ψ0‖ = 1 and ‖X ′′B,µ,k‖ = ‖Ψ1‖ =
√

2

and since in total we have
(n−1

2

)
< |N | pairs µ to consider, we have ‖X ′′c,k‖ <

√
2. The requirement

‖∆n � Γ̃′′c‖ = O(1) thus imposes the condition

|αk−1 − αk| = O(1), (4.12)

which is stricter than the left condition in (4.11).

4.1.4 Removal of illegal columns

We obtain Γ by removing all the illegal columns of Γ̃. Note that none of the rows are illegal,
though multiple rows may correspond to the same positive input, which is fine according to
Section 2.3.2. Recall from the same section that ‖∆i ◦Γ‖ ≤ ‖∆i ◦ Γ̃‖. Now we need to show that
‖Γ‖ is not much smaller than ‖Γ̃‖, in particular, not much smaller than α0. (The automorphism
principle essentially implies that, when constructing the adversary matrix Γ, we can aim for α0

to yield its principal singular value.)

We have Γ =
∑
k αkW̌k, where W̌k is obtained from Wk by removing all the illegal columns.

Let us assume that q = Ω(n2), so that a constant ratio of columns of Γ̃ remains in Γ (this is due
to the birthday problem, see [KL07], for example). In particular, since W0 is the matrix of all
entries equal and ‖W0‖ = 1, we have ‖W̌0‖ = Ω(1) and its principal left-singular vector is the
all-ones vector ~1|N |qn−1 . As each column of W̌k is also a column of Wk, we have ~1∗|N |qn−1W̌k = 0

whenever k 6= 0. Hence, ‖Γ‖ = Ω(α0).

We maximize α0 subject to the conditions (4.11) and (4.12). The right condition in (4.11)
imposes αk = O(n2/3) for all k ≥ n2/3, and, in turn, (4.12) imposes this bound on αk for all k.
Thus, up to a constant scalar, the optimum is obtained by choosing αk := max{n2/3 − k, 0}.

Theorem 4.2. Let Wk be defined via (4.9) and (4.10), let

Γ̃ :=
∑n2/3

k=0
(n2/3 − k)Wk,
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and let Γ be obtained from Γ̃ by removing all the illegal columns. Given that q = Ω(n2), Γ is an
adversary matrix for Element Distinctness giving an Ω(n2/3) lower bound on the quantum
query complexity of the problem.

The certificate complexity barrier (see Section 2.3.4) implies that the positive-weights ad-
versary method cannot yield a lower bound for Element Distinctness better than Ω(n1/2).
Hence, the adversary matrix Γ given in Theorem 4.2 contains negative weights. Nevertheless, we
do not explicitly calculate the weights in Γ, therefore we do not know which of them are negative
and which positive.

Aside from removing the illegal columns of Γ̃, in his construction, Belovs also removed all
rows corresponding to positive inputs x that have more than one collision (i.e., x having multiple
pairs i 6= j such that x[[i]] = x[[j]]). This way, none of the positive inputs correspond to multiple
rows and many positive inputs have no corresponding rows at all, which is fine according to
Remark 2.16. In fact, when constructing the adversary bound for Element Distinctness with
minimal input alphabet in Chapter 5, we will aslo consider only positive inputs having a unique
collision.

4.2 Adversary lower bounds for the Collision and Set Equality
problems

In this section, we construct optimal adversary bounds for the Collision and Set Equality
problems. The proofs for the both problems are almost identical, so we present them in parallel.1

At the beginning, we proceed to construct adversary matrices for Collision and Set Equal-
ity in a similar manner as for Element Distinctness above. This process, however, fails for
specific reasons later mentioned in Section 4.3.3. Therefore, to achieve the desired lower bound,
we then modify the adversary matrices using the representation theory of the symmetric group.

4.2.1 Preliminaries

In the following, we use subscripts cp and se to denote relation to Collision and Set Equality,
respectively. To avoid unnecessary repetitions, we use notation q that may refer to both cp and
se.

1An adversary matrix for Set Equality is also, of course, an adversary matrix for Collision yielding the same
lower bound. However, Collision has more symmetry than Set Equality, and we will construct an adversary
matrix that respects this symmetry.
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Recall that for the Collision and Set Equality problems, n denotes half of the input
length. Positive inputs of both problems naturally give rise to corresponding matchings. A
matching µ on [2n] is a decomposition

[2n] = {µ1,1, µ1,2} t {µ2,1, µ2,2} t · · · t {µn,1, µn,2}

of the set [2n] into n pairwise disjoint pairs of elements. For concreteness, we will usually assume
that µi,1 < µi,2 for all i ∈ [n], and µ1,1 < µ2,1 < · · · < µn,1. In particular, µ1,1 = 1. Clearly, this
assumption is without loss of generality. Let Ncp denote the set of all matchings on [2n], and let
Nse denote the set of matchings µ on [2n] such that 1 ≤ µi,1 ≤ n and n+ 1 ≤ µi,2 ≤ 2n for all i.

Our aim is to construct adversary matrices Γcp and Γse for the Collision and Set Equality
problems, respectively. As for Element Distinctness above, we embed the adversary matrix
Γq into a larger |Nq|qn × q2n matrix Γ̃q. Columns of Γ̃q are labeled by all possible inputs in
[q]2n. The rows of Γ̃q are split into blocks corresponding to the matchings in Nq. Inside a block
corresponding to µ, the rows correspond to all possible inputs x ∈ [q]2n such that x[[µi,1]] = x[[µi,2]]
for all i. We label rows by specifying both the input and the block, i.e., like (x, µ).

Note that now Γ̃q contains both illegal rows and illegal columns. A column is illegal if its
label y ∈ [q]2n contains two equal elements. A row labeled by (x, µ) is illegal if x[[µi,1]] = x[[µj,1]]
for some i 6= j.

Let Nq := CNq. Then, Γ̃q can be considered as a linear map from H⊗2n to Nq ⊗ H⊗n if we
identify a basis standard basis element (µ, z) ∈ Nq⊗H⊗n with the row label (x, µ) of Γ̃q where
the positive input x is defined by x[[µi,a]] = zi.

Symmetry. Recall that SL denotes the symmetric group of a finite set L, and, for m ∈ N, Sm
denotes the isomorphism class of all symmetric groups SL with |L| = m. The group Scp := S[2n]

and its subgroup Sse := S[1..n] × S[n+1..2n] are automorphisms of Collision and Set Equality,
respectively. Hence, the automorphism principle describes that we may construct Γq that are
invariant under the permutations of these groups. We extend this symmetry to Γ̃q by requiring
that, for each π ∈ Sq, and labels (x, µ) and y, we have

Γ̃q[[(x, µ), y]] = Γ̃q[[(πx, πµ), πy]], (4.13)

where

(πx)i = xπ−1(i) and πµ = {{π(µ1,1), π(µ1,2)}, . . . , {π(µn,1), π(µn,2)}}. (4.14)

Let Vπ ∈ U(H⊗2n) and V ′q,π ∈ U(Nq⊗H⊗n) and be the permutation representations corresponding

to the action of Sq on the column and row labels of Γ̃q, respectively, defined according to (4.14).
Then (4.13) is equivalent to

V ′q,πΓ̃qV
−1
π = Γ̃q (4.15)
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for all π ∈ Sq.

Because of this symmetry, we may use the representation theory in the construction of Γ̃q. The
Collision and Set Equality problems also have symmetries associated with the permutations
in S[q], i.e., the permutations of the symbols of the alphabet. We make use of this symmetry only
in Appendices A.2 and A.3, where we prove one of the lemmas used below.

Intended form of the adversary matrix. Similarly to Element Distinctness, the adver-
sary matrix Γ̃q is constructed as a linear combination

Γ̃q :=
∑

k
αkW̄q,k, (4.16)

where, for each k, W̄q,k is a linear map from H(2n)
k to Nq⊗H(n)

k . The coefficients αk are given by
αk := max{n1/3 − k, 0}. We again assume that W̄q,k is fixed under the action of Sq (in the sense
of (4.13) and (4.15)).

In Section 4.2.2, we define matrices Wq,k very similarly as we defined Wk in (4.5) for El-
ement Distinctness. We show that the construction of Γ̃q that uses W̄q,k := Wq,k in (4.16)
unfortunately fails to yield non-trivial lower bounds. Fortunately, it is possible to modify the
W̄q,k matrices so that (4.16) gives an optimal adversary matrix. We describe this in Section 4.2.3.
Finally, in Section 4.2.4, we show that the removal of illegal rows and columns from Γ̃q in order
to obtain a valid adversary matrix Γq does not change the value of the adversary bound by more
than a constant factor.

4.2.2 Simple yet unsuccessful construction

In this section, we define matrices Wq,k that may seem as the most natural (see Section 4.3.3)
choice for the decomposition (4.16). As we show below, they do not work well enough, yet we
will use them in Section 4.2.3 to construct matrices W̄q,k that do work.

Recall that the matrix Γ̃q can be decomposed into blocks corresponding to different matchings
µ ∈ Nq. We first define one block of the matrix. Recall the maps Ψ0,Ψ1 ∈ L(H⊗2,H) from (4.6).
For every k ∈ [n] and every µ ∈ Nq, define the linear map Wµ

k ∈ L(H⊗2n,H⊗n) by

Wµ
k :=

∑
c∈{0,1}n, |c|=k

Ψc1 ⊗ . . .⊗Ψcn , (4.17)

where, for i ∈ [n], Ψci maps the µi,1-th and the µi,2-th multiplier in H⊗2n to the i-th multiplier in
H⊗n. The block of the matrix Wq,k corresponding to µ ∈ Nq is defined by 1√

|Nq|
Wµ
k . (Figure 4.1

illustrates an analogous block structure of Wk for Element Distinctness.)
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Suppose we use W̄q,k := Wq,k in (4.16). One can see that Wq,k satisfy the symmetry (4.13).
Because of this, ‖∆i ◦ Γ̃q‖ is the same for all i ∈ [2n]. Therefore, it suffices to estimate ‖∆1 ◦ Γ̃q‖.
For that, we define the following decomposition:

Wq,k = Xq,k + Yq,k + Zq,k, (4.18)

where Xq,k, Yq,k, and Zq,k are defined similarly to Wq,k via

Xµ
k = Ψ0 ⊗

∑
c∈{0,1}n−1, |c|=k

Ψc2 ⊗ . . .⊗Ψcn ,

Y µ
k = (e∗0 ⊗Π1)⊗

∑
c∈{0,1}n−1, |c|=k−1

Ψc2 ⊗ . . .⊗Ψcn ,

Zµk = (Π1 ⊗ e∗0)⊗
∑

c∈{0,1}n−1, |c|=k−1
Ψc2 ⊗ . . .⊗Ψcn .

(4.19)

Recall that we always have µ(1, 1) = 1. Again, one can see that Xq,k, Yq,k, and Zq,k are symmetric
under the action of S′q (in the sense of (4.13) and (4.15)), where S′cp := S[2..2n] and S′se :=
S[2..n] × S[n+1..2n].

As for Element Distinctness above, we can choose ∆1 �Xq,k := Xq,k, ∆1 � Yq,k := Yq,k,
and ∆1 � Zq,k := −Xq,k−1. Hence, by linearity,

∆1 � Γ̃q =
∑

k
(αk−1 − αk)Xq,k−1 +

∑
k
αkYq,k, (4.20)

if Γ̃q is defined by (4.16) with W̄q,k = Wq,k. However, it is not hard to show that

‖Wq,k‖ = Θ(2k/2), ‖Xq,k‖ = Θ(2k/2), and ‖Yq,k‖ = Θ(2k/2
»
k/n) (4.21)

if k = o(
√
n) (see [BR13b]). Thus, this construction only gives a trivial lower bound. It is also

possible to show that this problem cannot be fixed by a mere modification of the coefficients αk.

This failure can be explained by the results in Section 4.3 below: this construction only uses
that the non-adaptive learning graph complexity of the Collision problem is Ω(n1/3). On the
other hand, as we saw in Proposition 3.5, the non-adaptive learning graph complexity of the
Hidden Shift problem is also Ω(n1/3). Thus, if this construction worked for Collision, we
most likely would also be able to prove an Ω(n1/3) lower bound for Hidden Shift, that is in
contradiction with the fact that the query complexity of this problem is logarithmic [EHK04].

4.2.3 Successful construction

Our aim is to get rid of the 2k/2 factor in (4.21) while preserving an analogue of (4.20). Recall that
the operator Wq,k is symmetric with respect to Sq, hence, Schur’s lemma (Lemma 1.2) implies
that Wq,k can be subdivided into parts corresponding to different irreps of Sq. We define the
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operator W̄q,k by taking the part of Wq,k corresponding to Young diagrams with many boxes
below the first row.

From (4.3) and (4.17), one can see that Wµ
k ∈ L(H(2n)

k ,H(n)
k ), so we have Wq,kΠ

(2n)
k = Wq,k.

The space H(2n)
k is stable under all permutations in Sq, therefore it can be decomposed into irreps

of Sq. In Appendix A.2 (see Lemma A.2, in particular) we show that H(2n)
k contains irreps of

Scp whose corresponding Young diagram has from 2n to 2n− k boxes in the first row. Similarly,

H(2n)
k contains irreps of Sse such that the sum of the number of boxes in the first rows of the two

Young diagrams defining the irrep is between 2n and 2n− k.

Define H̄(m)
k as the subspace of H(m)

k spanned by the irreps of Sm having exactly k boxes

below the first row, i.e., of the form S(m−k,λ), where λ ` k. We will also use the subspace ¯̄H(m)
k

of H(m)
k that is spanned by the irreps having exactly k − 1 boxes below the first row.

We restrict the operator Wq,k by

W̄q,k := Wq,kΠ̄q,k, (4.22)

where Π̄q,k is the orthogonal projector on one of the following subspaces:

H̄cp,k := H̄(2n)
k or H̄se,k :=

∑k

`=0
H̄(n)
k−` ⊗ H̄

(n)
` . (4.23)

Here, for H̄se,k, the first and the second multiplier reside in the first n and the second n copies
of H in H⊗2n, respectively. Note that all entries of Π̄q,k are real in the standard basis (see
Claim 2.18). (Essentially, Wcp,k corresponds to the columns 0, 1, 2, . . . , k in Figure 2.8, and W̄cp,k

is its restriction to the column k. Similarly for Wse,k and W̄se,k).

In order to define the action of ∆1, we need the following decomposition result. Its proof is
rather technical, it uses multiple concepts of the representation theory of the symmetric and the
unitary group from Section 1.4, and it is given in Appendix A.2.

Lemma 4.3. If k = o(m), then

Π̄
(m)
k = Π0 ⊗ Π̄

(m−1)
k + Π1 ⊗ Π̄

(m−1)
k−1 + Φ

(m)
k ,

where
∥∥∥Φ(m)

k

∥∥∥ = O(1/
√
m) and the support of Φ

(m)
k is contained in ¯̄H(m)

k .

With Φ
(m)
k as in Lemma 4.3, let us denote

Π̄′cp,k := Π̄
(2n−1)
k , Φcp,k := Φ

(2n)
k , ¯̄Πcp,k := ¯̄Π

(2n)
k ,

Π̄′se,k :=
∑k

`=0
(Π̄

(n−1)
k−` ⊗ Π̄

(n)
` ), Φse,k :=

∑k−1

`=0
(Φ

(n)
k−` ⊗ Π̄

(n)
` ), ¯̄Πse,k :=

∑k−1

`=0
( ¯̄Π

(n)
k−` ⊗ Π̄

(n)
` ).

(4.24)

94



Note that Π̄q,k and Φq,k act on H⊗2n while Π̄′q,k acts on H⊗(2n−1). Also, Φq,k = ¯̄Πq,kΦq,k.
From Lemma 4.3, we have

Π̄q,k = Π0 ⊗ Π̄′q,k + Π1 ⊗ Π̄′q,k−1 + Φq,k. (4.25)

With Xq,k, Yq,k and Zq,k as in Section 4.2.2, let

X̄q,k := Xq,k(Π0 ⊗ Π̄′q,k), Ȳq,k := Yq,k(Π0 ⊗ Π̄′q,k), and Z̄q,k := Zq,k(Π1 ⊗ Π̄′q,k−1),

so that from (4.18), (4.19) and (4.25), we get

W̄q,k = Wq,kΠ̄q,k = X̄q,k + Ȳq,k + Z̄q,k +Wq,kΦq,k.

We define the action of ∆1 on these operators by

X̄q,k
∆1
ù X̄q,k, Ȳq,k

∆1
ù Ȳq,k, Wq,kΦq,k

∆1
ù Wq,kΦq,k, and Z̄q,k

∆1
ù −X̄q,k−1.

The validity of the last action follows from Π1
∆1
ù −Π0. Thus, for Γ̃q as defined in (4.16), we

have
Γ̃q

∆1
ù

∑
k
(αk−1 − αk)X̄q,k−1 +

∑
k
αkȲq,k +

∑
k
αkWq,kΦq,k.

So far we have merely constructed an analogue of (4.20). The main difference between this
construction and the one in Section 4.2.2 is given by the following result.

Lemma 4.4. In the above notations, we have:

(a) ‖X̄q,k‖ ≤ 1, (b) ‖Ȳq,k‖ = O(
»
k/n), (c) ‖Wq,kΦq,k‖ = O(1/

√
n).

Note the difference with (4.21). We prove Lemma 4.4 in Appendix A.1.

With this result, it is not hard to show that αk = max{n1/3 − k, 0} is a good choice for
the values of αk in the decomposition (4.16). Indeed, for different k, all the operators X̄q,k are
orthogonal, and the same is true for Ȳq,k and Wq,kΦq,k. Hence, the following conditions ensure
that ‖∆1 � Γ̃q‖ = O(1):

|αk−1 − αk| ≤ 1, |αk| ≤
»
n/k, and |αk| ≤

√
n

for all k. Our choice αk = max{n1/3 − k, 0} satisfy these conditions, giving us∥∥∥Γ̃q

∥∥∥ ≥ ∥∥∥α0W̄q,0

∥∥∥ =
∥∥∥α0Wq,0

∥∥∥ = α0 = n1/3.
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4.2.4 Removal of illegal rows and columns

So far we have only constructed the matrix Γ̃q in which the actual adversary matrix Γq is em-
bedded. We obtain Γq by deleting all the illegal rows and columns of Γ̃q. We already have
‖∆i ◦Γ‖ ≤ ‖∆i ◦ Γ̃‖, and it is left to show that ‖Γq‖ is not much smaller than ‖Γ̃q‖, in particular,
not much smaller than α0.

We have Γq =
∑
k αkW̌q,k, where W̌q,k is obtained from W̄q,k by deleting all the illegal rows

and columns. Let us assume that q = Ω(n2), so that a constant ratio of rows and columns of Γ̃q

remains in Γq. In particular, since W̄q,0 = Wq,0 is the matrix of all entries equal and ‖W̄q,0‖ = 1,
we have ‖W̌q,0‖ = Ω(1) and its principal right-singular vector is the all-ones vector ~1q!/(q−2n)!. All

that is left to show is that W̌q,k
~1q!/(q−2n)! = 0 whenever k 6= 0.

Let us split H⊗2n = Hlegal ⊕ Hillegal, where Hlegal and Hillegal are the spaces spanned by
standard basis vectors corresponding to legal and illegal negative inputs, respectively. Let us
further decompose

Hlegal =
⊕

L⊂[q],|L|=2n
Hlegal,L,

where Hlegal,L is the space spanned by standard basis vectors corresponding to negative inputs
x ∈ [q]2n such that entries of x form the set L of size 2n. It is easy to see that, for all L,

Hlegal,L is invariant under the action of S[2n]. Since H̄se,k ⊆ H̄cp,k = H̄(2n)
k , if suffices to show

Π̄
(2n)
k Πlegal,L

~1q2n = 0.

Note that the action of S[2n] on Hlegal,L is isomorphic to the regular representation of S[2n],
and we can decompose

Hlegal,L =
⊕

σ`2n
Hlegal,L,σ,

where Hlegal,L,σ is the subspace corresponding to dimσ copies of the irrep Sσ in the regular
representation. Since we consider the regular representation, we have Πlegal,L,σ

~1q2n = 0 whenever

σ 6= (2n). So it is enough to consider Πlegal,L,(2n), but from the definition of Π̄
(2n)
k we have

Π̄
(2n)
k Πlegal,L,(2n) = 0 whenever k 6= 0. Hence W̌q,k

~1q!/(q−2n)! = 0 whenever k 6= 0, and ‖Γq‖ =
Ω(α0). This gives us the desired lower bound.

Theorem 4.5. For both q ∈ {cp,se}, let

Γ̃q :=
∑n1/3

k=0
(n1/3 − k)W̄q,k,

where W̄q,k is defined in (4.22), and let Γq be obtained from Γ̃q by removing all the illegal rows
and columns. Given that q = Ω(n2), Γcp and Γse are adversary matrices for Collision and Set
Equality, respectively, giving an Ω(n1/3) lower bound on the quantum query complexity of both
problems.
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4.3 Adversary bounds for certificate structures

In this section, we consider certificate structures, and we prove that

Theorem 4.6. For every certificate structure, its quantum query and learning graph complexities
differ by at most a constant multiplicative factor.

Namely, for every certificate structure C, we construct a Boolean-valued function P such that
P has C as a certificate structure and the quantum query complexity of P is no less than a
constant times the learning graph complexity of C. The opposite direction follows from Claim 3.2
and Theorem 3.3.

Although Theorem 4.6 is a very general result, it is unsatisfactory in the sense that the function
P having the required quantum query complexity is rather artificial, and the size of the alphabet
is enormous. However, for boundedly generated certificate structures (see Definition 2.9), it is
possible to construct a relatively natural problem with a modestly-sized alphabet having the
required quantum query complexity.

In order to define the function with the desired complexity, we first have to introduce the
following special case of a well-studied combinatorial object.

Definition 4.7 (Orthogonal Array). Assume T is a subset of [q]k. We say that T is an orthogonal
array over alphabet [q] if, for every index i ∈ [k] and for every sequence z1, . . . , zi−1, zi+1, . . . , zk
of elements in [q], there exist exactly |T |/qk−1 choices of zi ∈ [q] such that (z1, . . . , zk) ∈ T . We
call |T | the size of the array, and k its length.

Compared to a standard definition of orthogonal arrays (cf. [HSS99]), we always require that
the so-called strength of the array equals k − 1.2 Recall from Definition 2.9 that a certificate
structure C is boundedly generated if each M ∈ C consists exactly of all supersets of some subset
AM ⊂ [n] of size O(1).

Theorem 4.8. Assume a certificate structure C is boundedly generated, and let AM be like in
Definition 2.9. Assume the alphabet is [q] for some q ≥ 2|C|, and each AM is equipped with
an orthogonal array TM over alphabet [q] of length |AM | and size q|AM |−1. Consider a function
P : [q]n → {0, 1} defined by P(x) = 1 iff there exists M ∈ C such that xAM ∈ TM . Then, the
quantum query complexity of f is at least a constant times the learning graph complexity of C.

Note that the C-Sum problem (see Section 2.1.2) is a special case of such a function. So, if
q ≥ 2|C|, Theorem 4.8 implies that the quantum query complexity of C-Sum is at least a constant

2For certain type of problems, Špalek constructs adversary lower bounds based on orthogonal arrays with
arbitrary strengths [Špa13].
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times the learning graph complexity of C. In particular, Theorem 4.8 together with Propositions
3.4 and 3.5 give Ω(nk/(k+1)) and Ω(n9/7/

√
log n) lower bounds on the quantum query complexity

of the k-Sum and Trangle-Sum problems, respectively, assuming that the alphabet size is
sufficiently large.

Theorem 4.8 is a generalization of the lower bound for the k-Sum problem from [BŠ13], and
provides additional intuition on the construction, by linking it to learning graphs. Much of the
discussion in [BŠ13] applies here as well.

4.3.1 Outline of the lower bound

Let us now outline how Theorems 4.6 and 4.8 are proven. Both theorems are strongly connected:
In the second one we prove a stronger statement from stronger premisses. As a consequence, the
proofs also have many common elements.

Recall the dual formulation (3.9) of the learning graph complexity of a certificate structure.
Given a certificate structure C, let αS(M) satisfy (3.9), and be such that (3.9a) equals the learning
graph complexity of C. We define an explicit function P : D → {0, 1} with D ⊆ [q]n having C as
a certificate structure and having the objective value (3.9a) of program (3.9) as a lower bound
on its quantum query complexity. We prove the latter using the adversary bound.

Function. Let M be a certificate placement in the certificate structure C. Let A
(1)
M , . . . , A

(`(M))
M

be all the inclusion-wise minimal elements of M . (In a boundedly generated certificate structure,

M has only one inclusion-wise minimal element AM .) For each A
(i)
M , we choose an orthogonal

array T
(i)
M of length |A(i)

M | over the alphabet [q], and define

XM :=

ß
x ∈ [q]n : x

A
(i)
M

∈ T (i)
M for all i ∈ [`(M)]

™
. (4.26)

The orthogonal arrays are chosen so thatXM is non-empty and satisfies the following orthogonality
property:

∀S ∈ 2[n] \M ∀z ∈ [q]S :
∣∣∣{x ∈ XM : xS = z}

∣∣∣ = |XM |/q|S|. (4.27)

For boundedly generated certificate structures, this property is satisfied automatically.

The set of positive inputs is defined by D1 :=
⋃
M∈C XM . The set of negative inputs Y = D0

is defined by

Y :=
{
x ∈ [q]n : x

A
(i)
M

/∈ T (i)
M for all M ∈ C and i ∈ [`(M)]

}
. (4.28)

It is easy to see that P has C as a certificate structure. We call a function P defined this way an
Orthogonal Array problem. The parameters will be chosen so that |D0| = Ω(qn). One can
see that, if C is boundedly generated, the function P is total. (Note: unlike in Sections 4.1 and
4.2, in the current section we use X and Y for denoting sets of inputs.)
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Significant matrices. Like for Element Distinctness, Collision, and Set Equality in
Sections 4.1 and 4.2, we initially embed the adversary matrix Γ into a larger matrix Γ̃. Columns
of Γ̃ are labeled by all input strings y ∈ [q]n, and columns labeled by y /∈ Y are illegal. We
construct Γ̃ so that all its rows correspond to positive inputs, and are thus legal. Γ is obtained
from Γ̃ by removing the illegal columns. In Sections 4.1 and 4.2, the matrix Γ̃ was divided into
blocks corresponding to µ ∈ N . Similarly, here Γ̃ is divided into blocks G̃M corresponding to
M ∈ C, and the rows of the block G̃M are labeled by (x,M) such that x ∈ XM .

Unlike in Sections 4.1 and 4.2, however, here we obtain Γ̃ from an even larger matrix Γ̂, whose
blocks “GM are [q]n × [q]n-matrices. Assuming C = {M1, . . . ,Mk},

Γ̂ =

à“GM1“GM2

...“GMk

í
. (4.29)

The block G̃M of Γ̃ is obtained from the block “GM of Γ̂ by both scalling it up
»
qn/|XM | times

and removing all rows corresponding to x /∈ XM . Hence, Γ consists of blocks GM , like in (4.29),
where

GM =
»
qn/|XM | “GM [[XM , Y ]]

(here, the latter notation stands for the submatrix formed by the specified rows and columns).

We construct Γ̂ so that ‖Γ̂‖ is at least the objective value (3.9a) and, for each j ∈ [n], there

exists Γ̂M such that Γ̂
∆j

ù Γ̂M and ‖Γ̂M‖ ≤ 1. The matrix Γ̂M has a decomposition into blocks “GM
M

similar to (4.29). The matrices ΓM and Γ̃M are obtained from Γ̂M the same way as Γ and Γ̃ from

Γ̂. It is clear that Γ̂
∆j

ù Γ̂M implies Γ
∆j

ù ΓM.

Let us define X := {(x,M) ∈ [q]n × C : x ∈ XM}. So Γ is an X × Y matrix satisfying

Γ[[(x,M), y]] =

 
qn

|XM |
Γ̂[[(x,M), y]].

We show that ‖Γ‖ is not much smaller than ‖Γ̂‖, and we also show that the norm of ΓM is small
by showing that ‖Γ̃M‖ = O(‖Γ̂M‖). We denote the blocks of Γ̃M by G̃M

M , that is,

G̃M
M =

 
qn

|XM |
“GM
M [[XM , [q]

n]]. (4.30)

4.3.2 Common parts of the proofs

Let e0, . . . , eq−1 be an e-basis of H = C[q], and recall that Π0 = e0e
∗
0 = Jq/q and Π1 = Iq − Jq/q.

Also, recall from (4.4) that, if S ⊆ [n] and (sj) is the corresponding characteristic vector, ΠS =
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⊗
j∈[n] Πsj . Note that

ΠSΠS′ = 0 whenever S 6= S′. (4.31)

We define the matrices “GM from (4.29) by“GM =
∑
S⊆[n]

αS(M)ΠS , (4.32)

where αS(M) give an optimal solution to (3.9).

Lemma 4.9. If Γ̂ and Γ are defined as in Section 4.3.1, all XM satisfy the orthogonality prop-
erty (4.27), and |Y | = Ω(qn), then

‖Γ‖ = Ω

( ∑
M∈C

α∅(M)2

)
. (4.33)

Proof. Recall that GM =
»
qn/|XM |“GM [[XM , Y ]], hence, from (4.32), we get that

GM =

 
qn

|XM |
α∅(M)Π⊗n0 [[XM , Y ]] +

 
qn

|XM |
∑
S 6=∅

αS(M)ΠS [[XM , Y ]].

Let us calculate the sum s(GM ) := ~1∗|XM |GM
~1|Y | of the entries of GM . In the first term, each

entry of Π⊗n0 equals q−n. There are |XM | rows and |Y | columns in the matrix, hence, the sum of

the entries of the first term is
»
|XM |/qn |Y |α∅(M).

In the second term, s
Ä
αS(M)ΠS [[XM , Y ]]

ä
= 0 for all S 6= ∅. Indeed, if S ∈ M , then

αS(M) = 0 by (3.9c). Otherwise,

s(ΠS [[XM , Y ]]) =
∑
y∈Y

∑
x∈XM

ΠS [[x, y]] = q|S|−n
∑
y∈Y

∑
x∈XM

Π
⊗|S|
1 [[xS , yS ]]

=
|XM |
qn

∑
y∈Y

∑
z∈[q]S

Π
⊗|S|
1 [[z, yS ]] = 0.

(For the third equality, the orthogonality condition (4.27) is used. For the last one, we use that
the sum of the entries of every column of Π⊗k1 is zero if k > 0.) Summing up,

s(GM ) =

√
|XM |
qn

|Y |α∅(M).

We are now ready to estimate ‖Γ‖. Define two unit vectors u ∈ RX and v ∈ RY by

u[[(x,M)]] :=
α∅(M)»

|XM |
∑
M∈C α∅(M)2

and v[[y]] :=
1»
|Y |
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for all (x,M) ∈ X and y ∈ Y . Then,

‖Γ‖ ≥ u∗Γv =

∑
M∈C α∅(M)s(GM )»

|XM | |Y |
∑
M∈C α∅(M)2

=

Ã
|Y |
qn

∑
M∈C

α∅(M)2 = Ω

( ∑
M∈C

α∅(M)2

)
.

Let us define the transformation Γ̂
∆j

ù Γ̂M and state some of the properties of Γ̂M that will

be used in the subsequent sections. By using the approximation (4.2), we choose ΠS
∆j

ù ΠS if

j /∈ S and ΠS
∆j

ù −ΠS\{j} if j ∈ S. We extend this approximation to “GM ∆j
ù “GM

M by linearity:
from (4.32), we see that “GM

M =
∑
S⊆[n]

βS(M)ΠS , (4.34)

where βS(M) = αS(M)− αS∪{j}(M). In particular, βS(M) = 0 if j ∈ S or S ∈ M . The matrix

Γ̂M is of the form (4.29), but with each “GM replaced by “GM
M . Thus,

(Γ̂M)∗Γ̂M =
∑
M∈C

(“GM
M )∗“GM

M =
∑
S∈2[n]

(∑
M∈C

βS(M)2
)
ΠS . (4.35)

In particular, we obtain from (3.9b) that ‖Γ̂M‖ ≤ 1.

4.3.3 Comparison to adversary constructions of Sections 4.1 and 4.2

Let us see how the adversary matrices defined here compare to ones defined earlier in Sections
4.1 and 4.2. First, suppose C is the 2-subset certificate structure. Each M ∈ C is specified by

A
(1)
M = {j, j′}, and let T

(1)
M be given by x[[j]] = x[[j′]]. This certificate structure together with these

orthogonal arrays correspond to the Element Distinctness problem. Just like in the proof of
Proposition 3.4, let

αS(M) :=

Ç
n

2

å−1/2

max{n2/3 − |S|, 0}

if {j, j′} 6⊆ S, and αS(M) := 0 otherwise. Then, the adversary matrix Γ that we obtain according
to definitions in this section is exactly the same as Γ given in Section 4.1.

Now suppose C is the collision, the set equality, or the hidden shift certificate structure (see
Definition 2.6). Generalizing the proof of Proposition 3.5, we define

αS(M) := max{n1/3 − |S|, 0}
¿»
|C|
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if S /∈ M , and αS(M) := 0 if S ∈ M . One can see that this choice of αS(M) reproves Propo-
sition 3.5: the learning graph complexity of C is Ω(n1/3). Each M ∈ C corresponds to some

matching µ on [2n], and the inclusion-wise minimal elements of M are A
(1)
M = {µ1,1, µ1,2},

A
(2)
M = {µ2,1, µ2,2}, . . . , A

(n)
M = {µn,1, µn,2}. For each A

(i)
M , let the orthogonal array T

(i)
M be

given by x[[µi,1]] = x[[µi,2]]. For this collection of orthogonal arrays, the orthogonality property
(4.27) holds. For the collision and set equality certificate structures, the matrices Γ̃ that we ob-
tain according to definitions of this section are exactly the same as, respectively, the matrices Γ̃cp

and Γ̃se of Section 4.2.2. (That is, the construction of Γ̃q where one uses W̄q,k := Wq,k in (4.16).)
The failure of these matrices to yield non-trivial lower bounds for Collision and Set Equality
suggests that a straightforward generalization of Theorem 4.8 for all certificate structures is not
true.

4.3.4 Boundedly generated certificate structures

In this section, we finish the proof of Theorem 4.8. In the settings of the theorem, the orthogonal

arrays T
(i)
M in (4.26) are already specified. Since each M ∈ C has only one inclusion-wise minimal

element AM , we drop all upper indices (i) in this section.

From the statement of the theorem, we have |XM | = qn−1, and, in particular, they are non-
empty. Also, XM satisfies the orthogonality property (4.27), and, by (4.28), we have

|Y | =
∣∣∣∣∣[q]n \ ⋃

M∈C
XM

∣∣∣∣∣ ≥ qn − ∑
M∈C
|XM | = qn − |C|qn−1 ≥ qn

2
. (4.36)

Thus, the conditions of Lemma 4.9 are satisfied, and (4.33) holds.

As ΓM is a submatrix of Γ̃M, it suffices to estimate ‖Γ̃M‖. Let k := maxM∈C |AM |. By the
definition of boundedly generated certificate structures (Definition 2.9), k = O(1).

Fix some order of elements in each AM = {aM,1, . . . , aM,|AM |}, and let LM,i, where M ∈ C
and i ∈ [k], be subsets of 2[n] satisfying the following properties:

• for each M , the set 2[n] \M is the disjoint union LM,1 t · · · t LM,k;

• for each M and each i ≤ |AM |, all elements of LM,i omit aM,i;

• for each M and each i such that |AM | < i ≤ k, the set LM,i is empty.

Recall that, if S ⊆ [n] and (sj) is the corresponding characteristic vector, ΠS =
⊗
j∈[n] Πsj . The

main idea behind defining LM,i’s is as follows.
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Claim 4.10. If S, S′ ∈ LM,i, then

(ΠS [[XM , [q]
n]])∗(ΠS′ [[XM , [q]

n]]) =

{
ΠS/q, S = S′;

0, otherwise.

Proof. If we remove the aM,i-th entry in all inputs in XM , we obtain [q]n−1 by the definition of
an orthogonal array. All elements of LM,i omit aM,i, hence, ΠS has Π0 in the aM,i-th position for
all S ∈ LM,i. Thus, the aM,i-th entries of x and y have no impact on the value of ΠS [[x, y]].

Consider a column of ΠS ; it is of the form ψ ⊗ e0, where e0 is on the aM,i-th element of [q]n

and qn−1-dimensional vector ψ is on the others. For every z ∈ [q][n]\{aM,i}, there is a unique
x ∈ [q]n such that x[n]\{aM,i} = z and x ∈ XM . Therefore, (ψ ⊗ e0)[[XM ]] = ψ/

√
q. Let (sj) be

the characteristic vector of S. Then,

ΠS [[XM , [q]
n]] =

Ç ⊗
j∈[n]\{aM,i}

Πsj

å
⊗ e∗0√

q
.

Similarly for S′, and the claim follows from (4.31).

For each M , decompose “GM
M from (4.34) into

∑
i∈[k]

“GM
M,i, where“GM

M,i :=
∑

S∈LM,i

βS(M)ΠS .

Define similarly to Section 4.3.1,

G̃M
M,i :=

 
qn

|XM |
“GM
M,i[[XM , [q]

n]] =
√
q
∑

S∈LM,i

βS(M)ΠS [[XM , [q]
n]],

and let Γ̃M
i be the matrix consisting of G̃M

M,i, for all M ∈ C, stacked one on another like in (4.29).

Then, Γ̃M =
∑
i∈[k] Γ̃M

i . We have

(Γ̃M
i )∗Γ̃M

i =
∑
M∈C

(G̃M
M,i)

∗G̃M
M,i =

∑
M∈C

∑
S∈LM,i

βS(M)2ΠS ,

by Claim 4.10. Similarly to (4.35), we get ‖Γ̃M
i ‖ ≤ 1. By the triangle inequality, ‖Γ̃M‖ ≤ k, hence,

‖ΓM‖ ≤ k = O(1). Combining this with (4.33), and using the adversary bound (Theorem 2.15),
we obtain the necessary lower bound. This finishes the proof of Theorem 4.8.
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4.3.5 General certificate structures

In this section, we finish the proof of Theorem 4.6. There are two main reasons why it is likely
not possible to prove a general result like Theorem 4.8 for arbitrary certificate structures.

First of all, the proof in Section 4.3.4 cannot be applied here, because k in the decomposition
of “GM

M into
∑
i∈[k]

“GM
M,i would not be bounded by a constant. This too indicates why the adversary

constructions of Section 4.2.2 for the Collision and Set Equality problems fail.

Next, the orthogonality property (4.27) is not satisfied automatically for general certificate

structures. For instance, assume A
(1)
M = {1, 2}, A(2)

M = {2, 3}, and the orthogonal arrays are
given by the conditions x1 = x2 and x2 = x3, respectively. Then, for any input x satisfying both
conditions, we have x1 = x3, and the orthogonality condition fails for S = {1, 3}.

The problem in the last example is that the orthogonal arrays are not independent becauseA
(1)
M

and A
(2)
M intersect. We cannot avoid that A

(i)
M s intersect, but we still can have T

(i)
M s independent

by defining them on independent parts of the input alphabet.

Fourier basis. At the beginning of this chapter, we defined an e-basis as an arbitrary orthonor-
mal basis satisfying the requirement that e0 has all its entries equal to 1/

√
q. In this section,

however, we consider a concrete choice for ei. Its construction is based on the Fourier basis.

Let p be a positive integer, and Zp be the cyclic group of order p, formed by the integers modulo
p. Consider the complex vector space CZp . The vectors (χa)a∈Zp , defined by χa[[b]] := e2πiab/p/

√
p,

form its orthonormal basis, called the Fourier basis of CZp . Note that the value of χa[[b]] is well-
defined because e2πi = 1.

If U ⊆ Zp, then the Fourier bias [TV06] of U is defined by

‖U‖u :=
1

p

∣∣∣∣∣ max
a∈Zp\{0}

∑
u∈U

e2πiau/p

∣∣∣∣∣. (4.37)

It is a real number between 0 and |U|/p. We need the following result stating the existence of
sets with small Fourier bias and arbitrary density.

Theorem 4.11. For any real 0 < δ < 1, it is possible to construct U ⊆ Zp such that |U| ≈ δp
(e.g., |U| = dδpe), ‖U‖u = O(polylog(p)/

√
p), and p is arbitrary large. In particular, ‖U‖u = o(1).

For instance, one may prove that a random subset satisfies these properties with high proba-
bility [TV06, Lemma 4.16]. There also exist explicit constructions [Gil10].
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Input alphabet and orthogonal arrays. Let ` := maxM∈C `(M), where `(M) is defined
in Section 4.3.1 as the number of inclusion-wise minimal elements of M . We define the input
alphabet as Σ := Z`p for some p to be defined later (note: the size of the alphabet is q = p`).
Hence, every input string x ∈ Σn can be expressed in the form

x =

Ü
x

(1)
1 · · · x

(1)
n

...
. . .

...

x
(`)
1 · · · x

(`)
n

ê
, (4.38)

where xj = (x
(1)
j , . . . , x

(`)
j ) ∈ Σ is j-th entry of x and we call x(i) := (x

(i)
1 , . . . , x

(i)
n ) ∈ Znp the i-th

component of x.

Let Q
(i)
M be an orthogonal array of length |A(i)

M | over the alphabet Zp. We will specify a concrete

choice in a moment. From Q
(i)
M , we define T

(i)
M in (4.26) by requiring that the i-th component of

z ∈ ΣA
(i)
M satisfy Q

(i)
M (other components can be arbitrary). The sets XM are defined as in (4.26).

We additionally define

X
(i)
M :=

¶
x(i) ∈ Znp : x

(i)

A
(i)
M

∈ Q(i)
M

©
,

for i ≤ `(M), and X
(i)
M = Znp otherwise. Note that XM =

∏`
i=1X

(i)
M in the sense that, for

each sequence x(i) ∈ X
(i)
M with i = 1, . . . , `, there is a corresponding element x ∈ XM with

xj = (x
(1)
j , . . . , x

(`)
j ).

Now we make our choice for Q
(i)
M . Let δ := 1/(2`|C|) and let U ⊆ Zp be a set with small

Fourier bias and size |U| ≈ δp, which exists due to Theorem 4.11. We define Q
(i)
M as consisting of

all x ∈ ZA
(i)
M

p such that the sum of the elements of x belongs to U. With this definition,

|X(i)
M | = δpn. (4.39)

Hence, there are exactly δqn elements x ∈ Σn such that x
A

(i)
M

∈ T (i)
M . Since δ = 1/(2`|C|), a calcu-

lation similar to (4.36) shows that |Y | ≥ qn/2. Also, by considering each i ∈ [`] independently, it
is easy to see that all XM satisfy the orthogonality condition (4.27). Thus, Lemma 4.9 applies,
and (4.33) holds.

Now it remains to estimate ‖ΓM‖, and it is done by considering the matrix Γ̃M as described
in Section 4.3.1, and performed once in Section 4.3.4. If Γ̂M = 0, then also ΓM = 0, and we are
done. Thus, we further assume Γ̂M 6= 0. Recall that (χa)a∈Zp denotes the Fourier basis of CZp .
The e-basis that we consider is defined as the Fourier basis of CΣ. It consists of the elements of
the form ea =

⊗`
i=1 χa(i) where a = (a(i)) ∈ Σ. Note that e0 has the required value, where 0 is

interpreted as the identity element 0` of the additive group Σ.
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Given v = (v
(i)
j ) ∈ Σn, we define vj ∈ Σ and v(i) ∈ Znp as in (4.38). Let ev :=

⊗n
j=1 evj , which

form an e-basis of H = CΣn . Components of these vectors, for w = (wj) ∈ Znp , are defined as
χw :=

⊗n
j=1 χwj .

Fix an arbitrary M ∈ C. Let “BM = (“GM
M )∗“GM

M and B̃M = (G̃M
M )∗G̃M

M . We aim to show that

‖“BM − B̃M‖ → 0 as p→∞, (4.40)

because this implies

‖(Γ̂M)∗Γ̂M − (Γ̃M)∗Γ̃M‖ =

∥∥∥∥∑
M∈C

(“BM − B̃M )

∥∥∥∥ ≤ ∑
M∈C
‖“BM − B̃M‖ → 0

as p → ∞. As ‖Γ̂M‖ > 0, this implies that ‖ΓM‖ ≤ 2‖Γ̂M‖ for p large enough, and together
with (4.33) and the adversary bound (Theorem 2.15), this implies Theorem 4.6.

Comparison of “BM and B̃M . From (4.34), we conclude that the eigenbasis of “BM consists of
the vectors ev, with v ∈ Σn, defined above. Hence “BM is diagonal in the e-basis. We prove (4.40)
by showing that, in the e-basis,

• “BM and B̃M have the same diagonal entries,

• B̃M is block diagonal with each block having size independent from p,

• off-diagonal entries of B̃M goes to 0 as p→∞.

In order to understand B̃M better, we have to understand how ev[[XM ]] behave. We have

(ev[[XM ]])∗(ev′ [[XM ]]) =
∏̀
i=1

(χv(i) [[X
(i)
M ]])∗(χv′(i) [[X

(i)
M ]]). (4.41)

Hence, it suffices to understand the behaviour of χw[[X
(i)
M ]]. For w ∈ Znp , A ⊆ [n], and c ∈ Zp, we

write w + cA for the sequence w′ ∈ Znp defined by

w′j :=

{
wj + c, j ∈ A;

wj , otherwise.

In this case, we say that w and w′ are obtained from each other by a shift on A.

Claim 4.12. Assume that w and w′ are elements of Znp , and let ξ := (χw[[X
(i)
M ]])∗(χw′ [[X

(i)
M ]]). If

w = w′, then ξ = δ. If w 6= w′, but w can be obtained from w′ by a shift on A
(i)
M , then |ξ| ≤ ‖U‖u.

Finally, if w cannot be obtained from w′ by a shift on A
(i)
M , then ξ = 0.
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Proof. Arbitrarily enumerate the elements of U = {u1, . . . , um} where m = δp. Denote, for the

sake of brevity, A = A
(i)
M . Consider the decomposition X

(i)
M =

⊔m
k=1Xk, where

Xk :=
{
w ∈ Znp :

∑
j∈A

wj = uk
}
.

Fix an arbitrary element a ∈ A and denote w̄ := w−waA and w̄′ := w′ −w′aA. In both of them,
w̄a = w̄′a = 0, and by an argument similar to Claim 4.10, we get that

(χw̄[[Xk]])
∗(χw̄′ [[Xk]]) =

{
1/p, w̄ = w̄′;

0, otherwise.
(4.42)

If x(i) ∈ Xk, then

χw[[x(i)]] =
n∏
j=1

χwj [[x
(i)
j ]] =

1√
pn

exp

ñ
2πi

p

n∑
j=1

wjx
(i)
j

ô
=

1√
pn

exp

ñ
2πi

p

( n∑
j=1

w̄jx
(i)
j + wa

∑
j∈A

x
(i)
j

)ô
= exp

(2πi wauk
p

)
χw̄[[x(i)]].

Hence,

(χw[[X
(i)
M ]])∗(χw′ [[X

(i)
M ]]) =

m∑
k=1

(χw[[Xk]])
∗(χw′ [[Xk]]) =

m∑
k=1

e2πi(w′a−wa)uk/p(χw̄[[Xk]])
∗(χw̄′ [[Xk]]).

(4.43)
If w′ cannot be obtained from w by a shift on A, then w̄ 6= w̄′ and (4.43) equals zero by (4.42).
If w = w′, then (4.43) equals m/p = δ. Finally, if w′ can be obtained from w by a shift on A
but w 6= w′, then w̄ = w̄′ and wa 6= w′a. By (4.42) and (4.37), we get that (4.43) does not exceed
‖U‖u in absolute value.

Let v ∈ Σn, and S := {j ∈ [n] : vj 6= 0}. Let v′ ∈ Σn, and define S′ similarly. We have

e∗vB̃Mev′ =
qnβS(M)βS′(M)

|XM |
(ev[[XM ]])∗(ev′ [[XM ]])

=
βS(M)βS′(M)

δ`

∏̀
i=1

(χv(i) [[X
(i)
M ]])∗(χv′(i) [[X

(i)
M ]]),

(4.44)

where the first equality is by (4.30) and (4.34) and the second by (4.39) and (4.41). By this and
Claim 4.12, we have that

e∗vB̃Mev = βS(M)2 = e∗v
“BMev. (4.45)
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Call v and v′ equivalent, if βS(M) and βS′(M) are both non-zero and, for each i ∈ [`], v(i) can

be obtained from v′(i) by a shift on A
(i)
M . By (4.44) and Claim 4.12, we have that e∗vB̃Mev′ is

non-zero only if v and v′ are equivalent.

Note that, if v
′(i)
j 6= 0 for all j ∈ A(i)

M , then S′ is such that A
(i)
M ⊆ S′, therefore S′ ∈ M and

βS′(M) = 0 by (3.9c). For each i ∈ [`], there are at most |A(i)
M | ≤ n shifts of v(i) on A

(i)
M that

have an element with an index in A
(i)
M equal to 0. Hence, for each v ∈ Σn, there are at most n`

elements of Σn equivalent to it.

Thus, in the e-basis, the matrix B̃M has the required properties. Namely, by (4.45), its
diagonal entries equal the diagonal entries of “BM . Next, B̃M is block-diagonal with the blocks of
size at most n`. By (4.44) and Claim 4.12, the off-diagonal elements satisfy

|e∗vB̃Mev′ | ≤
‖U‖u
δ
|βS(M)βS′(M)|,

because ‖U‖u ≤ δ. Since the values of βS(M) do not depend on p, and by Theorem 4.11, the
off-diagonal elements of B̃M tend to zero as p tends to infinity. Since the sizes of the blocks also
do not depend on p, the norm of “BM − B̃M also tends to 0, as required in (4.40). This finishes
the proof of Theorem 4.6.
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Chapter 5

Adversary bound for Element
Distinctness with small range

Recall that, given an input string z ∈ Σn, the Element Distinctness problem is to decide
whether z contains a collision or not, namely, weather there exist i, j ∈ [n] such that i 6= j
and zi = zj . In this chapter, we only consider a special case of the problem where we are
given a promise that the input contains at most one collision. This promise does not change the
complexity of the problem [Amb07].

We construct a tight Ω(n2/3) adversary lower bound for Element Distinctness with mini-
mal alphabet such that the problem is still non-trivial. Due to Remark 2.16, a lower bound for a
minimal alphabet is also a lower bound for any larger alphabet. We also provide certain “tight”
conditions that every optimal adversary matrix for Element Distinctness must satisfy,1 there-
fore suggesting that every optimal adversary matrix for Element Distinctness might have to
be, in some sense, close to the adversary matrix that we have constructed.

5.1 Preliminaries

As before, let D1 and D0 denote the sets of positive and negative inputs, respectively, that is,
inputs with a unique collision and inputs without a collision. If |Σ| < n, then D0 = ∅, and the
problem becomes trivial. Therefore we consider the case when |Σ| = n. We have

|D1| =
Ç
n

2

å
|Σ|!

(|Σ| − n+ 1)!
=

Ç
n

2

å
n! and |D0| =

|Σ|!
(|Σ| − n)!

= n!.

1Assuming, without loss of generality, that the adversary matrix has the symmetry given by the automorphism
principle.
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Adversary method. As Element Distinctness is a decision problem, we assume that the
rows of the adversary matrix Γ are labeled by the positive inputs D1 and columns by the negative
inputs D0. Recall the difference matrices ∆i and ∆i from (2.24). To apply the adversary bound
(Theorem 2.15), our goal is to construct Γ such that ‖Γ‖ = Ω(n2/3) and ‖∆i ◦ Γ‖ = O(1) for all
i ∈ [n]. Recall that ∆i ◦ Γ = Γ−∆i ◦ Γ.

Symmetries of the adversary matrix. The automorphism principle (see Section 2.3.2) im-
plies that, without loss of generality, we can assume that Γ is fixed under all index and all
alphabet permutations. Namely, as defined in Section 2.2.2, index permutations π ∈ S[n] and
alphabet permutations τ ∈ SΣ act on input strings z ∈ Σn in the natural way:

π ∈ S[n] : z = (z1, . . . , zn) 7→ zπ =
Ä
zπ−1(1), . . . , zπ−1(n)

ä
,

τ ∈ SΣ : z = (z1, . . . , zn) 7→ zτ =
Ä
τ(z1), . . . , τ(zn)

ä
.

The actions of π and τ commute: we have (zπ)τ = (zτ )π, which we denote by zτπ for short. The
automorphism principle (see (2.28), in particular) implies that we can assume

Γ[[x, y]] = Γ[[xτπ, y
τ
π]] (5.1)

for all x ∈ D1, y ∈ D0, π ∈ S[n], and τ ∈ SΣ.

Let us state the same symmetry via representations of S[n]×SΣ. Let X := RD1 and Y := RD0

be the vector spaces corresponding to the positive and the negative inputs, respectively. (We
can view Γ as a linear map from Y to X .) Let U τπ and V τ

π be the permutation matrices that
respectively act on the spaces X and Y and that map every x ∈ D1 to xτπ and every y ∈ D0 to
yτπ. Then (5.1) is equivalent to

U τπΓ = ΓV τ
π (5.2)

for all π ∈ S[n], and τ ∈ SΣ. Both U and V are permutation representations of S[n] × SΣ.

Representation theory of the symmetric group. Let us recall basics of the representation
theory of the symmetric group from Section 1.4. We represent each partition of m by an m-box
Young diagram, and we use these terms interchangeably. In this chapter, we use ζ, η, and θ to
denote Young diagrams having o(n) boxes, λ, µ, and ν to denote Young diagrams having n, n−1,
and n− 2 boxes, respectively, and ρ and σ to denote Young diagrams for general statements and
other purposes. Also, given a finite set A, recall that Sρ denotes the irrep of SA corresponding
to ρ ` |A|, and the dimension of this irrep, denoted dim ρ, is given by the hook-length formula
(1.8). For a set {a, b}, let S id := S(2) and Ssgn := S(1,1) be, respectively, the trivial and the sign
representation of S{a,b}.
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In this chapter, for a Young diagram ρ, let ρ(i) and ρ>(j) denote the number of boxes in the i-
th row and j-th column of ρ, respectively. Recall the shorthand (m, ρ) := (m, ρ(1), ρ(2), . . . , ρ(r)),
where m ≥ ρ(1).

Given ` ∈ {0, 1, 2, 3}, a set A = [n] or A = Σ, its subset A \ {a1, . . . , a`}, and ρ ` n − `, let
us write ρa1...a` if we want to stress that we think of Sρ as an irrep of SA\{a1,...,a`}. We omit the
subscript if ` = 0 or when {a1, . . . , a`} is clear from the context. To lighten the notations, given
k = o(n) and η ` k, let η̄a1...a` = (n − ` − k, η)a1...a` ` n − `; here we omit the subscript if and
only if ` = 0.

Also recall that σ ⊂ ρ and σ ⊂⊂ ρ denotes that a Young diagram σ is obtained from ρ by
removing exactly one box and exactly two boxes, respectively. And, given σ ⊂⊂ ρ, we write
σ ⊂⊂r ρ or σ ⊂⊂c ρ if the two boxes removed from ρ to obtain σ are, respectively, in different rows
or different columns. And σ ⊂⊂rc ρ is a shorthand for (σ ⊂⊂r ρ)&(σ ⊂⊂c ρ). Given σ ⊂⊂rc ρ, let
dρ,σ ≥ 2 denote the distance between the two boxes that we remove from ρ to obtain σ.

Transporters. We will construct the adversary matrix Γ using transporters between isomorphic
irreps. In this chapter we only consider real vector spaces, which we can do because of Claim 2.18,
therefore each transporter is unique up to a global phase ±1. We always choose the global phases
so that they respect composition and inversion, as described in Section 1.3.4.

Structure of the chapter. In Section 5.2 we show that the adversary matrix Γ can be ex-
pressed as a linear combination of specific matrices. In this section we also present Claim 5.2,
which states what conditions every optimal adversary matrix for Element Distinctness must
satisfy; we prove this claim in the Appendix B. In Section 5.3 we show how to specify the adver-
sary matrix Γ via it submatrix Γ1,2, which will make the analysis of the adversary matrix simpler.
In Section 5.4 we present tools for estimating the norm ‖∆i ◦ Γ‖. Finally, in Section 5.5 we use
the conditions given by Claim 5.2 to construct an adversary matrix for Element Distinctness
with the alphabet size n, and we show that this matrix indeed yields the desired Ω(n2/3) lower
bound.

5.2 Building blocks of Γ

5.2.1 Decomposition of U and V into irreps

Without loss of generality, we assume that the adversary matrix Γ satisfy the symmetry (5.2)
given by the automorphism principle. Both U and V are representations of S[n] × SΣ and, in
order to use Schur’s lemma (Lemma 1.2), we want to see what irreps of S[n] × SΣ occur in both
U and V . It is also convenient to consider U and V as representations of just S[n] or just SΣ.
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Claim 5.1. V decomposes into irreps of S[n] × SΣ as V ∼=
⊕

λ`n Sλ × Sλ.

Proof. As a representation of S[n] and SΣ, respectively, V is isomorphic to the regular repre-
sentation of S[n] and SΣ (see Section 1.3.6). For every y ∈ D0 and every π ∈ S[n], there is a
unique τ ∈ SΣ such that yπ = yτ , and π and τ belong to isomorphic conjugacy classes. Thus,
Theorem 1.9 implies that, for every λ ` n, the Sλ-isotypical subspace of Y is the same for both
S[n] and SΣ. Since V is isomorphic to the regular representation, the dimension of this subspace

is (dimλ)2, which is exactly the dimension of the irrep Sλ × Sλ of S[n] × SΣ.

Now let us address U , which acts on the space X corresponding to the positive inputs x ∈ D1.
Let us decompose D1 as a disjoint union of

(n
2

)
sets Di,j , where {i, j} ⊂ [n] and Di,j is the set of

all x ∈ D1 such that xi = xj (note: we used an analogous decomposition in Section 4.1 for the
Element Distinctness problem with large range). Let us further decompose Di,j as a disjoint
union of

(n
2

)
sets Ds,ti,j , where {s, t} ⊂ Σ and Ds,ti,j is the set of all x ∈ Di,j that does not contain s

and contains t twice or vice versa. Let Xi,j and X s,ti,j be the subspaces of X that correspond to

the sets Di,j and Ds,ti,j , respectively. The space X s,ti,j is stable under the action of

Ss,ti,j := (S{i,j} × S[n]\{i,j})× (S{s,t} × SΣ\{s,t}),

namely, U τπX
s,t
i,j = X s,ti,j for all (π, τ) ∈ Ss,ti,j . Therefore, U restricted to the subspace X s,ti,j is a

representation of Ss,ti,j , and, similarly to Claim 5.1, it decomposes into irreps as⊕
ν`n−2

Ä
S id × Sν

ä
×
Ä
(S id ⊕ Ssgn)× Sν

ä
. (5.3)

To see how U decomposes into irreps of S[n]× SΣ, we induce the representation (5.3) from Ss,ti,j to
S[n] × SΣ.

The Littlewood–Richardson rule (1.11) implies that an irrep of S[n]×SΣ isomorphic to Sλ×Sλ
can occur in U due to one of the following scenarios.

• If ν ⊂⊂c λ and ν 6⊂⊂r λ (i.e., ν is obtained from λ by removing two boxes in the same row),
then Sλ ×Sλ occurs once in the induction of (S id ×Sν)× (S id ×Sν). Let X λid,ν denote the

subspace of X corresponding to this instance of Sλ × Sλ.

• If ν ⊂⊂rc λ, then Sλ × Sλ occurs once in the induction of (S id × Sν)× (S id × Sν) and once
in the induction of (S id × Sν) × (Ssgn × Sν). Let X λid,ν and X λsgn,ν denote the respective

subspaces of X corresponding to these instances of Sλ × Sλ.

Note: from the definition of the induction in Section 1.3.7, one can see that the subspaces X λid,ν
and X λsgn,ν are independent from the choice of {i, j} ⊂ [n] and {s, t} ⊂ Σ.
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5.2.2 Γ as a linear combination of transporters

Let Ξλid,ν and Ξλsgn,ν denote the transporters from the unique instance of Sλ × Sλ in Y to the

subspaces X λid,ν and X λsgn,ν , respectively. We will specify the global phases of these transporters

in Section 5.3.3. We consider Ξλid,ν and Ξλsgn,ν as matrices of the same dimensions as Γ, namely,(n
2

)
n!× n!. Schur’s lemma implies that, due to (5.2), we can express Γ as a linear combination of

these transporters. Namely,

Γ =
∑
λ`n

( ∑
ν⊂⊂cλ

βλid,νΞλid,ν +
∑

ν⊂⊂rcλ
βλsgn,νΞλsgn,ν

)
, (5.4)

where the coefficients βλid,ν and βλsgn,ν are real.

Thus we have reduced the construction of the adversary matrix Γ to choosing the coefficients
β of the transporters in (5.4). To illustrate what are the available transporters, let us consider
the last four (n − 2)-box Young diagrams ν of the lexicographical order—(n − 2), (n − 3, 1),
(n − 4, 2), and (n − 4, 1, 1)—and all λ that are obtained from these ν by adding two boxes in
different columns. Table 5.1 shows pairs of λ and ν for which we have both Ξλid,ν and Ξλsgn,ν

available for the construction of Γ (double check mark “XX”) or just Ξλid,ν available (single check
mark “X”).

HHH
HHHλ
ν

(n−2) (n−3, 1) (n−4, 2) (n−4, 1, 1)

(n) X0

(n−1, 1) XX1 X0

(n−2, 2) X2 XX1 X0

(n−2, 1, 1) XX1 X0

(n−3, 3) X2 XX1

(n−3, 2, 1) XX2 XX1 XX1

(n−3, 1, 1, 1) XX1

(n−4, 4) X2

(n−4, 3, 1) XX2 X2

(n−4, 2, 2) X2

(n−4, 2, 1, 1) XX2

Table 5.1: Available operators for the construction of Γ. We distinguish three cases: both λ and ν are
the same below the first row (label “X0”), λ has one box more below the first row than ν (label “XX1”), λ
has two boxes more below the first row than ν (labels “X2” and “XX2”).

Due to the symmetry, ‖∆i ◦Γ‖ is the same for all i ∈ [n], so, from now on, let us only consider
∆1 ◦ Γ. We want to choose the coefficients β so that ‖Γ‖ = Ω(n2/3) and ‖∆1 ◦ Γ‖ = O(1).
The automorphism principle also implies that we can assume that the principal left and right
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singular vectors of Γ are the all-ones vectors, which correspond to Ξ
(n)
id,(n−2). We thus choose

β
(n)
id,(n−2) = Θ(n2/3).

In order to understand how to choose the coefficients β, later in Appendix B we prove the
following claim, which relates all the coefficients of transporters of Table 5.1 and more.

Claim 5.2. Suppose Γ is given as in (5.4) and β
(n)
id,(n−2) = n2/3. Consider λ ` n that has O(1)

boxes below the first row and ν ⊂⊂c λ. In order for ‖∆1 ◦ Γ‖ = O(1) to hold, we need to have

1. βλid,ν = n2/3 + O(1) if λ and ν are the same below the first row,

2. βλid,ν , β
λ
sgn,ν = cλνn

1/6 + O(1) if λ has one box more below the first row than ν, where cλν is a

constant depending only on the part of λ and ν below the first row,2

3. βλid,ν , β
λ
sgn,ν = O(1) if λ has two boxes more below the first row than ν.

Note that we always have the freedom of changing (a constant number of) coefficients β up
to an additive term of O(1) because of the fact that ‖∆j ◦B‖ ≤ 2 ‖B‖ for all matrices B and the
triangle inequality.

5.3 Specification of Γ via Γ1,2

Due to the symmetry (5.1), it suffices to specify a single row of the adversary matrix Γ in order
to specify the whole matrix. For the convenience, let us instead specify Γ via specifying its n!×n!
submatrix Γ1,2—for {i, j} ⊂ [n], we define Γi,j to be the submatrix of Γ that corresponds to the
rows labeled by x ∈ Di,j , that is, positive inputs x with xi = xj . We think of Γi,j both as an
n! × n! square matrix and as a matrix of the same dimensions as Γ that is obtained from Γ by
setting to zero all the

Ä(n
2

)
− 1
ä
n! rows that correspond to x /∈ Di,j .

5.3.1 Necessary and sufficient symmetries of Γ1,2

For all (π, τ) ∈ (S{1,2} × S[3..n]) × SΣ, we have U τπX1,2 = X1,2 and, therefore, U τπΓ1,2 = Γ1,2V
τ
π .

This is the necessary and sufficient symmetry that Γ1,2 must satisfy in order for Γ to be fixed
under all index and alphabet permutations. Since U(12)Γ1,2 = Γ1,2, where π = (12) denotes the
transposition of indices 1 and 2, we also have Γ1,2V(12) = Γ1,2. We have

Γ =
∑

{i,j}⊂[n]

Γi,j =
∑
π∈R

UπΓ1,2Vπ−1 =

Ç
n

2

å
1

n!

∑
π∈S[n]

UπΓ1,2Vπ−1 , (5.5)

2Let λ̂ and ν̂ be the part of λ and ν below the first row, respectively, and let h(·) be the product of hook lengths

as in (1.8). Then cλν =
»
h(λ̂)/h(ν̂) =

√
ndim ν/dimλ+ O(1/n).
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where R := Rep(S[n]/(S{1,2} × S[3..n])) is a transversal of the left cosets of S{1,2} × S[3..n] in S[n].

Let f be a bijection between D0 and D1,2 defined as

f : D0 → D1,2 : (y1, y2, y3, . . . , yn) 7→ (y1, y1, y3, . . . , yn),

and let F be the corresponding permutation matrix mapping Y to X1,2. Let us order rows and
columns of Γ1,2 so that they correspond to f(y) and y, respectively, where we take y ∈ D0 in the
same order for both (see Figure 5.1). Hence, F becomes the identity matrix on Y, and, from this
point onward, we essentially think of X1,2 and Y as the same space. Let us denote this identity
matrix simply by I.

Γ1,2

a a c d e
a a c e d

...

b b e a d

c c a d e

c c e a d

d d b e c

...
e e c b a

a
b
c
d
e

a
b
c
e
d

... ...

b
c
e
a
d

c
b
a
d
e

c
b
e
a
d

d
a
b
e
c

e
d
c
b
a

π

(12)

τ

(12) π τ

Figure 5.1: Symmetries of Γ1,2 for n = 5 and Σ = {a, b, c, d, e}. With respect to the bijection f , the order
of rows and columns matches. The solid arrows show that Uτ and V τ act symmetrically on Γ1,2 (here we
use τ = (aeb)(cd) ∈ SΣ), and so do Uπ and Vπ for π ∈ S[3..n] (here we use π = (354)). However, as shown
by the dash-dotted arrows, U(12) acts as the identity on the rows, while V(12) transposes the columns.

For all (π, τ) ∈ S[3..n] × SΣ we have f(yτπ) = (f(y))τπ and, thus, V τ
π = FV τ

π = U τπF = U τπ ,
where we consider the restriction of U τπ to X1,2. Note that U(12) = I on X1,2, while V(12) 6= I.
Hence now the two necessary and sufficient symmetries that Γ1,2 must satisfy are

V τ
π Γ1,2 = Γ1,2V

τ
π for all (π, τ) ∈ S[3..n] × SΣ and Γ1,2V(12) = Γ1,2. (5.6)

Figure 5.1 illustrates these symmetries.
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5.3.2 Labeling of projectors and transporters

We use Π, with some sub- and superscripts, to denote operators acting on Y; we use subscripts
for irreps of index permutations and superscripts for irreps of alphabet permutations. We also
think of each such an operator Π to map Y to X1,2 and vice versa (technically, FΠ and ΠF ∗,
respectively).

Let Πid := (I + V(12))/2 and Πsgn := (I − V(12))/2 denote the projectors on the isotypical

subspaces of Y corresponding to irreps S id and Ssgn of S{1,2}, respectively (see Theorem 1.9). Let
Πρi1...i`

and Πσs1...sm denote the projectors on the isotypical subspaces corresponding to an irrep
Sρ of S[n]\{i1,...,i`} and an irrep Sσ of SΣ\{s1,...,sm}, respectively. Note that Πρi1...i`

and Πσs1...sm

commute, and let
Π
σs1...sm
ρi1...i`

:= Πρi1...i`
Πσs1...sm = Πσs1...smΠρi1...i`

,

which is the projector on the isotypical subspace corresponding to the irrep Sρ × Sσ of

S[n]\{i1,...,i`} × SΣ\{s1,...,sm}

(note: this subspace may contain multiple instances of the irrep). In general, when multiple such
projectors mutually commute, we denote their product with a single Π whose sub- and superscript
is, respectively, a concatenation of the sub- and superscripts of these projectors. For example,
Πλ

id,ν12
:= Πλ

idΠν12Πλ (note: Πλ corresponds to an irrep Sλ of SΣ\∅ = SΣ).

Suppose that Πλ
sub and Πλ

sub′ are two projectors each projecting onto a single instance of
an irrep Sρi1...i` × Sλ of S[n]\{i1,...,i`} × SΣ, where sub and sub′ are subscripts determining these

instances. Then let Πλ
sub′←sub denote the transporter from the instance corresponding to Πλ

sub to
one corresponding to Πλ

sub′ . Let Πλ
sub′↔sub := Πλ

sub′←sub + Πλ
sub←sub′ for short.

5.3.3 Decomposition of Γ1,2 into projectors and transporters

Due to (5.6), we can express Γ1,2 as a linear combination of projectors onto irreps and transporters
between isomorphic irreps of S[3..n]×SΣ. Due to (5.6) we also have Γ1,2Πid = Γ1,2 and Γ1,2Πsgn = 0.

Claim 5.1 states that I =
∑
λ`n Πλ

λ, and we have Πλ
λ =

∑
ν⊂⊂λ Πλ

ν12
. If the two boxes removed

from λ to obtain ν are in the same row or the same column, then Πλ
ν12

projects onto the unique
instance of the irrep Sν × Sλ in V , and Πλ

ν12
= Πλ

id,ν12
or Πλ

ν12
= Πλ

sgn,ν12
, respectively. On the

other hand, if they are in different rows and columns, then Πλ
ν12

= Πλ
id,ν12

+ Πλ
sgn,ν12

, where each

Πλ
id,ν12

and Πλ
sgn,ν12

projects onto an instance of the irrep Sν × Sλ. Hence, similarly to (5.4), we
can express Γ1,2 as a linear combination

Γ1,2 =
∑
λ`n

( ∑
ν⊂⊂cλ

αλid,νΠλ
id,ν12

+
∑

ν⊂⊂rcλ
αλsgn,νΠλ

sgn,ν12←id,ν12

)
. (5.7)
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If ν ⊂⊂rc λ, then there exist two distinct µ, µ′ ` n−1 such that ν ⊂ µ ⊂ λ and ν ⊂ µ′ ⊂ λ, and
let µ appear in the lexicographic order after µ′. Note that Πλ

ν12,µ1
projects onto a single instance

of Sν × Sλ. We have
Πλ

sgn,ν12←id,ν12
∝ Πλ

sgn,ν12
Πλ
ν12,µ1

Πλ
id,ν12

,

and we specify the global phase of the transporter Πλ
sgn,ν12←id,ν12

by assuming that the coefficient
of this proportionality is positive. We present the value of this coefficient in Section 5.4.3.

Let us relate (5.4) and (5.7), the two ways in which we can specify the adversary matrix. One
can see that the 2(n−2)!×n! submatrix of Ξλid,ν12

and Ξλsgn,ν12
corresponding toDs,t1,2 is proportional,

respectively, to the 2(n− 2)!× n! submatrix of Πλ
id,ν12

and Πλ
sgn,ν12←id,ν12

corresponding to Ds,t1,2.
Hence, just like in (5.5), we have

Ξλid,ν =
1

γλid,ν

∑
π∈R

UπΠλ
id,ν12

Vπ−1 and Ξλsgn,ν =
1

γλsgn,ν

∑
π∈R

UπΠλ
sgn,ν12←id,ν12

Vπ−1 ,

and we specify the global phase of the transporters Ξ by assuming that the normalization scalars
γ are positive. Note that

(γλid,ν)2Πλ
λ = (γλid,νΞλid,ν)∗(γλid,νΞλid,ν) =

( ∑
π∈R

UπΠλ
id,ν12

Vπ−1

)∗∑
π∈R

UπΠλ
id,ν12

Vπ−1

=

Ç
n

2

å
1

n!

∑
π∈S[n]

VπΠλ
id,ν12

Vπ−1 =

Ç
n

2

å
dim ν

dimλ
Πλ
λ,

where the last equality holds because Vπ and Πλ commute (thus the sum has to be proportional
to Πλ

λ) and Tr(Πλ
id,ν12

)
¿

Tr(Πλ
λ) = dim ν/dimλ. The same way we calculate γλsgn,ν , and we have

γλid,ν =
βλid,ν
αλid,ν

= γλsgn,ν =
βλsgn,ν

αλsgn,ν

=

√Ç
n

2

å
dim ν

dimλ
.

5.4 Tools for estimating ‖∆1 ◦ Γ‖

5.4.1 Division of ∆1 ◦ Γ into two parts

For all j ∈ [2..n], ∆1 ◦Γ1,j is essentially the same as ∆1 ◦Γ1,2. And, for all {i, j} ⊂ [2..n], ∆1 ◦Γi,j
is essentially the same as ∆1 ◦Γ2,3, which, in turn, is essentially the same as ∆3 ◦Γ1,2. Just like in
Section 4.1 for Element Distinctness with large range (see Figure 4.2), let us distinguish these
two cases by dividing Γ into two parts: let Γ′ be the (n− 1)n!×n! submatrix of Γ corresponding
to x ∈ D1,j , where j ∈ [2..n], and let Γ′′ be the

(n−1
2

)
n! × n! submatrix of Γ corresponding to

x ∈ Di,j , where {i, j} ∈ [2..n].
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Claim 5.3. We have ‖∆1 ◦Γ‖ = O(1) if and only if both ‖∆1 ◦Γ′‖ = O(1) and ‖∆1 ◦Γ′′‖ = O(1).

Let R′ := Rep(S[2..n]/S[3..n]) and R′′ := Rep(S[n]\{3}/(S{1,2} × S[4..n])) be transversals of the
left cosets of S[3..n] in S[2..n] and of S{1,2} × S[4..n] in S[n]\{3}, respectively. Similarly to (5.5), we
have

∆1◦Γ′ =
∑
π∈R′

Uπ(∆1◦Γ1,2)Vπ−1 and ∆1◦Γ′′ = U(13)

( ∑
π∈R′′

Uπ(∆3◦Γ1,2)Vπ−1

)
V(13), (5.8)

which imply∥∥∥∆1 ◦ Γ′
∥∥∥2

=
∥∥∥(∆1 ◦ Γ′)∗(∆1 ◦ Γ′)

∥∥∥ =

∥∥∥∥ ∑
π∈R′

Vπ(∆1 ◦ Γ1,2)∗(∆1 ◦ Γ1,2)Vπ−1

∥∥∥∥, (5.9)

∥∥∥∆1 ◦ Γ′′
∥∥∥2

=
∥∥∥(∆1 ◦ Γ′′)∗(∆1 ◦ Γ′′)

∥∥∥ =

∥∥∥∥ ∑
π∈R′′

Vπ(∆3 ◦ Γ1,2)∗(∆3 ◦ Γ1,2)Vπ−1

∥∥∥∥. (5.10)

Therefore, we have to consider ∆1 ◦ Γ1,2 and ∆3 ◦ Γ1,2.

5.4.2 Commutativity with the action of ∆i

Instead of ∆i, let us first consider the action of ∆i. For i ∈ [n] and s ∈ Σ, let Π̂s
i be the projector

on all y ∈ D0 such that yi = s. Then, due to the particular way we define the bijection f , we
have

∆i ◦ Γ1,2 =
∑

s∈Σ
Π̂s
iΓ1,2Π̂s

i whenever i 6= 2 and ∆2 ◦ Γ1,2 =
∑

s∈Σ
Π̂s

1Γ1,2Π̂s
2. (5.11)

Note that Π̂s
i commutes with every Πρj1...jm

whenever i ∈ {j1, . . . , jm}. Hence, for

i ∈ {j1, . . . , jm} \ {2}

and every n!× n! matrix A, we have

∆i ◦ (Πρj1...jm
A) = Πρj1...jm

(∆i ◦A) and ∆i ◦ (AΠρj1...jm
) = (∆i ◦A)Πρj1...jm

. (5.12)

5.4.3 Relations among irreps of S[3..n] × SΣ within an isotypical subspace

We are interested to see how ∆1 acts on Γ1,2, which requires us to consider how it acts on Πλ
id,ν12

and Πλ
sgn,ν12←id,ν12

. Unfortunately, this action is hard to calculate directly, therefore we express

Πλ
id,ν12

and Πλ
sgn,ν12←id,ν12

as linear combinations of certain operators on which the action of ∆1

is easier to calculate.
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Consider λ ` n and ν ⊂⊂rc λ. The projector Πλ
ν12

projects onto the isotypical subspace of Y
corresponding to the irrep Sν × Sλ of S[3..n] × SΣ, and this subspace contains two instances of
this irrep. There are as many degrees of freedom in splitting this subspace in half so that each
half corresponds to a single instance of the irrep as in splitting R2 in orthogonal one-dimensional
subspaces. We already considered one such split, Πλ

ν12
= Πλ

id,ν12
+ Πλ

sgn,ν12
, and now let us relate

it to another.

Let µ, µ′ ` n − 1 be such that ν ⊂ µ ⊂ λ, ν ⊂ µ′ ⊂ λ, and µ appears after µ′ in the
lexicographical order. Then Πλ

ν12,µ1
and Πλ

ν12,µ′1
project onto two orthogonal instances of the irrep

Sν×Sλ, and Πλ
ν12

= Πλ
ν12,µ1

+Πλ
ν12,µ′1

. Note that V(12) commutes with Πλ
ν12

and that Πλ = Πλ. The

orthogonal form (see Section 1.4.4) of the irrep Sλ tells us that V(12) restricted to the isotypical

subspace corresponding to Sν × Sλ is

V(12)

∣∣∣
ν12×λ

=
1

dλ,ν

(
Πλ
ν12,µ′1

−Πλ
ν12,µ1

+
√
d2
λ,ν − 1 Πλ

ν12,µ′1↔ν12,µ1

)
. (5.13)

In effect, (5.13) defines the global phase of the transporters Πλ
ν12,µ′1←ν12,µ1

and Πλ
ν12,µ′1←ν12,µ1

.

Recall that Πid = (I + V(12))/2, and therefore

Πλ
id,ν12

=
Πλ
ν12

+ V(12)

∣∣∣
ν12×λ

2
=
dλ,ν − 1

2dλ,ν
Πλ
ν12,µ1

+
dλ,ν + 1

2dλ,ν
Πλ
ν12,µ′1

+

»
d2
λ,ν − 1

2dλ,ν
Πλ
ν12,µ′1↔ν12,µ1

(5.14)

and

Πλ
sgn,ν12←id,ν12

=
2dλ,ν»
d2
λ,ν − 1

Πλ
sgn,ν12

Πλ
ν12,µ1

Πλ
id,ν12

=

»
d2
λ,ν − 1

2dλ,ν
Πλ
ν12,µ1

−

»
d2
λ,ν − 1

2dλ,ν
Πλ
ν12,µ′1

+
dλ,ν + 1

2dλ,ν
Πλ
ν12,µ1←ν12,µ′1

− dλ,ν − 1

2dλ,ν
Πλ
ν12,µ′1←ν12,µ1

.

(5.15)

5.4.4 Relations among irreps of S[4..n] × SΣ within an isotypical subspace

We are also interested to see how ∆3 acts on Γ1,2, which will require us to consider irreps of
S[4..n] × SΣ. Let us now consider k = o(n), η ` k, and θ ⊂ η. Recall that, according to our
notation, η̄ = (n− k, η) ` n and θ̄123 = (n− k − 2, θ)123 ` n− 3 is obtained from η̄ by removing
two boxes in the first row and one box below the first row.

V contains three instances of the irrep S θ̄123 × S η̄ of S[4..n] × SΣ: we have

Πη̄
θ̄123

= Πη̄
θ̄123,η̄12,(η̄1)

+ Πη̄
θ̄123,θ̄12,η̄1

+ Πη̄
θ̄123,(θ̄12),θ̄1

= Πη̄
id,θ̄123,η̄3

+ Πη̄
sgn,θ̄123,η̄3

+ Πη̄
(id),θ̄123,θ̄3

,
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where each projector (other than Πη̄
θ̄123

) projects on a single instance of the irrep and the subscripts
in parenthesis are optional. These two decompositions follow essentially the chain of restrictions
S[n] → S[2..n] → S[3..n] → S[4..n] and S[n] → S[n]\{3} → S{1,2} × S[4..n] → S[4..n], respectively.

From the orthogonal form of the irrep η̄, we get that the restriction of V(12) and V(23) to the

isotypical subspace corresponding to S θ̄123 × S η̄ is, respectively,

V(12)

∣∣∣
θ̄123×η̄

= Πη̄
θ̄123,η̄12

+
1

dη̄,θ̄12

(
Πη̄
θ̄123,θ̄12,η̄1

−Πη̄
θ̄123,θ̄1

+
√
d2
η̄,θ̄12
− 1 Πη̄

θ̄123,θ̄12,η̄1↔θ̄123,θ̄1

)
,

V(23)

∣∣∣
θ̄123×η̄

=
1

dη̄,θ̄12
− 1

(
Πη̄
θ̄123,η̄12

−Πη̄
θ̄123,θ̄12,η̄1

+
»

(dη̄,θ̄12
− 1)2 − 1 Πη̄

θ̄123,η̄12↔θ̄123,θ̄12,η̄1

)
+ Πη̄

θ̄123,θ̄1
,

where the global phases of the transporters in the expression for V(12)

∣∣∣
θ̄123×η̄

are consistent with

(5.13). Therefore we can calculate the overlap of Πη̄
θ̄123,η̄12

and

Πη̄
id,θ̄123,η̄3

= V(13)

Ä
I + V(23)

ä
Πη̄
θ̄123,η̄1

V(13)

¿
2

= V(23)V(12)

Ä
I + V(23)

äÄ
Πη̄
θ̄123,η̄12

+ Πη̄
θ̄123,θ̄12,η̄1

ä
V(12)V(23)

¿
2

to be
Tr
Ä
Πη̄
θ̄123,η̄12

Πη̄
id,θ̄123,η̄3

ä
dim θ̄123 dim η̄

=
2

dη̄,θ̄12
(dη̄,θ̄12

− 1)
. (5.16)

Since Πη̄
θ̄123,η̄12

= ΠidΠη̄
θ̄123,η̄12

, we have

Πη̄
θ̄123,η̄12

= Πη̄
θ̄123,θ̄3

+
2

d2
η̄,θ̄12
− dη̄,θ̄12

(
Πη̄

id,θ̄123,η̄3
−Πη̄

θ̄123,θ̄3

)

+

√
2
Ä
d2
η̄,θ̄12
− dη̄,θ̄12

− 2
ä

d2
η̄,θ̄12
− dη̄,θ̄12

Πη̄
θ̄123,θ̄3↔id,θ̄123,η̄3

.

(5.17)

5.4.5 Summing the permutations of (∆1 ◦ Γ1,2)∗(∆1 ◦ Γ1,2)

We will express (∆1◦Γ1,2)∗(∆1◦Γ1,2) as a linear combination of projectors Πλ
ν12,µ1

and transporters

Πλ
ν12,µ′1←ν12,µ1

, where λ ` n, ν ⊂⊂c λ, and µ, µ′ ` n − 1 are such that ν ⊂ µ ⊂ λ and ν ⊂ µ′⊂ λ

(we consider transporters only if ν ⊂⊂rc λ, and thus µ 6= µ′). In order to calculate ‖∆1 ◦ Γ′‖ via
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(5.9), we use

1

n− 1

∑
π∈R′

VπΠλ
ν12,µ1

Vπ−1 =
1

(n− 1)!

∑
π∈S[2..n]

VπΠλ
ν12,µ1

Vπ−1 =
Tr
Ä
VπΠλ

ν12,µ1
Vπ−1

ä
Tr
Ä
Πλ
µ1

ä Πλ
µ1

=
dim ν

dimµ
Πλ
µ1
,

1

n− 1

∑
π∈R′

VπΠλ
ν12,µ′1←ν12,µ1

Vπ−1 =
1

(n− 1)!

∑
π∈S[2..n]

VπΠλ
ν12,µ′1←ν12,µ1

Vπ−1 = 0.

(5.18)

The equalities in (5.18) hold because, first of all, Πλ
ν12,µ1

and Πλ
ν12,µ′1←ν12,µ1

are fixed under

S[3..n] × SΣ. Second, V as a representation of S[2..n] × SΣ is multiplicity-free, and thus every
operator on Y that is fixed under S[2..n]×SΣ can be expressed as a linear combination of projectors

Πλ′

µ′′1
, where λ′ ` n and µ′′ ⊂ λ′. And third, for π ∈ S[2..n], Vπ commutes with both Πλ

µ1
and Πλ

µ′1
.

5.5 Construction of the optimal adversary matrix

In Section 5.3.3 we showed that

βλid,ν/α
λ
id,ν = βλsgn,ν/α

λ
sgn,ν =

√Ç
n

2

å
dim ν

dimλ
.

We calculate dim ν and dimλ using the hook-length formula (1.8), and recall that, given a fixed
ζ ` k, dim ζ̄ can be expressed as a polynomial in n of degree k and having the leading coefficient
1/h(ζ) (see Table 1.1 for examples). Therefore we get that Claim 5.2 is equivalent to the following
claim, which we prove in Appendix B.

Claim 5.4. Suppose Γ1,2 is given as in (5.7), α
(n)
id,(n−2) = n−1/3, and Γ is obtained from Γ1,2

via (5.5). Consider λ ` n that has O(1) boxes below the first row and ν ⊂⊂c λ. In order for
‖∆1 ◦ Γ‖ = O(1) to hold, we need to have

1. αλid,ν = n−1/3 + O(1/n) if λ and ν are the same below the first row,

2. αλid,ν , α
λ
sgn,ν = n−1/3 + O(1/

√
n) if λ has one box more below the first row than ν,

3. αλid,ν , α
λ
sgn,ν = O(1) if λ has two boxes more below the first row than ν.

(Note that α
(n)
id,(n−2) = n−1/3 implies ‖Γ‖ ≥ β(n)

id,(n−2) = Θ(n2/3).)
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Consider k = o(n) and η ` k. Claims 5.2 and 5.4 hint that for the optimal adversary matrix

we could choose coefficients αη̄id,η̄12
≈ αζ̄id,η̄12

≈ αζ̄sgn,η̄12
whenever ζ ⊃ η and αζ̄id,η̄12

= αζ̄sgn,η̄12
= 0

whenever ζ ⊃⊃ η. Let us do that. For ζ ⊃ η, note that η̄12 ⊂ η̄1 ⊂ ζ̄, η̄12 ⊂ ζ̄1 ⊂ ζ̄, and η̄1 appears
after ζ̄1 in the lexicographic order, and also note that dζ̄,η̄12

≥ n− 2k− 1 (equality is achieved by
η = (k) and ζ = (k + 1)). Therefore, according to (5.14) and (5.15), we have

Πη̄
id,η̄12

+
∑
ζ⊃η

Ä
Πζ̄

id,η̄12
+ Πζ̄

sgn,η̄12←id,η̄12

ä
= Πη̄

η̄12
+
∑
ζ⊃η

Ä
Πζ̄
η̄12,η̄1

+ Πζ̄
η̄12,η̄1←η̄12,ζ̄1

ä
+ O(1/n)

= Πη̄
η̄12

+
∑
ζ⊃η

2Πζ̄
η̄12,η̄1

Πid + O(1/n) = 2Πη̄12,η̄1Πid −Πη̄
η̄12

+ O(1/n),

where the last equality is due to Πη̄
η̄12

= Πη̄
η̄12,η̄1

= Πη̄
id,η̄12

and S η̄1 ↑ S[n]
∼= S η̄ ⊕

⊕
ζ⊃η S ζ̄ , that is,

the branching rule (1.9). Thus we choose to construct Γ1,2 as a linear combination of matrices

2Πη̄12,η̄1Πid −Πη̄
η̄12

= Πη̄
η̄12

+
∑
ζ⊃η

Ç
dζ̄,η̄12

− 1

dζ̄,η̄12

Πζ̄
id,η̄12

+

√
d2
ζ̄,η̄12
− 1

dζ̄,η̄12

Πζ̄
sgn,η̄12←id,η̄12

å
.

(At first glance, it may seem that the matrix on the left hand side does not “treat” indices 1 and
2 equally, but that is an illusion due to the way we define the bijection f .)

Theorem 5.5. Let Γ be constructed via (5.5) from

Γ1,2 :=
n2/3∑
k=0

n2/3 − k
n

∑
η`k

(2Πη̄12,η̄1Πid −Πη̄
η̄12

).

Then ‖Γ‖ = Ω(n2/3) and ‖∆1 ◦Γ‖ = O(1), and therefore Γ is, up to constant factors, an optimal
adversary matrix for Element Distinctness.

For Γ1,2 of Theorem 5.5 expressed in the form (5.7), we have α
(n)
id,(n−2) = n−1/3, and therefore

‖Γ‖ = Ω(n2/3). In the remainder of this section, let us prove ‖∆1 ◦ Γ′‖ = O(1) and ‖∆1 ◦ Γ′′‖ =
O(1), which is sufficient due to Claim 5.3.

5.5.1 Approximate action of ∆i

The precise calculation of ∆1 ◦ Γ is tedious; we consider it in Appendix B. For that reason, as
described in Section 2.3.2, we can use any valid approximation ∆1 �Γ instead. It suffices to show
that ‖∆1 �Γ′‖ = O(1) and ‖∆1 �Γ′′‖ = O(1) for any valid ∆1 �Γ′ and ∆1 �Γ′′. That is, it suffices
to show that we can change entries of Γ′ and Γ′′ corresponding to (x, y) with x1 = y1 in a way
that the spectral norms of the resulting matrices are constantly bounded.
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We will express Γ1,2 as a linear combination of certain n! × n! matrices and, for every such
matrix A, we will choose ∆i � A = A, except for the following three, for which we calculate the
action of ∆1 or ∆3 precisely. We have

∆1 ◦Πid = V(12)/2, ∆3 ◦Πθ̄123,θ̄3
= 0, and ∆3 ◦Πθ̄123,θ̄13

= 0

due to ∆1 ◦ I = ∆3 ◦ I = 0 and the commutativity relation (5.12).

Due to (5.12), we also have ∆3 ◦ (AΠid) = (∆3 ◦ A)Πid for every n! × n! matrix A. One can
see that, given any choice of ∆3 �A, we can choose ∆3 � (AΠid) = (∆3 �A)Πid.

5.5.2 Bounding ‖∆1 ◦ Γ′‖

For k ≤ n2/3 and η ` k, define n!× n! matrices (Γη)1,2 and (Γk)1,2 such that

Γ1,2 =
n2/3∑
k=0

n2/3 − k
n

(Γk)1,2, (Γk)1,2 =
∑
η`k

(Γη)1,2, and (Γη)1,2 = 2Πη̄12,η̄1Πid −Πη̄
η̄12
.

The projector Πη̄12,η̄1 commutes with the action of ∆1, therefore we can choose

∆1 � (Γη)1,2 = 2Πη̄12,η̄1(∆1 ◦Πid)−Πη̄
η̄12

= Πη̄12,η̄1V(12) −Πη̄
η̄12

=
∑
ζ⊃η

Πζ̄
η̄12,η̄1

V(12) =
∑
ζ⊃η

Ç
− 1

dζ̄,η̄12

Πζ̄
η̄12,η̄1

+

√
d2
ζ̄,η̄12
− 1

dζ̄,η̄12

Πζ̄
η̄12,η̄1←η̄12,ζ̄1

å
,

where the third equality is due to the branching rule and both Πη̄
η̄12

= Πη̄
η̄12

Πid and ΠidV(12) = Πid,
and the last equality comes from (5.13). To estimate the norm of ∆1 � Γ′ via (5.9), we have∑

π∈R′
Vπ(∆1 � (Γη)1,2)∗(∆1 � (Γη)1,2)Vπ−1

�
∑
ζ⊃η

∑
π∈R′

Vπ
( 1

d2
ζ̄,η̄12

Πζ̄
η̄12,η̄1

+ Πζ̄
η̄12,ζ̄1

−

√
d2
ζ̄,η̄12
− 1

d2
ζ̄,η̄12

Πζ̄
η̄12,η̄1↔η̄12,ζ̄1

)
Vπ−1

= (n− 1)
∑
ζ⊃η

( 1

d2
ζ̄,η̄12

dim η̄12

dim η̄1
Πζ̄
η̄1

+
dim η̄12

dim ζ̄1
Πζ̄
ζ̄1

)
� 1

n− o(n)

∑
ζ⊃η

Πζ̄
η̄1

+ (n− 1)
∑
ζ⊃η

dim η̄12

dim ζ̄1
Πζ̄
ζ̄1
, (5.19)

where the equality in the middle comes from (5.18) and the last inequality is due to dim η̄12 ≤
dim η̄1 and dζ̄,η̄12

≥ n− 2k − 1.

123



Claim 5.6. Let ζ ` k. Then 1− dim ζ̄1/ dim ζ̄ ≤ 2k/n.

Proof. Recall the hook-length formula (1.8). As ζ has ζ(1) ≤ k columns, define ζ>(j) = 0 for all
j ∈ [ζ(1) + 1..k]. We have

dim ζ̄ =
n!

h((n− k, ζ))
=

n!/(n− 2k)!

h(ζ)
∏k
j=1(n− k + 1− j + ζ>(j))

, (5.20)

and therefore

1− dim ζ̄1

dim ζ̄
= 1− (n− 1)!/(n− 2k − 1)!

n!/(n− 2k)!

k∏
j=1

n− k + 1− j + ζ>(j)

n− k − j + ζ>(j)
< 1− n− 2k

n
=

2k

n
.

For η′ 6= η, we have (∆1 � (Γη′)1,2)∗(∆1 � (Γη)1,2) = 0, therefore, by summing (5.19) over all
η ` k, we get ∑

π∈R′
Vπ(∆1 � (Γk)1,2)∗(∆1 � (Γk)1,2)Vπ−1

� 1

n− o(n)

∑
η`k

∑
ζ⊃η

Πζ̄
η̄1

+ (n− 1)
∑
ζ`k+1

∑
η⊂ζ

dim η̄12

dim ζ̄1
Πζ̄
ζ̄1

� 1

n− o(n)

∑
η`k

∑
ζ⊃η

Πζ̄
η̄1

+ 2(k + 1)
∑
ζ`k+1

Πζ̄
ζ̄1
, (5.21)

where the first inequality holds because
∑
η`k

∑
ζ⊃η and

∑
ζ`k+1

∑
η⊂ζ are sums over the same

pairs of η and ζ, and the second inequality holds because dim ζ̄1 = dim ζ̄12 +
∑
η⊂ζ dim η̄12 (due

to the branching rule) and Claim 5.6.

Finally, by summing (5.21) over k, we get

(∆1 � Γ′)∗(∆1 � Γ′) =
∑
π∈R′

Vπ(∆1 � Γ1,2)∗(∆1 � Γ1,2)Vπ−1

�
n2/3∑
k=0

(n2/3 − k)2

n2

Ç
1

n− o(n)

∑
η`k

∑
ζ⊃η

Πζ̄
η̄1

+ 2(k + 1)
∑
ζ`k+1

Πζ̄
ζ̄1

å
� I/3. (5.22)

Hence, ‖∆1 ◦Γ′‖ = O(1). (Note: the norm of (5.21) is Θ(k) and, in (5.22), we essentially multiply
it with T 2/n2, where T is the intended lower bound. This provides an intuition for why one
cannot prove a lower bound higher than Ω(n2/3).)
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5.5.3 Bounding ‖∆1 ◦ Γ′′‖

Let us decompose the adversary matrix as Γ = 2ΓA − ΓB, where we define ΓA and ΓB via their
restriction to the rows labeled by x ∈ D1,2:

(ΓA)1,2 :=
n2/3∑
k=0

n2/3 − k
n

∑
η`k

Πη̄12,η̄1Πid and (ΓB)1,2 :=
n2/3∑
k=0

n2/3 − k
n

∑
η`k

Πη̄
η̄12
,

respectively. We do not claim any connection between the matrices Γ′′A and Γ′′B here and the
matrices with the same name in Section 4.1 for Element Distinctness with large range. Never-
theless, we use them exactly the same way: we show that ‖∆1◦Γ′′A‖ = O(1) and ‖∆1◦Γ′′B‖ = O(1),
which together imply ‖∆1 ◦ Γ′′‖ = O(1). The argument is very similar for both ΓA and ΓB, and
let us start by showing ‖∆1 ◦ Γ′′A‖ = O(1).

We are interested to see how ∆3 acts on (ΓA)1,2. Let θ ⊂ η, and we will have to consider
Πθ̄123,η̄12,η̄1

. For every λ ⊃ η̄1, note that V(23) and Πλ
θ̄123,η̄1

commute. So, similarly to (5.13), we
have

V(23)Πθ̄123,η̄1
=

1

dη̄1,θ̄123

∑
λ⊃η̄1

(
Πλ
θ̄123,η̄12,η̄1

−Πλ
θ̄123,θ̄12,η̄1

+
√
d2
η̄1,θ̄123

− 1 Πλ
θ̄123,η̄12,η̄1↔θ̄123,θ̄12,η̄1

)
.

Hence
Tr
Ä
Πλ
θ̄123,η̄12,η̄1

Πλ
θ̄123,η̄13,η̄1

ä
dim θ̄123 dimλ

=
Tr
Ä
Πλ
θ̄123,η̄12,η̄1

V(23)Π
λ
θ̄123,η̄12,η̄1

V(23)

ä
dim θ̄123 dimλ

=
1

d2
η̄1,θ̄123

,

and therefore, similarly to (5.17), we have

Πθ̄123,η̄12,η̄1
= Πθ̄123,θ̄13,η̄1

+
1

d2
η̄1,θ̄123

Ä
Πθ̄123,η̄13,η̄1

−Πθ̄123,θ̄13,η̄1

ä
+

√
d2
η̄1,θ̄123

− 1

d2
η̄1,θ̄123

Πθ̄123,θ̄13,η̄1↔θ̄123,η̄13,η̄1
,

(5.23)
where

Πθ̄123,θ̄13,η̄1↔θ̄123,η̄13,η̄1
:=
∑

λ⊃η̄1
Πλ
θ̄123,θ̄13,η̄1↔θ̄123,η̄13,η̄1

for short.

Without loss of generality, let us assume n2/3 to be an integer. Then, by using the branching
rule and simple derivations, one can see that

n2/3−1∑
k=0

n2/3 − k
n

∑
η`k

(
Πη̄123,η̄1 +

∑
θ⊂η

Πθ̄123,θ̄13,η̄1

)
=

n2/3−1∑
k=0

Ç
1

n

∑
η`k

Πη̄123,η̄1 +
n2/3 − k

n

∑
θ`k−1

Πθ̄123,θ̄13

å
.

(5.24)
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Therefore we have

(ΓA)1,2 =
n2/3−1∑
k=0

n2/3 − k
n

∑
η`k

(
Πη̄123,η̄1 +

∑
θ⊂η

Πθ̄123,η̄12,η̄1

)
Πid

=
n2/3−1∑
k=0

(
1

n

∑
η`k

Πη̄123,η̄1 +
n2/3 − k

n

∑
η`k

∑
θ⊂η

( 1

d2
η̄1,θ̄123

(Πθ̄123,η̄13,η̄1
−Πθ̄123,θ̄13,η̄1

)

+

√
d2
η̄1,θ̄123

− 1

d2
η̄1,θ̄123

Πθ̄123,θ̄13,η̄1↔θ̄123,η̄13,η̄1

)
+
n2/3 − k

n

∑
θ`k−1

Πθ̄123,θ̄13

)
Πid,

where the first equality comes from the branching rule and the fact that we can ignore k = n2/3,
and the second equality comes from subsequent applications of (5.23) and (5.24).

Recall that the action of ∆3 commutes with Πid and ∆3 ◦ Πθ̄123,θ̄13
= 0. Therefore we can

choose

∆3 � (ΓA)1,2 =
n2/3−1∑
k=0

(
1

n

∑
η`k

Πη̄123,η̄1 +
n2/3 − k

n

∑
η`k

∑
θ⊂η

( 1

d2
η̄1,θ̄123

(Πθ̄123,η̄13,η̄1
−Πθ̄123,θ̄13,η̄1

)

+

√
d2
η̄1,θ̄123

− 1

d2
η̄1,θ̄123

Πθ̄123,θ̄13,η̄1↔θ̄123,η̄13,η̄1

))
Πid,

and we have

(∆3 � (ΓA)1,2)∗(∆3 � (ΓA)1,2)

=
n2/3−1∑
k=0

Πid

(
1

n2

∑
η`k

Πη̄123,η̄1 +
(n2/3 − k)2

n2

∑
η`k

∑
θ⊂η

1

d2
η̄1,θ̄123

Ä
Πθ̄123,η̄13,η̄1

+ Πθ̄123,θ̄13,η̄1

ä)
Πid,

� 1

n2

n2/3−1∑
k=0

Πid

(∑
η`k

Πη̄123,η̄1 + o(1) ·
∑
η`k

∑
θ⊂η

Ä
Πθ̄123,η̄13,η̄1

+ Πθ̄123,θ̄13,η̄1

ä)
Πid �

1

n2
I.

Finally, (5.10) tells us that

‖∆1 � Γ′′A‖2 =

∥∥∥∥ ∑
π∈R′′

Vπ(∆3 � (ΓA)1,2)∗(∆3 � (ΓA)1,2)Vπ−1

∥∥∥∥ ≤ ∥∥∥∥ ∑
π∈R′′

1

n2
I
∥∥∥∥ ≤ 1/2,

and, hence, ‖∆1 ◦ Γ′′A‖ = O(1).

We show that ‖∆1 ◦ Γ′′B‖ = O(1) in essentially the same way, except now, instead of the de-
composition (5.23) of Πθ̄123,η̄12,η̄1

we consider the decomposition (5.17) of Πη̄
θ̄123,η̄12

. This concludes

the proof that ‖∆1 ◦ Γ′′‖ = O(1), which, in turn, concludes the proof of Theorem 5.5.
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Chapter 6

Lower bound for the Enhanced
Find-Two problem

In this chapter we introduce the Enhanced Find-Two problem and we study its query com-
plexity.

Definition 6.1. The input alphabet of the Enhanced Find-Two probelm is Σ := {0, 1}, and
we say that an index i ∈ [n] is marked if and only if xi = 1. We are promissed that exactly
k indices of the input are marked. The Enhanced Find-Two problem is to find two distinct
marked indices using the following resources:

1. one copy of the uniform superposition over all marked indices,

χ(x) :=
1√
k

∑
i : xi=1

i,

2. an oracle that reflects across this superposition,

O(D)(x) := I− 2χ(x)(χ(x))∗,

3. and an oracle that tests if an index is marked,

O(S)(x) := I− 2
∑

i : xi=1

ii∗.

Hence, the domain of the Enhanced Find-Two problem is the set of all
(n
k

)
n-bit strings of

Hamming weight k,
D = {x ∈ {0, 1}n : |x| = k},

and the codomain R is the set of all
(n

2

)
size-two subsets of [n]. In this chapter we prove that
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Theorem 6.2. The bounded-error quantum query complexity of the Enhanced Find-Two prob-
lem is Θ(min{

»
n/k,

√
k}).

Notice that, for i ∈ [n], O(S)(x) maps i to (−1)xii. A very similar oracle, the one that maps

i⊗ b to (−1)b xii⊗ b, where b ∈ {0, 1}, is obtained from the standard oracle by “sandwiching” it
between two copies of the x-independent unitary IQ′ ⊗HQ′′ where H is the Hadamard operator.
O(S) is known as the membership oracle. The operator O(D)(x), reduced to the space span{i : xi =
1}, is essentially what is known as the Grover diffusion operator. Also note that both O(S)(x)
and O(D)(x) are self inverses.

Note that Enhanced Find-Two corresponds to the computational problem of Find-Two,
but it does not fit the definition of a computational problem itself (see Definition 2.1). Because
of this, we have to relax the definition of the quantum query algorithm (see Definition 2.10).
Nonetheless, we will do it so that all the arguments from Section 2.2 on the symmetrization of
algorithms carry over.

Relaxed definition of the query algorithm. For the Enhanced Find-Two, we relax the
definition of the quantum query algorithm as follows. First of all, in Section 2.2.1 we defined
the query register XQ as a tensor product of the query index register XQ′ = C[n] and the query
symbol register XQ′′ = CΣ. In contrast, in this chapter we completely ignore the XQ′′ register,
and we define the query register as XQ := C[n]. We assume that χ(x) belongs to XQ and both
O(D)(x) and O(S)(x) act on XQ.

Second, we assume that the initial state of the algorithm is

φ0(x) := χ(x)⊗ χ′,

where χ′ ∈ XWR is independent from x and has unit norm. The state χ′ is part of the specificaton
of the algorithm.

Given multiple oracles, a natural question arises: Should there be a “control” register in an
algorithm that determines which oracle to query and, as considered in Remark 2.11, whether to
query at all? We choose not to have such a register, and we assume that it is predetermined—
independently from the input and the computation so far—at what point in the algorithm which
oracle will be queried. We explain why we can do that (namely, why our lower bounds would
still hold if we assumed this control register) in Remark 6.9.

Upper bound. Let us first prove the upper bound in Theorem 6.2. We start by measuring
χ(x) in the standard basis of XQ, thus obtaining one marked index i. Then we proceed in one of
the following two ways, completely ignoring the oracle O(D) or O(S), respectively, and aiming to
prepare χ(x).
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1. We search for a marked index. We initially prepare XQ in the state 1√
n

∑
i∈[n] i, and then

we run Grover’s search algorithm (see [Gro96, BBHT98]) using In − 2Jn/n as the diffusion
operator and O(S)(x) as the membership oracle. The algorithm obtains the state χ(x) using

O(
»
n/k) queries.

2. We “search” for the state χ(x) within the k-dimensional subspace corresponding to the
marked indices. Since we know i, we can implement O(i) := I − 2ii∗ without any queries.
We run Grover’s search algorithm in reverse, starting XQ in the state i, using O(D)(x)

as the diffusion operator and O(i) as the membership oracle. After O(
√
k) iterations, the

algorithm restores XQ in the state χ(x).

We measure χ(x) again and with probability 1− 1/k we obtain a marked index j 6= i.

Now let us prove the lower bound in Theorem 6.2. We first present the framework of the
proof in Section 6.1. And, in Section 6.2, we conclude with a proof of a technical lemma required
for this lower bound.

6.1 Framework of the lower bound

Suppose A is an arbitrary algorithm for Enhanced Find-Two, and from it we construct the
algorithm Ā+ by introducing both the symmetrization register XS and the input register XI

as described is Section 2.2.2 and Section 2.2.3, respectively. For the input register, we choose
δx =

(n
k

)−1/2 for all x ∈ D. Regarding the symmetrization register, we consider S[n] as an oracle
automorphism of the problem. Let S[n] act on the sets D, [n], R as, respectively,

π : (x1, . . . , xn) 7→
Ä
xπ−1(1), . . . , xπ−1(n)

ä
, (6.1)

π : i 7→ π(i), (6.2)

π : {i, j} 7→ {π(i), π(j)}. (6.3)

The first two actions were already defined in Section 2.2.2, and we take the third as the group
action ω required in Definition 2.12 defining an oracle automorphism. Note that both conditions
(2.9) and (2.10) of Definition 2.12 are satisfied by O(S)(x) and O(D)(x) and the group actions
above. Additionaly, note that

(UQ,γ ⊗ IWR)φ0(x) = φ0(γ(x))

for all x ∈ D and π ∈ S[n], where, as in Section 2.2, UI, UQ, and UR are the representations of
S[n] corresponding to the group actions (6.1), (6.2), and (6.3), respectively. Because of this, all
symmetrization arguments from Section 2.2 apply here.
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Also as before, we denote the (inner) tensor products of representations UI, UQ, and UR by
concatenating the corresponding subscripts. Note that there is a natural bijection

x 7→ {i : xi = 1} (6.4)

between the set of inputs and the set of labels of the rows and columns of the Johnson scheme
(see Section 1.5.2). Due to this bijection, (1.18) states that XI decomposes into irreps as

XI =
⊕k

i=0
X (n−i,i)
I , where X (n−i,i)

I
∼= S(n−i,i). (6.5)

Let Π
(n−i,i)
I denote the projector on the irrep X (n−i,i)

I . In the standard basis of XI = CD, Π
(n−i,i)
I

here is the same as Πi in Section 1.5.2. Let

XI,a := X (n)
I ⊕X (n−1,1)

I and XI,b := XI 	XI,a =
⊕k

i=2
X (n−i,i)
I ,

and let ΠI,a and ΠI,b be the projectors on these spaces, respectively.

As in Section 2.2.4, for t ∈ [0..T − 1], let ψ̄+
t be the state of the algorithm Ā+ just before the

query t+ 1, let ψ̄+
T be the final state of Ā+, and let

ρ′t = TrSWR

Ä
ψ̄+
t (ψ̄+

t )∗
ä
, ρ′T = TrSQW

Ä
ψ̄+
T (ψ̄+

T )∗
ä
, TrQ(ρ′t) = ρt and TrR(ρ′T ) = ρT .

Also recall the symmetries (2.19), (2.21), (2.20), (2.22) of these states, where now we have G =
S[n].

For t ∈ [0..T ], let

ra,t := Tr(ρtΠI,a) and rb,t := 1− ra,t = Tr(ρtΠI,b).

The probability rb,t, in some sense, measures the entanglement between XI and XSA. As we de-
scribed in Section 2.3.1, the adversary bound is based the observations that a successful algorithm
has to establish a certain amount of entanglement between XI and the other registers and that
a single query cannot create too much entanglement. We proceed similarly here, and the lower
bound in Theorem 6.2 follows from the following three lemmas.

Lemma 6.3. (At the very beginning of the algorithm) we have rb,0 = 0.

Lemma 6.4. The success probability of the algorithm is at most 2(k−1)
n−1 +

√
2rb,T .

Lemma 6.5. For all t ∈ {0, . . . , T − 1}, we have |rb,t − rb,t+1| = O(max{
»
k/n,

»
1/k}).
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6.1.1 Proof of Lemma 6.3

Recall from Section 1.5.2 the operator C1 of the Johnson scheme, and, via the bijection (6.4), we
can think of C1 being in L(XI). From (1.22) we get that the support of C1 equals XI,a, and from
(1.19) and (1.20) we get that this support is spanned by states

ζi :=
1√(n−1
k−1

) ∑
x∈D
xi=1

x, (6.6)

where i ∈ [n].

Now, the initial state of Ā+ is

φ̄+
0 :=

Ç
n

k

å−1/2 ∑
x∈D

xI ⊗ (n!)−1/2
∑
π∈S[n]

πS ⊗ χ(x)Q ⊗ χ′WR,

and we have ρ0 = TrSA
Ä
φ̄+

0 (φ̄+
0 )∗
ä
. Note that the registers XI and XQ are not entangled with the

rest of the registers. By swapping the order of summation, we have∑
x∈D

xI ⊗ χ(x)Q ∝
∑

x∈D, i∈[n]
xi=1

xI ⊗ iQ ∝
∑
i∈[n]

(ζi)I ⊗ iQ.

Since ΠI,aζi = ζi for all i, we get (ΠI,a⊗ISA)φ̄+
0 = φ̄+

0 . This, in turn, implies that (ΠI,b⊗ISA)φ̄+
0 = 0,

and, thus, Lemma 6.3 holds.

6.1.2 Proof of Lemma 6.4

From (2.17), we get that the success probability of Ā+ is

∑
x∈D, {i,j}⊂[n]
xi=xj=1

Tr
Ä
ρ′T (xx∗I ⊗ {i, j}{i, j}∗R)

ä
=

∥∥∥∥ ∑
x∈D, {i,j}⊂[n]
xi=xj=1

(xx∗I ⊗ {i, j}{i, j}∗R ⊗ ISQW)ψ̄+
T

∥∥∥∥2

.

(6.7)

Let us first reduce the lemma to its special case when rT,b = 0. This reduction was used in
[Amb10] for a very similar problem. Recall that the final state of the algorithm ψ̄+

T satisfies the
symmetry (UISR,π ⊗ IQW)ψ̄+

T = ψ̄+
T for all π ∈ S[n], and note that, for c ∈ {a, b}, the state

ψ̄+
T,c :=

(ΠI,c ⊗ ISA)ψ̄+
T

‖(ΠI,c ⊗ ISA)ψ̄+
T ‖

=
1
√
rc,T

(ΠI,c ⊗ ISA)ψ̄+
T
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satisfies the same symmetry. We have

ψ̄+
T =

»
1− rb,T ψ̄+

T,a +
√
rb,T ψ̄

+
T,b.

Since ψ̄+
T,a and ψ̄+

T,b are orthogonal, we have

‖ψ̄+
T − ψ̄

+
T,a‖ =

√
(1−

»
1− rb,T )2 + (

√
rb,T )2 ≤

»
2rb,T (6.8)

Lemma 6.6. Suppose X is a finite Hilbert space. For any two states ψ0 ∈ X and ψ1 ∈ X and
any projector Π ∈ L(X ), ‖Πψ0‖2 − ‖Πψ1‖2 ≤ ‖ψ0 − ψ1‖.

Proof. Let µ = ‖ψ0 − ψ1‖/2 ≤ 1. There is an orthonormal basis {ξ0, ξ1, . . .} of X such that

ψ0 =
»

1− µ2ξ0 + µξ1 and ψ1 =
»

1− µ2ξ0 − µξ1.

Note that

‖Πψ0‖2 − ‖Πψ1‖2 = Tr
Ä
Π(ψ0ψ

∗
0 − ψ1ψ

∗
1)
ä

= 2µ
»

1− µ2 Tr
Ä
Π(ξ0ξ

∗
1 + ξ1ξ

∗
0)
ä
. (6.9)

Since (ξ0ξ
∗
0 +ξ1ξ

∗
1)Π(ξ0ξ

∗
0 +ξ1ξ

∗
1) is positive semidefinite of spectral norm at most 1, |Tr(Πξ0ξ

∗
1)| ≤

1/2. Hence, (6.9) is at most 2µ
√

1− µ2 ≤ 2µ.

From now on, let us assume that rb,T = 0 and, thus, ψ̄+
T = ψ̄+

T,a. Lemma 6.6, (6.7), and (6.8)
states that this changes the success probability by at most

√
2rb,T .

Due to the symmetry (2.22) of ρ′T , we can rewrite the success probability (6.7) as Tr(Π̂ρ̂),
where Π̂ is the projector on the subspace of XI spanned by all x such that x1 = x2 = 1 and

ρ̂ :=

Ç
n

2

å
(II ⊗ {1,2}∗R)ρ′T (II ⊗ {1,2}R)

is a density operator on the register XI. It is left to show that

Claim 6.7. Tr(Π̂ρ̂) ≤ 2(k − 1)/(n− 1).

Proof. Let Ŝ := S{1,2} × S{3,...,n} < S[n] be the group of all permutations π ∈ S[n] that map {1, 2}
to itself. We have

ΠI,aρ̂ = ρ̂ and ∀π ∈ Ŝ : UI,πρ̂U
−1
I,π = ρ̂. (6.10)

We also have UI,πΠ̂U−1
I,π = Π̂ for all π ∈ Ŝ.

We can express ρ̂ as a mixture of its eigenvectors ξi, with probabilities that are equal to their
eigenvalues λi, namely, ρ̂ =

∑
i λiξiξ

∗
i . Hence we have

Tr(Π̂ρ̂) =
∑

i
λiTr(Π̂ξiξ

∗
i ) =

∑
i
λi‖Π̂ξi‖2,

132



which is at most
maxξ

Ä
‖Π̂ξ‖2

¿
‖ξ‖2

ä
where the maximization is over all eigenvectors of ρ̂ with non-zero eigenvalues. Due to the
symmetry (6.10), we can calculate the eigenspaces of ρ̂ by inspecting the reduction of UI to the
subspace XI,a, namely, ÛI := ΠI,aUI. Recall that XI,a is the space spanned by all ζi (defined in
(6.6)). Note that ζ∗i ζj = k−1

n−1 for all i, j : i 6= j.

ÛI is a representation of both S[n] and its subgroup Ŝ, and, as a representation of S[n], it

consists of two irreps: one-dimensional X (n)
I and (n − 1)-dimensional X (n−1,1)

I . In order to see

how ÛI decomposes into irreps of Ŝ, we need to restrict S(n) and S(n−1,1) from Sn to S2 × Sn−2.
The Littlewood–Richardson rule (1.10) gives us the decomposition of these restrictions:

S(n) ↓ (S2 × Sn−2) ∼= (S(2) × S(n−2));

S(n−1,1) ↓ (S2 × Sn−2) ∼= (S(2) × S(n−2))⊕ (S(1,1) × S(n−2))⊕ (S(2) × S(n−3,1)).

Hence, Schur’s lemma (Lemma 1.2) and (6.10) imply that that eigenspaces of ρ̂ are invariant
under UI,π for all π ∈ Ŝ, and they have one of the following forms:

1. one-dimensional subspace spanned by ζ(α,β) := α(ζ1 + ζ2) + β
∑n
i=3 ζi for some coefficients

α, β;

2. one-dimensional subspace spanned by ζ1 − ζ2;

3. (n − 3)-dimensional subspace consisting of all
∑n
i=3 αiζi with

∑
i αi = 0 (spanned by all

ζi − ζj , i, j ∈ [3..n]);

4. a direct sum of subspaces of the above form.

In the first case,

Π̂ζ(α,β) =
2α+ (k − 2)β√(n−1

k−1

) ∑
x3,...,xn∈{0,1}
x3+...+xn=k−2

(1,1, x3, . . . , xn).

Therefore,

‖Π̂ζ(α,β)‖2 =

(n−2
k−2

)(n−1
k−1

) |2α+ (k − 2)β|2 =
k − 1

n− 1
|2α+ (k − 2)β|2.

We also have

‖ζ(α,β)‖2 = ζ∗(α,β)ζ(α,β)

= 2

Å
1 +

k − 1

n− 1

ã
|α|2 + (n− 2)

Å
1 + (n− 3)

k − 1

n− 1

ã
|β|2 + 2(n− 2)

k − 1

n− 1
(αβ + βα)

≥ |2α+ (k − 2)β|2

2
. (6.11)
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If αβ ≥ 0, the inequality in (6.11) follows by showing that coefficients of |α|2, |β|2, and αβ on the
left hand side are all larger than corresponding coefficients on the right hand side. Otherwise,
without loss of generality, we can assume that α = 1 and β < 0, and the inequality follows by
inspecting the extreme point of the quadratic polynomial (in β) that is obtained by subtracting
the right hand side from the left hand side. Therefore,

‖Π̂ζ(α,β)‖2

‖ζ(α,β)‖2
≤ 2(k − 1)

n− 1
.

In the second case, Π̂(ζ1 − ζ2) = 0 because basis states (1,1, x3, . . . , xn) have the same
amplitude in ζ1 and ζ2.

In the third case, it suffices to consider a state of the form ζ3−ζ4, because {UI,π(ζ3−ζ4) : π ∈ Ŝ}
spans the whole eigenspace and Π̂ and UI,π commute. Then,

Π̂(ζ3 − ζ4) =
1√(n−1
k−1

) ∑
x5,...,xn∈{0,1}
x5+...+xn=k−3

Ä
(1,1,1,0, x5, . . . , xn)− (1,1,0,1, x5, . . . , xn)

ä
and

‖Π̂(ζ3 − ζ4)‖2 = 2

(n−4
k−3

)(n−1
k−1

) = 2
(k − 1)(k − 2)(n− k)

(n− 1)(n− 2)(n− 3)
.

We also have

‖ζ3 − ζ4‖2 = 2− 2ζ∗3ζ4 = 2− 2
k − 1

n− 1
= 2

n− k
n− 1

.

Hence,
‖Π̂(ζ3 − ζ4)‖2

‖ζ3 − ζ4‖2
=

(k − 2)(k − 3)

(n− 2)(n− 3)
= O

Ç
k2

n2

å
.

6.2 Proof of Lemma 6.5

Let ΠIQ,a and ΠIQ,b be the projectors on XIQ,a := XI,a ⊗ XQ and XIQ,b := XI,b ⊗ XQ, respectively.
Suppose O = O(S) or O = O(D). Recall from Section 2.2.3 that, when we introduce the input
register XI, we replace the oracle O(x) acting on XQ by O+ acting on XIQ as in (2.14). The state
of the XI register can be affected only by oracle queries, therefore we have ρt+1 = TrQ(O+ρ′tO+)
and

rb,t − rb,t+1 = Tr
Ä
ΠIQ,b(ρ

′
t −O+ρ′tO+)

ä
(6.12)
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for all t ∈ [0..T − 1]. Since (π(x))π(i) = 1 if and only if xi = 1, we have UIQ,πO+U−1
IQ,π = O+ for

all π ∈ S[n], and recall that the same symmetry holds for ρ′t, namely, (2.20).

So it suffices to prove that∣∣∣Tr
Ä
ΠIQ,b(ρ

′ −O+ρ′O+)
ä∣∣∣ ≤ O(max{

»
k/n,

»
1/k})

for every density operator ρ′ on XIQ that satisfies UIQ,πρ
′U−1

IQ,π = ρ′ for all π ∈ S[n] and both
oracles O = O(S) and O = O(D). Due to Schur’s lemma, there is a spectral decomposition

ρ′ =
∑

µ
λµ

Πµ

dimµ
,

where
∑
µ λµ = 1, every µ is an irrep of S[n], and Πµ ∈ L(XIQ) is the projector on µ. Because of

the linearity, it suffices to show the following.

Lemma 6.8. For every irrep µ ⊂ XIQ and for µ′ being the subspace that µ is mapped to by O+
(S)

or O+
(D), we have

1

dimµ

∣∣∣Tr(ΠIQ,b(Πµ −Πµ′))
∣∣∣ ≤ O(max{

»
k/n,

»
1/k}). (6.13)

Remark 6.9. The lower bound on the query complexity of the Enhanced Find-Two problem
still holds if we allow an algorithm to have a register XC := C{S,D,0} that controls if to query the
oracle O(S) (the register is in the state S), the oracle O(D) (the state D), or not to query at all

(the state 0). With such a register, instead of O+
(S) and O+

(D) acting on XIQ, we have to consider

O++ :=
∑

γ∈{S,D}
O+

(γ) ⊗ (γγ∗)C + IIQ ⊗ (00∗)C

acting on XIQC. We have ρ′t = TrC(σt), where σt is the state of the XIQC registers of the algorithm
just before the query t+ 1. Using the same argument as in Section 2.2.4, we can write

σt =
∑

γ1,γ2∈{S,D,0}
(σγ1,γ2)IQ ⊗ (γ1γ

∗
2)C,

where each σγ1,γ2 satisfies UIQ,πσγ1,γ2U
−1
IQ,π = σγ1,γ2 for all π ∈ S[n]. Hence, (6.12) equals

Tr
Ä
(ΠIQ,b ⊗ IC)(σt −O++σtO++)

ä
=

∑
γ∈{S,D}

Tr
Ä
ΠIQ,b(σγ,γ −O+

(γ)σγ,γO
+
(γ))
ä
.

Since Tr(σS,S + σD,D) ≤ 1, this reduces the argument of the lower bound to the case when we do
not have the XC register.
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6.2.1 Decomposition of XIQ into irreps

In order to prove Lemma 6.8, we need to inspect the representation XIQ in more detail. Let us
consider two approaches how to decompose XIQ into irreps, more precisely, how to decompose
each isotyipical subspace of XIQ into irreps. For an irrep Sθ present in XIQ, where θ ` n, let Π̂θ

be the projector on the Sθ-isotypical subspace of XIQ. In the standard basis of XIQ, all entries of
Π̂θ are real (see Claim 2.18).

Approach 1: via the tensor product of irreps. In (6.5) we already considered how XI

decomposes into irreps. By the same argument, the natural representation XQ decomposes into
irreps as

XQ = X (n)
Q ⊕X (n−1,1)

Q , where X (n)
Q
∼= S(n),X (n−1,1)

Q
∼= S(n−1,1). (6.14)

Let Π
(n)
Q and Π

(n−1,1)
Q denote, respectively, the projectors on X (n)

Q and X (n−1,1)
Q .

By taking these decompositions of XI and XQ, we can decompose XIQ into irreps by de-

composing X (n−j,j)
I ⊗ X (n)

Q and X (n−j,j)
I ⊗ X (n−1,1)

Q into irreps for all j ∈ [0..k]. We have

X (n−j,j)
I ⊗ X (n)

Q
∼= S(n−j,j) and X (n)

I ⊗ X (n−1,1)
Q

∼= S(n−1,1), as S(n) is the trivial representation,
and Corollary 1.13 in Section 1.4.5 states that, for j ≥ 1, we have

X (n−j,j)
I ⊗X (n−1,1)

Q
∼= S(n−j+1,j−1) ⊕ S(n−j,j) ⊕ (S(n−j,j−1,1))⊕ S(n−j−1,j+1) ⊕ S(n−j−1,j,1),

where we omit the term S(n−j,j−1,1) when j = 1.

We can see that, for every j ∈ [0..k] and ` ∈ {0, 1}, the representation X (n−j,j)
I ⊗ X (n−`,`)

Q is

multiplicity-free. For an irrep Sθ present in X (n−j,j)
I ⊗X (n−`,`)

Q , let

Π
(n−j,j)⊗(n−`,`)
θ := Π̂θ

Ä
Π

(n−j,j)
I ⊗Π

(n−`,`)
Q

ä
,

which is the projector on the unique instance of Sθ in X (n−j,j)
I ⊗ X (n−`,`)

Q . For example, for
θ = (n− 1, 1), we have projectors

Π
(n−1,1)⊗(n)
(n−1,1) , Π

(n)⊗(n−1,1)
(n−1,1) , Π

(n−1,1)⊗(n−1,1)
(n−1,1) , and Π

(n−2,2)⊗(n−1,1)
(n−1,1) .

Approach 2: via spaces invariant under the oracles O+
(S) and O+

(D). Let us decompose

XIQ as the direct sum of four subspaces, each invariant under the action of UIQ, O+
(S), and O+

(D).

First, let XIQ = X (0) ⊕X (1), where

X (0) := span
¶
(x, i) ∈ XIQ : xi = 0

©
and X (1) := span

¶
(x, i) ∈ XIQ : xi = 1

©
.
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Let us further decompose X (0) and X (1) as

X (0) = X (0,s) ⊕X (0,t) and X (1) = X (1,s) ⊕X (1,t),

where

X (0,s) := span
{ ∑
i : xi=0

(x, i) : x ∈ D
}

and X (1,s) := span
{ ∑
i : xi=1

(x, i) : x ∈ D
}
,

and X (0,t) := X (0) 	X (0,s) and X (1,t) := X (1) 	X (1,s).

Note that X (1,s) = span{x ⊗ χ(x) : x ∈ D}. Therefore, the oracle O+
(D) acts on X (1,s) as the

minus identity and on X (0) ⊕ X (1,t) as the identity. Meanwhile, O+
(S) acts on X (1) as the minus

identity and on X (0) as the identity.

For every superscript sup ∈ {(0), (1), (0, s), (0, t), (1, s), (1, t)}, let Πsup be the projector on the
space X sup, and let U sup := U |X sup be the reduction of U to X sup. Let V sup

π be U sup
π restricted to

π ∈ S[1..k] × S[k+1..n] and the space

X̃ sup := X sup ∩ ((1k0n−k)I ⊗XQ).

V sup is a representation of S[1..k] × S[k+1..n]. One can see that

|Sn|
¿
|Sk × Sn−k| = dimX sup

¿
dim X̃ sup,

so we have U sup = V sup ↑ S[n]. In order to see how U sup decomposes into irreps, we need to see
how V sup decomposes into irreps, and then apply the Littlewood–Richardson rule.

We have dim X̃ (0,s) = dim X̃ (1,s) = 1, and it is easy to see that V (0,s) and V (1,s) act trivially
on X̃ (0,s) and X̃ (1,s), respectively. That is, V (0,s) ∼= V (1,s) ∼= S(k) × S(n−k). Now, note that

X̃ (0) = span
¶
1k0n−k ⊗ i : i ∈ [k + 1..n]

©
.

The group S[1..k] acts trivially on X̃ (0), while and the action of S[k+1..n] on X̃ (0) defines the natural

representation of S[k+1..n]. Hence, V (0) ∼= S(k) × (S(n−k) ⊕ S(n−k−1,1)), and V (0) = V (0,s) ⊕ V (0,t)

gives us V (0,t) ∼= S(k) × S(n−k−1,1). Analogously we obtain V (1,t) ∼= S(k−1,1) × S(n−k). As in
(1.18), U (0,s) = V (0,s) ↑ S[n] and U (1,s) = V (1,s) ↑ S[n] are both isomorphic to

⊕k
j=0 S(n−j,j). For

U (0,t) = V (0,t) ↑ S[n] and U (1,t) = V (1,t) ↑ S[n], the Littlewood–Richardson rule (1.12) gives us,
respectively,

(S(k) × S(n−k−1,1)) ↑ S[n]
∼= S(n−1,1) ⊕ S(n−2,2) ⊕ S(n−2,1,1)

⊕ S(n−3,3) ⊕ S(n−3,2,1) ⊕ S(n−4,4) ⊕ S(n−4,3,1) ⊕ . . .
⊕ S(n−k,k) ⊕ S(n−k,k−1,1) ⊕ S(n−k−1,k+1) ⊕ S(n−k−1,k,1)
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and

(S(k−1,1) × S(n−k)) ↑ S[n]
∼= S(n−1,1) ⊕ S(n−2,2) ⊕ S(n−2,1,1)

⊕ S(n−3,3) ⊕ S(n−3,2,1) ⊕ S(n−4,4) ⊕ S(n−4,3,1)

⊕ . . .⊕ S(n−k+1,k−1) ⊕ S(n−k+1,k−2,1) ⊕ S(n−k,k−1,1).

Note that all U (0,s), U (0,t), U (1,s), and U (1,t) are multiplicity-free. For a superscript sup ∈
{(0, s), (0, t), (1, s), (1, t)} and an irrep Sθ present in U sup, let Πsup

θ := Π̂θΠ
sup, which is the

projector on the unique instance of Sθ in U sup. For example, for θ = (n − 1, 1), we have all the
projectors

Π
(0,s)
(n−1,1), Π

(0,t)
(n−1,1), Π

(1,s)
(n−1,1), and Π

(1,t)
(n−1,1).

Significant irreps. Note that, since O+
(D) acts on X (1,s) as the minus identity and on X (0) ⊕

X (1,t) as the identity and O+
(S) acts on X (1) as the minus identity and on X (0) as the identity, if

µ is a subspace of one of the spaces X (0), X (1,s), or X (1,t), then µ′ = µ. And, even if that is not
the case, we still have that µ and µ′ are isomorphic irreps (due to Corollary 1.3).

Also note that ∣∣∣Tr(ΠIQ,b(Πµ −Πµ′))
∣∣∣ =

∣∣∣Tr(ΠIQ,a(Πµ −Πµ′))
∣∣∣. (6.15)

Hence we need to consider only µ that are isomorphic to irreps present in bothÄ
X (n)
I ⊕X (n−1,1)

I

ä
⊗
Ä
X (n)
Q ⊕X (n−1,1)

Q

ä
and

⊕k

j=2
X (n−j,j)
I ⊗

Ä
X (n)
Q ⊕X (n−1,1)

Q

ä
,

as otherwise the left hand side of (6.13) equals 0. As one can see from Approach 1 above, the
only such irreps are S(n−1,1), S(n−2,2), and S(n−2,1,1).

The representation UIQ contains four instances of the irrep S(n−1,1), four of S(n−2,2), and two
of S(n−2,1,1). Projectors on them, according to Approach 1, are

Π
(n−1,1)⊗(n)
(n−1,1) , Π

(n)⊗(n−1,1)
(n−1,1) , Π

(n−1,1)⊗(n−1,1)
(n−1,1) , Π

(n−2,2)⊗(n−1,1)
(n−1,1) ,

Π
(n−2,2)⊗(n)
(n−2,2) , Π

(n−1,1)⊗(n−1,1)
(n−2,2) , Π

(n−2,2)⊗(n−1,1)
(n−2,2) , Π

(n−3,3)⊗(n−1,1)
(n−2,2) ,

Π
(n−1,1)⊗(n−1,1)
(n−2,1,1) , Π

(n−2,2)⊗(n−1,1)
(n−2,1,1) ,

(6.16)

or, according to Approach 2, are

Π
(0,s)
(n−1,1), Π

(0,t)
(n−1,1), Π

(1,s)
(n−1,1), Π

(1,t)
(n−1,1),

Π
(0,s)
(n−2,2), Π

(0,t)
(n−2,2), Π

(1,s)
(n−2,2), Π

(1,t)
(n−2,2),

Π
(0,t)
(n−2,1,1), Π

(1,t)
(n−2,1,1).
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From this we can see right away that, if µ ∼= S(n−2,1,1), then µ ⊂ X (0)⊕X (1,t), so the application
of the oracle O+

(D) fixes µ, and the expression (6.13) equals 0.

6.2.2 Necessary and sufficient conditions for the irrep S(n−1,1)

We would like to know what are necessary and sufficient conditions for inequality (6.13) to hold.
First, let us consider the irrep S(n−1,1); later, the argument for the other two irreps will be very
similar.

Basis of transporters. For `1, `2 ∈ {0, 1} and m1,m2 ∈ {s, t}, let Ξ
(`1,m1)←(`2,m2)
(n−1,1) be a

transporter from X (`2,m2)
(n−1,1) to X (`1,m1)

(n−1,1) . We choose global phases of these transporters so that

{Ξ(`1,m1)←(`2,m2)
(n−1,1) } is a basis of transporters (see Section 1.3.4). As in (1.4), for a vector γ =

(γ0,s, γ0,t, γ1,s, γ1,t), let

Π(γ) :=
∑

`1,`2∈{0,1}
m1,m2∈{s,t}

γ`1,m1γ`2,m2
Ξ

(`1,m1)←(`2,m2)
(n−1,1) .

Claim 1.8 states that

Fact 6.10. Let µ ⊂ XIQ be isomorphic to S(n−1,1). There exists, up to a global phase, a unique
vector γ = (γ0,s, γ0,t, γ1,s, γ1,t) such that Πµ = Π(γ). The norm of the vector γ is 1. The converse

also holds: for any unit vector γ, Π(γ) is a projector to an irrep isomorphic to S(n−1,1).

From now on, let us work in this basis of transporters, because in this basis, the oracles O+
(S)

and O+
(D) restricted to Π̂(n−1,1) are, respectively,

O+
(S)|(n−1,1) =

á
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

ë
and O+

(D)|(n−1,1) =

á
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

ë
.

Necessary and sufficient condition for the oracle O+
(S). In the basis of transporters we

have

Πµ =

á
|γ0,s|2 γ0,sγ0,t γ0,sγ1,s γ0,sγ1,t

γ0,tγ0,s |γ0,t|2 γ0,tγ1,s γ0,tγ1,t

γ1,sγ0,s γ1,sγ0,t |γ1,s|2 γ1,sγ1,t

γ1,tγ0,s γ1,tγ0,t γ1,tγ1,s |γ1,t|2

ë
, (6.17)
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and note that
|γ`,m|2 = Tr

Ä
ΠµΠ

(`,m)
(n−1,1)

ä/
dim(n− 1, 1).

From (6.16), one can see that

Π̂(n−1,1)ΠIQ,b = Π
(n−2,2)⊗(n−1,1)
(n−1,1) .

Hence, for the space µ, the desired inequality (6.13) becomes

1

dim(n− 1, 1)

∣∣∣∣Tr
Ä
Π

(n−2,2)⊗(n−1,1)
(n−1,1) (Πµ −Πµ′)

ä∣∣∣∣ ≤ O(max{
»
k/n,

»
1/k}). (6.18)

Let us first obtain a necessary condition if we want this to hold for all µ ∼= S(n−1,1).

In the same basis of transporters, let

Π
(n−2,2)⊗(n−1,1)
(n−1,1) =

á
|β0,s|2 β0,sβ0,t β0,sβ1,s β0,sβ1,t

β0,tβ0,s |β0,t|2 β0,tβ1,s β0,tβ1,t

β1,sβ0,s β1,sβ0,t |β1,s|2 β1,sβ1,t

β1,tβ0,s β1,tβ0,t β1,tβ1,s |β1,t|2

ë
. (6.19)

For m1,m2 ∈ {s, t} and η ∈ R, define the space ξm1,m2,η
∼= S(n−1,1) via the projector on it:

Πξm1,m2,η
:=

1

2

Ä
Π

(0,m1)
(n−1,1) + eiηΠ

(0,m1)←(1,m2)
(n−1,1) + e−iηΠ

(1,m2)←(0,m1)
(n−1,1) + Π

(1,m2)
(n−1,1)

ä
.

We have

Πξm1,m2,η
−O+

(S)Πξm1,m2,φ
O+

(S) = eiηΠ
(0,m1)←(1,m2)
(n−1,1) + e−iηΠ

(1,m2)←(0,m1)
(n−1,1) ,

so, for this space, the inequality (6.18) becomes∣∣∣eiηβ1,m2
β0,m1 + e−iηβ0,m1

β1,m2

∣∣∣ ≤ O(max{
»
k/n,

»
1/k}).

Since this has to hold for all m1, m2, and η (in particular, consider m1 and m2 that maximize
|β1,m2

β0,m1 |), we must have either

|β1,s|2 + |β1,t|2 ≤ O(max{k/n, 1/k}) or |β1,s|2 + |β1,t|2 ≥ 1−O(max{k/n, 1/k}), (6.20)

and note that
|β1,s|2 + |β1,t|2 = Tr

Ä
Π

(n−2,2)⊗(n−1,1)
(n−1,1) ·Π(1)

ä/
dim(n− 1, 1).

The condition (6.20) is necessary, but it is also sufficient. Because, if it holds, then

|β1,m2
β0,m1 | ≤ O

Ä
max

¶»
k/n,

»
1/k
©ä

for all m1,m2 ∈ {s, t} and, clearly, |γ1,m2
γ0,m1 | = O(1) for all unit vectors γ. Therefore, if we

plug (6.17) and (6.19) into (6.18), the inequality is satisfied.
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Necessary and sufficient condition for the oracle O+
(D). Almost identical analysis shows

that, in order for the main conjecture hold when µ is isomorphic to S(n−1,1) and when one applies
O+

(D), it is necessary and sufficient that

|β1,s|2 ≤ O(max{k/n, 1/k}) or |β1,s|2 ≥ 1−O(max{k/n, 1/k}). (6.21)

Note that
|β1,s|2 = Tr

Ä
Π

(n−2,2)⊗(n−1,1)
(n−1,1) ·Π(1,s)

(n−1,1)

ä/
dim(n− 1, 1).

6.2.3 Solution for the irreps S(n−2,2) and S(n−2,1,1)

For irreps S(n−2,2) and S(n−2,1,1), let us exploit equation (6.15). We do that because the space
XIQ,b contains three instances of the irrep S(n−2,2), while XIQ,a contains only one. From (6.16) we
get

Π̂(n−2,2)ΠIQ,a = Π
(n−1,1)⊗(n−1,1)
(n−2,2) and Π̂(n−2,1,1)ΠIQ,a = Π

(n−1,1)⊗(n−1,1)
(n−2,1,1) .

Oracle O+
(S). An analysis analogous to that of the irrep S(n−1,1) shows that, in order for the

desired inequality (6.13) to hold for the oracle O+
(S) and the irreps S(n−2,2) and S(n−2,1,1), it is

sufficient to have

Tr
Ä
Π

(n−1,1)⊗(n−1,1)
(n−2,2) ·Π(1)

ä
dim(n− 2, 2)

≤ O(k/n) and
Tr
Ä
Π

(n−1,1)⊗(n−1,1)
(n−2,1,1) ·Π(1)

ä
dim(n− 2, 1, 1)

≤ O(k/n).

Let us prove this. Consider the irrep S(n−2,2) and the hook-length formula (1.8) gives us dim(n−
2, 2) = n(n− 3)/2. We have

Tr
Ä
Π

(n−1,1)⊗(n−1,1)
(n−2,2) ·Π(1)

ä
≤ Tr

Ä
(Π

(n−1,1)
I ⊗ IQ)·Π(1)

ä
,

and we can evaluate the right hand side of this exactly. Π(1) is diagonal (in the standard basis),

and, on the diagonal, it has (n− k)
(n
k

)
zeros and k

(n
k

)
ones. The diagonal entries of Π

(n−1,1)
I are

all the same because Π
(n−1,1)
I projects to an eigenspace of the Johnson scheme. More precisely,

we have Tr(Π
(n−1,1)
I ) = dim(n− 1, 1) = n− 1, therefore the diagonal entries of both Π

(n−1,1)
I and

Π
(n−1,1)
I ⊗ IQ are (n− 1)/

(n
k

)
. Hence,

Tr
Ä
(Π

(n−1,1)
I ⊗ IQ)Π(1)

ä
= k(n− 1)

and, in turn,

Tr
Ä
Π

(n−1,1)⊗(n−1,1)
(n−2,2) Π(1)

ä
dim(n− 2, 2)

≤ 2k(n− 1)

n(n− 3)
= O(k/n)
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as required. The same argument works for the irrep S(n−2,1,1) as, by the hook-length formula,
dim(n− 2, 1, 1) = (n− 1)(n− 2)/2 = dim(n− 2, 2) + 1.

Oracle O+
(D). As we mentioned in the very end of Section 6.2.1, O+

(D) affects no space µ iso-

morphic to the irrep S(n−2,1,1). Nevertheless, the following argument for the irrep S(n−2,2) works
for S(n−2,1,1) as well. We have

Tr
Ä
Π

(n−1,1)⊗(n−1,1)
(n−2,2) Π(1,s)

ä
dim(n− 2, 2)

≤
Tr
Ä
Π

(n−1,1)⊗(n−1,1)
(n−2,2) Π(1)

ä
dim(n− 2, 2)

≤ O(k/n),

which, similarly to the condition (6.21) for the irrep S(n−1,1), is sufficient to show that Lemma 6.8
holds for the irrep S(n−2,2) and the oracle O+

(D).

6.2.4 Solution for the irrep S(n−1,1)

Recall that the conditions (6.20) and (6.21) are sufficient for Lemma 6.8 to hold for the oracles
O+

(S) and O+
(D), respectively. Hence, it suffices for us to show that

Tr
Ä
Π

(n−2,2)⊗(n−1,1)
(n−1,1) ·Π(1)

ä
dim(n− 1, 1)

≥
Tr
Ä
Π

(n−2,2)⊗(n−1,1)
(n−1,1) ·Π(1,s)

(n−1,1)

ä
dim(n− 1, 1)

=

=
k − 1

k
· n(n− k − 1)

(n− 1)(n− 2)
≥ 1−O(max{k/n, 1/k}). (6.22)

It is easy to see that both inequalities in this expression hold, and we need to concern ourselves
only with the equality in the middle. Note that

Π
(n−2,2)⊗(n−1,1)
(n−1,1) ·Π(1,s)

(n−1,1) = (Π
(n−2,2)
I ⊗ IQ)·Π(1,s)

(n−1,1),

and let us evaluate the trace of the latter.

Johnson scheme on XI. Recall that we defined Π
(n−2,2)
I , via the bijection (6.4), to be the

projector on an eigenspace of the Johnson scheme. Hence, given x, x′ ∈ D such that the Hamming

distance |x− x′| between them is 2i, (1.25) states that (Π
(n−2,2)
I ⊗ IQ)[[(x, j), (x′, j′)]] equalsÇÇ

k − i
2

å
− (k − 1)2

n− 2
(k − i) +

k2(k − 1)2

2(n− 1)(n− 2)

å¬Ç
n− 4

k − 2

å
(6.23)

if j = j′, and 0 if j 6= j′.
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Johnson scheme on X (1,s). Recall that, for x ∈ D, we have χ(x) :=
∑
j : xj=1 j/

√
k, and let

us define
A

(1,s)
i :=

∑
x,x′∈D
|x−x′|=2i

(x⊗ χ(x))(x′ ⊗ χ(x′))∗ ∈ L(X (1,s))

for all i ∈ [0..k]. The matrices Ai of the Johnson scheme (see (1.17)) and A
(1,s)
i here have the

same eigenvalues corresponding to the same irreps. Hence, given x, x′ ∈ D such that |x−x′| = 2i,
(1.24) gives us that

Π
(1,s)
(n−1,1)[[(x, j), (x

′, j)]] =
1

k
·
Ç

(k − i)− k2

n

å¬Ç
n− 2

k − 1

å
(6.24)

if xj = x′j = 1, and 0 otherwise. Note that there are exactly k− i indices j such that xj = x′j = 1.

Both Johnson schemes together. There are
(n
k

)
inputs x ∈ D, and, for every x, there are(k

i

)(n−k
i

)
inputs x′ ∈ D such that |x− x′| = 2i. From (6.23) and (6.24), we get

Tr
Ä
(Π

(n−2,2)
I ⊗ IQ)·Π(1,s)

(n−1,1)

ä
=

=

Ç
n

k

å k∑
i=0

Ç
k

i

åÇ
n− k
i

å( (k−i)(k−i−1)
2 − (k−1)2

n−2 (k − i) + k2(k−1)2

2(n−1)(n−2)

)
(n−4
k−2

)
(
(k − i)− k2

n

)
(n−2
k−1

) k − i
k

.

(6.25)

It is straightforward to rewrite this expression as a linear combination of

k∑
i=0

Ç
k

i

åÇ
n− k
i

å
(k − i)!

(k − i− `)!
=

k!

(k − `)!

Ç
n− `
n− k

å
(6.26)

where ` ∈ {0, 1, 2, 3, 4} and the coefficients of the linear combination do not depend on i. The
equality (6.26) is essentially the same as

k∑
i=0

Ç
k − `
i

åÇ
n− k
i

å
=

Ç
n− `
k − `

å
.

By using the equality (6.26), one can show that (6.25) equals to

k − 1

k
·n(n− k − 1)

(n− 2)
.

We get the desired equality in (6.22) by dividing this by dim(n− 1, 1) = n− 1.
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Conclusion

In this thesis, we have studied applications of the adversary bound, lower bounds on the learning
graph complexity, and connections between the two. We have also studied the query complexity
of a problem that cannot be directly addressed by the adversary method, that is, the Enhanced
Find-Two problem. This work has answered some of the questions in the area of quantum
query complexity, yet there are many interesting and important questions left. We conclude by
mentioning some of those questions.

We proved that the O(n9/7) non-adaptive learning graph for Triangle in Ref. [LMS13] is
almost optimal. Aside from the triangle subgraph, it would be interesting to prove lower bounds
on the non-adaptive learning graph complexity of other subgraph-finding problems. For example,
Ref. [LMS13] also gives an O(n10/7) non-adaptive learning graph for the Associativity Testing
problem, which essentially looks for a path of length four in a graph. A natural question arises:
Can we construct a tight Ω(n10/7) lower bound proving the optimality of this learning graph?

Now that the power of non-adaptive learning graphs is better characterized, it would be
interesting to do the same for adaptive learning graphs. One concrete question to consider would
be: Is there a decision problem with small 1-certificate complexity for which there is a gap between
its quantum query and adaptive learning graph complexities? In fact, k-Distinctness might be
such a problem, as an O(n1−2k−2/(2k−1)) adaptive learning graph for this problem is known only
under strong additional promises [BL11]. As we already mentioned in the introduction, another
problem to consider is the following: Is there is a general technique to construct adversary bounds
from adaptive dual learning graphs, and what class of problems would such bounds address?

Our adversary construction for Element Distinctness with small input alphabet in Chap-
ter 5 is rather technical. Claims 5.2 and 5.4 suggest that the adversary matrix that we consider in
Theorem 5.5 is a natural choice. While any other optimal adversary matrix probably cannot look
too different (in terms of the singular value decomposition), it does not mean that it cannot have
a simpler specification. Such a simpler specification might facilitate the construction of adversary
bounds for other problems.

For example, it might help to narrow the gap between the best known lower bound and upper
bound for k-Distinctness, Ω(n2/3) and O(n1−2k−2/(2k−1)), respectively. Or, it might help to
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reduce the required alphabet size in the Ω(nk/(k+1)) lower bound for k-Sum. As pointed out in
Ref. [BŠ13], the quantum query complexity of k-Sum becomes O(

√
n) for alphabets of constant

size. Therefore it would be interesting to find tradeoffs between the quantum query complexity
and the size of the alphabet. These tradeoffs might be relatively smooth, unlike the jump in the
query complexity of Element Distinctness between alphabet sizes n− 1 and n.

Jeffery, Magniez, and de Wolf recently studied the model of parallel quantum query algorithms,
which can make p queries in parallel in each time step [JMdW13]. They show that such algorithms
have to make Θ((n/p)2/3) p-parallel quantum queries to solve Element Distinctness. For the
lower bound, they generalize the adversary bound given in [BR13a] and therefore require that
the alphabet size is at least Ω(n2). Can the representation-theoretic techniques from Chapter 5
remove this requirement?

In addition to allowing negative weights in the adversary matrix, the adversary method has
been generalized in multiple directions. From function evaluation, it has been generalized to
quantum state generation [AMRR11] and further to quantum state conversion [LMR+11]. The
multiplicative adversary method was introduced by [Špa08], which, unlike the additive method
presented here, allows to obtain useful bounds even for large error probabilities. Can the adversary
method be generalized in yet another direction, namely, for relational problems, when the correct
solution is not unique? And, secondly, can it be generalized to lower bound the distributional
quantum query complexity of a problem, where one only requires that the algorithm succeeds with
a high probability on a probabilistic distribution over inputs? (A tight Ω(n1/3) lower bound for
finding a collision in a random input was recently given by Zhandry using the polynomial method
[Zha13].)
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Appendix A

Proofs of lemmas in Section 4.2

Here we prove the technical lemmas that are used in proving adversary bounds for the Collision
and Set Equality problems in Section 4.2. All the proofs here use the representation theory of
the symmetric group introduced in Section 1.4. The proofs in Appendices A.2 and A.3 also use
the representation theory of the unitary group.

A.1 Proof of Lemma 4.4

Fix the value of k. Assume m ≥ 2k is some integer, and consider the symmetric group Sm. Let
κ be an element of the group algebra CSm defined by

κ :=
1

2k
(ε− (a1, b1))(ε− (a2, b2)) · · · (ε− (ak, bk)), (A.1)

where a1, b1, . . . , ak, bk are some distinct fixed elements of [m], ε is the identity element of Sm,
and (ai, bi) denotes the transposition of ai and bi.

Fix an e-basis {ei} of H. Recall that the e-basis of H⊗n and H⊗2n consists of tensor products
of the vectors in {ei}. The vector e0 in such a tensor product is called the zero component,
and the weight of the corresponding basis vector is the number of non-zero components in the

product. The spaces H(n)
k ⊂ H⊗n and H(2n)

k ⊂ H⊗2n are spanned by all the e-basis vectors of
weight k.

Lemma A.1. For any vector v ∈ H(2n)
k satisfying κv = v and any matching µ, we have ‖Wµ

k v‖ ≤
‖v‖, ‖Xµ

k v‖ ≤ ‖v‖, and ‖Y µ
k v‖ ≤ ‖v‖, where Wµ

k , Xµ
k and Y µ

k are defined in (4.17) and (4.19).
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Proof. We prove the result for Wµ
k , the proofs for Xµ

k and Y µ
k being similar. All vectors in the

proof are considered in the e-basis. We say that a basis vector is used in v, if it has a non-zero
coefficient. Let Ai = {ai, bi} be the pairs from the definition of κ. Note that

each basis vector used in v has exactly one non-zero component positioned in each Ai. (A.2)

Split the basis vectors into equivalence classes by assigning two vectors to the same equivalence
class if and only if they can be obtained from one another by a permutation used in κ, i.e., by
permuting elements inside Ai. In v, the coefficients of the basis vectors in one equivalence class
are all equal up to a sign.

If µ contains a pair Ai for some i, then Wµ
k v = 0, so assume it is not the case. We construct

the following graph G that depends on κ and µ. Its vertex set is formed by the pairs A1, . . . , Ak
and the singletons {j} for j ∈ [2n] \ ⋃iAi. For each pair in µ, connect the sets containing the
elements of the pair by an edge. The graph G does not contain loops, but it may have parallel
edges. The graph G has maximal degree 2, so it is a collection of paths and cycles. Let c denote
the number of cycles in G.

The operator Wµ
k maps basis vectors of H⊗2n into basis vectors of H⊗n (that correspond to

the labelling of the edges of G) or the zero vector. Let v′ be the vector v with all terms that are
mapped to 0 by Wµ

k removed. We claim that ‖v′‖ ≤ ‖v‖/
√

2c. Indeed, in any equivalence class,
for each cycle, at least half of the vectors are mapped to 0 (for an edge matches two non-zero
components in them).

Next, we claim that each basis vector in the range of Wµ
k has exactly 0 or 2c preimages among

the basis vectors of the domain that satisfy (A.2). Indeed, consider a labelling of the edges of G,
and our task is to count the number of basis vectors in H⊗2n such that each Ai contains exactly
one non-zero component, and each edge matches e0 and its label (which is either e0 as well or a
non-zero component). Assume there is at least one way to satisfy these requirements. Then, for
each path in G, all edges but one are labeled by a non-zero component and there is a unique way
to satisfy it. For each cycle, there are two possibilities.

Since distinct basis vectors in the range of Wµ
k have no common preimage, we have ‖Wµ

k v‖ =
‖Wµ

k v
′‖ ≤

√
2c‖v′‖ ≤ ‖v‖.

Now we are ready to prove Lemma 4.4. Let us start with point (a) stating that ‖X̄q,k‖ ≤ 1,
where X̄q,k = Xq,k(Π0 ⊗ Π̄′q,k). This matrix is symmetric with respect to S′q. Hence, Schur’s

lemma implies that there exists an irrep of S′q all consisting of right singular vectors of X̄q,k of
singular value ‖X̄q,k‖.

By the definition of Π̄′q,k, the irrep is isomorphic to either S(2n−1−k,λ) with λ ` k for Colli-

sion, or S(n−1−`,λ) ⊗ S(n−k+`,λ′) with λ ` ` and λ′ ` k − ` for Set Equality. By Lemma 1.11,
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in both cases, there exists a non-zero vector v in the space of the irrep satisfying κv = v for
some choice of a1, . . . , bk (in the case of Set Equality, one has to take the tensor product of
two vectors obtained by two applications of Lemma 1.11). By Lemma A.1, ‖Xµ

k v‖ ≤ ‖v‖, hence,
‖Xq,kv‖ ≤ ‖v‖, and ‖X̄q,k‖ ≤ 1.

Consider case (b) now. Similarly as for (a), we get a right singular vector v of singular value
‖Ȳq,k‖ such that κv = v. Note that, if µ matches 1 with an element outside {a1, b1, . . . , ak, bk},
then, because of (A.2), Y µ

q,kv = 0. Otherwise, we still get ‖Y µ
q,kv‖ ≤ ‖v‖ by Lemma A.1. The

latter case only holds for an O(k/n) fraction of all matchings, hence ‖Ȳq,k‖ = O(
»
k/n).

Now, let us prove (c). From Lemma 4.3, we know that
∥∥∥Φ(m)

k

∥∥∥ = O(1/
√
m) and Wq,kΦq,k =

Wq,k
¯̄ΠkΦq,k. So, it suffices to prove that ‖Wq,k

¯̄Πk‖ = O(1). This time consider

κ′ :=
1

2k−1
(ε− (a1, b1))(ε− (a2, b2)) · · · (ε− (ak−1, bk−1)).

By an argument similar to (a), we get that Wq,k has a right singular vector v ∈ ¯̄Hq,k of singular

value ‖Wq,k
¯̄Πk‖ that satisfies κ′v = v. Now we proceed by modifying the proof of Lemma A.1.

Again, we define Ai = {ai, bi} for i ∈ [k − 1], and the equivalence classes as before. Each of Ai
has to contain one non-zero component. One of them may contain two non-zero components, or
there can be one non-zero component in a singleton.

It suffices to prove that ‖Wµ
k v‖ ≤

√
3‖v‖ for any matching µ. Again, if µ has one of Ai as

a pair, then Wµ
k v = 0, so we may assume it is not the case, and define G as before. Consider a

labelling of the edges of G (that is, an e-basis vector of H(n)
k ), and let us count the number of

preimages of this labelling. Each cycle must have all its edges labelled by non-zero components,
and there are two ways to satisfy it. All paths, except one, have exactly one edge labelled by the
zero component e0. They can be satisfied in a unique way. One path has all its edges labelled by
non-zero components. We call it special. Let T be the length of the special path. Then, it can
be satisfied in T + 1 ways, hence, the edge labelling has (T + 1)2c preimages.

For basis vectors in H⊗2n, we call a path special if the total number of non-zero components
at the endpoints of its edges is equal to its length. All vectors of an equivalence class have the
same special path. Let us label all paths in G with numbers from 1 to `, and let Ti be the
length of the ith path. Let us decompose v = v1 + · · · + v` where vi only uses basis vectors
with the ith special path. Similarly to the proof of Lemma A.1, let v′i be the vector vi with

terms mapped to 0 by Wµ
k removed. It is not hard to check that ‖v′i‖ ≤ ‖vi‖/

√
2c+max{Ti−2,0}.

Hence, ‖Wµ
k vi‖ ≤

»
(Ti + 1)/2max{Ti−2,0}‖vi‖ ≤

√
3‖vi‖. As {Wµ

k vi} are orthogonal, we get that

‖Wµ
k v‖ ≤

√
3‖v‖.
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A.2 Proof of Lemma 4.3

Consider a unitary transformation U ∈ U(H1). We embed U into U(H) using the assumption
Ue0 = e0. Note that all permutation matrices satisfy Ue0 = e0, so, in some sense, U corresponds
to permuting symbols within the input alphabet [q]. Nevertheless, as U(H1) is a larger group
that S[q], we have to deal with less irreps when considering U(H1) rather than S[q]. Therefore we
choose to consider H⊗m as a representation of the direct product U(H1)×S[m]. Let Sm stand for
S[m].

Decomposition of H⊗m into irreps. The unitary group U(H1) acts on H⊗m by simultaneous
matrix multiplication, as in (1.14), and the symmetric group Sm acts on H⊗m by permuting the
tensor factors, as in (1.15). These actions of U(H1) and Sm commute, so they provide a legitimate
representation of U(H1)× Sm.

It is not hard to see that the subspace H(m)
k is stable under the action of this group. Thus, it

remains to show how H(m)
k decomposes into irreps. First, consider the subspace H⊗k1 ⊗H

⊗(m−k)
0 ⊆

H(m)
k , which is stable under the action of U(H1) × (S[1..k] × S[k+1..m]) and therefore defines a

representation of this group. Note that U(H1) and S[k+1..m] act trivially on the last m − k
multipliers in the tensor product. The largest value of m we care about will be 2n, thus, we have
dimH1 = q−1 ≥ m. Hence, the Schur–Weyl duality (Theorem 1.14) says that this representation
decomposes as a direct sum of the irrepsWλ

q−1×Sλ×S(m−k), where the sum is over all λ ` k. Now

we induce this representation of U(H1)×(S[1..k]×S[k+1..m]) on H⊗k1 ⊗H
⊗(m−k)
0 to a representation

of U(H1)× Sm on H(m)
k ,1 and the Littlewood–Richardson rule (1.12) gives us the following:

Lemma A.2. The subspace H(m)
k can be decomposed as the direct sum of subspaces Hλ

(m−|λ̃|,λ̃)

corresponding to irreps Wλ
q−1 × S(m−|λ̃|,λ̃) of U(H1)× Sm, where the sum is taken over all λ ` k

and λ̃ ∈ Λ(λ) such that m− |λ̃| > λ̃1.

In particular, H(m)
k as a representation of U(H1)× Sm is multiplicity-free.

Let Sm−1 stand for S[2..m]. For σ ` m, define H(m)
k,σ to be the subspace of H(m)

k spanned

by the irreps of Sm isomorphic to Sσ. From Lemma A.2, we get that H(m)
k,(m−k,λ) = Hλ(m−k,λ),

that is, it is the subspace corresponding to the unique copy of the irrep Wλ
q−1 × S(m−k,λ) of

U(H1) × Sm appearing in H(m)
k . We want to see how the subspace H(m)

k divides into the irreps

1Technically, we defined the induction only for finite groups, while neither U(H1) × (S[1..k] × S[k+1..m]) nor
U(H1) × Sm is finite. However, in this case, we are essentially iducing from S[1..k] × S[k+1..m] to Sm, and one can
formally verify that Lemma A.2 resulting from this induction is correct.
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of U(H1) × Sm−1. Unlike in the case of U(H1) × Sm, the representation is not multiplicity-free
any longer. Therefore, when there are multiple copies of the same irrep in the representation, we
would like to have a way to address a single copy. Let us consider two ways of doing that.

Way 1: restricting an irrep of U(H1)×Sm. We can take an irrepWλ
q−1×Sσ of U(H1)×Sm,

corresponding to the subspace Hλσ, and restrict it to U(H1)×Sm−1. The restricted representation
will be a direct sum over all irreps Wλ

q−1 × Sσ
−

such that σ− ⊂ σ, and we denote the space

corresponding to such an irrep by Hλσ−;σ. Thus, we may obtain multiple copies of the same irrep,
but all of them are uniquely labeled.

The specific irreps we are interested in appear in H(m)
k only once or twice. Irreps of the form

Wλ
q−1×S(m−k−1,λ) appear only once as they are only present in the restriction ofWλ

q−1×S(m−k,λ).

For λ− ⊂ λ, irreps of the formWλ
q−1×S(m−k,λ−) appear twice as they are present in the restrictions

of Wλ
q−1 × S(m−k+1,λ−) and Wλ

q−1 × S(m−k,λ). For brevity, let us use denotations

Ĥλ(m−k−1,λ) := Hλ(m−k−1,λ);(m−k,λ),

Ȟλ(m−k,λ−) := Hλ(m−k,λ−);(m−k+1,λ−),

Ĥλ(m−k,λ−) := Hλ(m−k,λ−);(m−k,λ).

We have
Hλ(m−k,λ) = Ĥλ(m−k−1,λ) ⊕

⊕
λ−⊂λ

Ĥλ(m−k,λ−). (A.3)

Way 2: considering H0 ⊗H(m−1)
k and H1 ⊗H(m−1)

k−1 separately. Notice that, for k 6= 0, we
have

H(m)
k = H0 ⊗H(m−1)

k ⊕H1 ⊗H(m−1)
k−1 ,

and both H0 ⊗ H(m−1)
k and H1 ⊗ H(m−1)

k−1 are stable under U(H1) × Sm−1, thus defining two

representations of the group. Let us first consider H0 ⊗H(m−1)
k . The action of U(H1)× Sm−1 on

H0 ⊗H(m−1)
k is isomorphic to its action on H(m−1)

k . In turn, Lemma A.2 describes how H(m−1)
k

decomposes into irreps of U(H1) × Sm−1. Hence, H0 ⊗H(m−1)
k decomposes as the direct sum of

spaces H0 ⊗ H̃λ(m−|λ̃|−1,λ̃)
corresponding to irreps Wλ

q−1 × S(m−|λ̃|−1,λ̃) of U(H1) × Sm−1, where

the sum is taken over all λ ` k and λ̃ ∈ Λ(λ).

This means that the representation of U(H1)× Sm−1 defined by its action on H0 ⊗H(m−1)
k is

multiplicity-free. We denote the subspace of H0⊗H(m−1)
k corresponding to the irrep Wλ

q−1×Sσ
′

by Hλ0,σ′ . Since Wλ
q−1 ×S(m−k−1,λ) is contained in both H(m)

k and H0 ⊗H(m−1)
k exactly once, we

have
Ĥλ(m−k−1,λ) = Hλ0,(m−k−1,λ) = H0 ⊗ H̃λ(m−k−1,λ).
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For the irrepWλ
q−1×S(m−k,λ−), where λ− ⊂ λ, the situation is slightly more complicated as H(m)

k

contains two copies of it: one in H0 ⊗H(m−1)
k and one in H1 ⊗H(m−1)

k−1 . Let us denote the copy

corresponding to the latter by Hλ1,(m−k,λ−). We have

Π̂λ
(m−k,λ−) + Π̌λ

(m−k,λ−) = Πλ
0,(m−k,λ−) + Πλ

1,(m−k,λ−). (A.4)

Overlaps of the copies of the same irrep. We would like to calculate what is the overlap
between the subspaces Ĥλ(m−k,λ−) and Hλ0,(m−k,λ−). The following lemma puts an upper bound
on it:

Lemma A.3. Let dλλ−(m) be the distance in the (m+1)-box Young diagram (m−k+1, λ) between
the two boxes we have to remove in order to obtain (m− k, λ−). Then

Tr
Ä
Π̂λ

(m−k,λ−)Π
λ
0,(m−k,λ−)

ä
≤ 1

dλλ−(m)
dim

Ä
Wλ
q−1 × S(m−k,λ−)

ä
. (A.5)

We leave the proof of Lemma A.3 to Appendix A.3.

One can see that dλλ−(m) ≥ m− 2k + 2, with equality achieved by λ = (k) and λ− = (k − 1).
Since we consider k = o(m), we have

1

dλλ−(m)
=

1

m
+ o

( 1

m

)
.

Let Ξλ1←0,(m−k,λ−) be the transporter from the copy of the irrep Wλ
q−1 × S(m−k,λ−) correspond-

ing to the subspace Hλ0,(m−k,λ−) to the copy corresponding to the subspace Hλ1,(m−k,λ−), and

Ξλ0←1,(m−k,λ−) := (Ξλ1←0,(m−k,λ−))
∗. From (A.4) and (A.5) we get

Π̂λ
(m−k,λ−) =

(
1−O

( 1

m

))
Πλ

1,(m−k,λ−) + O
( 1

m

)
Πλ

0,(m−k,λ−) + O
( 1√

m

)
Ξλ(m−k,λ−), (A.6)

where
Ξλ(m−k,λ−) := Ξλ1←0,(m−k,λ−) + Ξλ0←1,(m−k,λ−),

which has the norm one.

Connection between H1 ⊗H(m−1)
k−1 and H0 ⊗H(m−1)

k−1 . The representation of U(H1) × Sm−1

on H1 ⊗ H(m−1)
k−1 is not necessarily multiplicity-free. Nor, for every irrep contained in it, the

corresponding subspace can be written in the form H1 ⊗K for some space K. However, we have
the following useful result.
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Lemma A.4. For any λ′ ` k − 1 we have⊕
λ+⊃λ′

Hλ+

1,(m−k,λ′) = H1 ⊗ H̃λ
′

(m−k,λ′).

Proof. Both spaces H1 ⊗ H(m−1)
k−1 and H0 ⊗ H(m−1)

k−1 are stable under Sm−1, and thus are repre-
sentations of this group. These representations decompose as

⊕
σH1 ⊗ K′σ and

⊕
σH0 ⊗ K′′σ,

respectively, where σ ` m− 1 and H1 ⊗K′σ and H0 ⊗K′′σ are the Sσ-isotypical subspaces. Since
we ignore the action of U(H1) here, the first space in the tensor products plays no role, and we

have K′σ = K′′σ = H(m−1)
k−1,σ . Finally, on the one hand side, we have

H1 ⊗K′(m−k,λ′) =
⊕

λ+⊃λ′
Hλ+

1,(m−k,λ′)

and, on the other,
H0 ⊗K′′(m−k,λ′) = Hλ′0,(m−k,λ′) = H0 ⊗ H̃λ

′

(m−k,λ′).

Putting everything together. We have

Π̄
(m)
k =

∑
λ`k

Πλ
(m−k,λ) =

∑
λ,`k

Π̂λ
(m−k−1,λ) +

∑
λ`k

∑
λ−⊂λ

Π̂λ
(m−k,λ−)

=
∑
λ`k

Π̂λ
(m−k−1,λ) +

∑
λ−`k−1

∑
λ⊃λ−

(Ä
1−O

Ä 1

m

ää
Πλ

1,(m−k,λ−)+

+ O
Ä 1

m

ä
Πλ

0,(m−k,λ−) + O
Ä 1√

m

ä
Ξλ(m−k,λ−)

)
= Π0 ⊗

∑
λ`k

Π̃λ
(m−k−1,λ) + Π1 ⊗

∑
λ′`k−1

Π̃λ′

(m−1−|λ′|,λ′) + Φ
(m)
k

= Π0 ⊗ Π̄
(m−1)
k + Π1 ⊗ Π̄

(m−1)
k−1 + Φ

(m)
k ,

where the second equality comes from (A.3), the third equality comes from (A.6), the fourth
equality comes from Lemma A.4, and

Φ
(m)
k =

∑
λ`k

∑
λ−⊂λ

(
−O
Ä 1

m

ä
Πλ

1,(m−k,λ−) + O
Ä 1

m

ä
Πλ

0,(m−k,λ−) + O
Ä 1√

m

ä
Ξλ(m−k,λ−)

)
. (A.7)

The norm of Φ
(m)
k is in O(1/

√
m), because the operators in the brackets of (A.7) are orthogonal

for different pairs of λ and λ−. Also, one can see that the support of Φ
(m)
k is contained in ¯̄H(m)

k .
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A.3 Proof of Lemma A.3

We use inductive argument on m. Consider the groups

U(H1), Sm−1 := S[m−1], Sm := S[m], and Sm+1 := S[m+1]

and their action on H⊗(m+1). The representation of U(H1) × Sm−1 on H⊗(m+1) contains three
copies of the irrep Wλ

q−1 × S(m−k,λ−). Using notations similar to Appendix A.2, they are

Ha := Hλ(m−k,λ−);(m−k+1,λ−);(m−k+2,λ−),

Hb := Hλ(m−k,λ−);(m−k+1,λ−);(m−k+1,λ),

Hc := Hλ(m−k,λ−);(m−k,λ);(m−k+1,λ),

where we first restrict an irrep of U(H1) × Sm+1 to U(H1) × Sm, and then restrict the irreps of
this restriction further to U(H1) × Sm−1. Let us consider few other ways how to address copies
of Wλ

q−1 × S(m−k,λ−). The representation of U(H1) × Sm on H⊗m ⊗ H0 contains both irreps

Wλ
q−1 × S(m−k+1,λ−) and Wλ

q−1 × S(m−k,λ) exactly once, and their restrictions to U(H1) × Sm−1

each contains a unique copy of Wλ
q−1 × S(m−k,λ−). Let us denote these copies

H′d := Hλ(m−k,λ−);(m−k+1,λ−);m+1,

H′c := Hλ(m−k,λ−);(m−k,λ);m+1,

respectively. Since H⊗(m+1) also contains only one copy of Wλ
q−1 × S(m−k,λ), we have Hc = H′c.

Finally, H⊗(m−1) ⊗H⊗2
0 contains a unique copy of Wλ

q−1 × S(m−k,λ−), which we denote by

H′′e := Hλ(m−k,λ−);m;m+1.

Now let us consider overlaps of these irreps. Let

γλλ−(m) :=
Tr
Ä
Πλ

(m−k,λ−);(m−k,λ);m+1Πλ
(m−k,λ−);m;m+1

ä
dim

Ä
Wλ
q−1 × S(m−k,λ−)

ä =
Tr
Ä
Π′cΠ

′′
e

ä
dim

Ä
Wλ
q−1 × S(m−k,λ−)

ä ∈ [0, 1]

and, consistently, let

γλλ−(m+ 1) :=
Tr
Ä
Πλ

(m−k+1,λ−);(m−k+1,λ)Π
λ
(m−k+1,λ−);m+1

ä
dim

Ä
Wλ
q−1 × S(m−k+1,λ−)

ä =
Tr
Ä
ΠbΠ

′
d

ä
dim

Ä
Wλ
q−1 × S(m−k,λ−)

ä ∈ [0, 1],

where the last equality comes from the fact that, if two copies of the same irrep have a certain
overlap, then the unique irreps in their restrictions also have the same overlap. Let γm := γλλ−(m)
and γm+1 := γλλ−(m+ 1) for short. Thus, due to the orthogonality of Π′d and Πc, we have

Π′d =

(
(1− γm+1)Πa

»
γm+1(1− γm+1)Ξa←b»

γm+1(1− γm+1)Ξb←a γm+1Πb

)
,
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which implies that Π′′e is equal toá
(1−γm)(1−γm+1)Πa (1−γm)

»
γm+1(1−γm+1)Ξa←b

»
γm(1−γm)(1−γm+1)Ξa←c

(1−γm)
»
γm+1(1−γm+1)Ξb←a (1−γm)γm+1Πb

»
γm(1−γm)γm+1Ξb←c»

γm(1−γm)(1−γm+1)Ξc←a
»
γm(1−γm)γm+1Ξc←b γmΠc

ë
(here, Ξa←b,Ξa←c, . . . ,Ξc←b are transporters between different copies of the irrep).

Let dm be equal to dλλ−(m) in Lemma A.3, that is, let dm be the distance in (m − k + 1, λ)
between the two boxes we have to remove in order to obtain (m − k, λ−). Consistently, let
dm+1 = dm + 1 be the distance in (m − k + 2, λ) between the two boxes we have to remove in
order to obtain (m − k + 1, λ−). We have to prove that γm ≤ 1/dm. If γm = 0, we are done, so
assume γm > 0.

Claim A.5. We have γm 6= 1 and

γm+1 =
dm − 1

(dm + 1)(1/γm − 1)
.

Proof. Let V(m,m+1) be the operator permuting the last two instances of the space H in H⊗(m+1).

Any space corresponding to an irrep of U(H1)× Sm+1 is stable under V(m,m+1), and Hλ(m−k+1,λ)
is such a space. This, in turn, means that the space Hb ⊕ Hc is stable under V(m,m+1) as well,

and the action of V(m,m+1) on this space is given by the orthogonal form of irrep S(m−k+1,λ) (see
Section 1.4.4), namely,

V(m,m+1)|Hb⊕Hc =

Ñ
− 1
dm

Πb

√
1− 1

d2
m

Ξb←c√
1− 1

d2
m

Ξc←b
1
dm

Πc

é
.

Since V(m,m+1)(I
⊗(m−1)
H ⊗Π⊗2

0 ) = I⊗(m−1)
H ⊗Π⊗2

0 , we also have V(m,m+1)Π
′′
e = Π′′e . Thus, we haveÑ

− 1
dm

√
1− 1

d2
m√

1− 1
d2
m

1
dm

é(
(1− γm)γm+1

»
γm(1− γm)γm+1»

γm(1− γm)γm+1 γm

)
=

=

(
(1− γm)γm+1

»
γm(1− γm)γm+1»

γm(1− γm)γm+1 γm

)
,

which clearly cannot hold for γm = 1. Simple further calculation proves the claim.
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Suppose the contrary: γm > 1/dm. Then there exists c > 0 such that γm = 1/(dm −
(dm

2

)
c).

Claim A.5 gives us

γm+1 =
dm − 1

(dm + 1)(dm −
(dm

2

)
c− 1)

=
1

dm + 1− dm+1
dm−1

(dm
2

)
c

=
1

dm+1 −
(dm+1

2

)
c
.

By repeating the same argument, we get that γm′ = 1/(dm′ −
(dm′

2

)
c) for all m′ ≥ m. However,

since dm′ grows linearly with m′, but
(dm′

2

)
quadratically, there exists m′ such that γm′ /∈ [0, 1],

which is a contradiction.
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Appendix B

Necessary conditions on the
adversary matrix for Element
Distinctness with small range

B.1 Action of ∆i on Πλ
λ and transporters

Let us consider i 6= 2. Recall the projectors Π̂s
i from Section 5.4.2, and note that V τ

π Π̂s
i = Π̂s

iV
τ
π

for all (π, τ) ∈ S[n]\{i} × SΣ\{s}. Analogously to Claim 5.1,

Π̂s
i =

∑
µ`n−1

Π̂s,µs
i,µi

,

where Π̂s,µs
i,µi

:= Π̂s
iΠ

µs
µi = Πµs

µi Π̂
s
i projects on a single instance of the irrep Sµ×Sµ of S[n]\{i}×SΣ\{s}.

Due to the symmetry, V τ
π (∆i ◦ Πλ

λ) = (∆i ◦ Πλ
λ)V τ

π for all (π, τ) ∈ S[n]\{i} × SΣ, therefore we
can express

∆i ◦Πλ
λ =

∑
λ′`n

∑
µ⊂λ′

φλ
′
µ Πλ′

µi .

We have

φλ
′
µ =

Tr((∆i ◦Πλ
λ)Πλ′

µi)

Tr(Πλ′
µi)

=
Tr(
∑
s∈Σ Π̂s

iΠ
λ
λΠ̂s

iΠ
λ′
µi)

dimλ′ dimµ

= n
Tr(Π̂s,µs

i,µi
Πλ
µiΠ̂

s,µs
i,µi

Πλ′
µi)

dimλ′ dimµ
= n

Tr(Π̂s,µs
i,µi

Πλ
µi) · Tr(Π̂s,µs

i,µi
Πλ′
µi)

dimλ′(dimµ)3

= n
Tr(Π̂s

iΠ
λ
µi) · Tr(Π̂s

iΠ
λ′
µi)

dimλ′(dimµ)3
=

Tr(Πλ
µi) · Tr(Πλ′

µi)

n dimλ′(dimµ)3
=

{
dimλ
n dimµ , if µ ⊂ λ,
0, if µ 6⊂ λ (i.e., Πλ

µi = 0),
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where the second equality is due to (5.11), the third and sixth equalities are due to the symmetry
among all s ∈ Σ, and the fourth equality is from Claim 1.6. Hence

∆i ◦Πλ
λ = Πλ

λ −
dimλ

n

∑
µ⊂λ

( 1

dimµ

∑
λ′⊃µ

Πλ′
µi

)
= Πλ

λ −
dimλ

n

∑
µ⊂λ

( 1

dimµ
Πµi

)
. (B.1)

Now consider j 6= i, λ ` n, and ν ⊂⊂rc λ. Let µ, µ′ ` n−1 be such that ν ⊂ µ ⊂ λ, ν ⊂ µ′ ⊂ λ,
and µ 6= µ′. Let us see how ∆i acts on the transporter Πλ

νij ,µ′i←νij ,µi
. We have

Π̂s
iΠ

λ
νij ,µ′i←νij ,µi

Π̂s
i = Π̂s

iΠ
µ′s
µ′i

Πλ
νij ,µ′i←νij ,µi

Πµs
µi Π̂

s
i = 0

because Πµ′sΠλ
νij ,µ′i←νij ,µi

is a transporter between two instances of the irrep Sν×Sµ′ of S[n]\{i,j}×
SΣ\{s} and, therefore, orthogonal to Πµs . Hence,

∆i ◦Πλ
νij ,µ′i←νij ,µi

= 0 and ∆i ◦Πλ
νij ,µ′i←νij ,µi

= Πλ
νij ,µ′i←νij ,µi

. (B.2)

B.2 Necessary conditions for ‖∆1 ◦ Γ‖ = O(1)

We will use the following lemmas and corollaries in the proof of Claim 5.4. Let Γ1,2 be given as
in (5.7), and Γ be obtained from Γ1,2 via (5.5).

Lemma B.1. Consider λ ` n, µ ⊂ λ, µ′ ⊂ λ, and ν ⊂ µ, µ′ (we allow µ = µ′ here). If
‖∆1 ◦ Γ′‖ ≤ 1, then

‖Πλ
ν12,µ1

(∆1 ◦ Γ1,2)Πλ
ν12,µ′1

‖ ≤
√

dimµ′

(n− 1) dim ν
.

Proof. For the proof, let us assume that ν ⊂⊂rc λ and µ 6= µ′. It is easy to see that the proof
works in all the other cases too. Let Ψλ

ν,µ :=
∑
π∈R′ UπΠλ

ν12,µ1
Uπ−1 , where the transversal R′ was

defined in Section 5.4.1. From (5.8), we have

Ψλ
ν,µ(∆1 ◦ Γ′) =

∑
π∈R′

UπΠλ
ν12,µ1

(∆1 ◦ Γ1,2)Vπ−1 , (B.3)

whose norm is at most 1 because Ψλ
ν,µ is a projector.

We can express
Πλ
ν12,µ1

(∆1 ◦ Γ1,2) = ψΠλ
ν12,µ1

+ ψ′Πλ
ν12,µ1←ν12,µ′1

,

where

ψ := ‖Πλ
ν12,µ1

(∆1 ◦ Γ1,2)Πλ
ν12,µ1

‖ and ψ′ := ‖Πλ
ν12,µ1

(∆1 ◦ Γ1,2)Πλ
ν12,µ′1

‖.
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Hence,

(∆1 ◦ Γ1,2)∗Πλ
ν12,µ1

(∆1 ◦ Γ1,2) = ψ2Πλ
ν12,µ1

+ (ψ′)2Πλ
ν12,µ′1

+ ψψ′Πλ
ν12,µ1↔ν12,µ′1

. (B.4)

From (B.3), (B.4), and (5.18), we get

(∆1 ◦ Γ′)∗Ψλ
ν,µ(∆1 ◦ Γ′) = ψ2(n− 1)

dim ν

dimµ
Πλ
µ + (ψ′)2(n− 1)

dim ν

dimµ′
Πλ
µ′ .

The norm of this matrix is at most 1, which completes the proof.

Corollary B.2. Let ν ` n− 2, µ ⊃ ν, and λ, λ′ ⊃ µ. If ‖∆1 ◦ Γ′‖ ≤ 1, then∣∣∣∣∣Tr(Πλ
ν12,µ1

Γ1,2)

dimλ dim ν
−

Tr(Πλ′
ν12,µ1

Γ1,2)

dimλ′ dim ν

∣∣∣∣∣ ≤ 2

√
dimµ

(n− 1) dim ν
.

Proof. From Lemma B.1, we have

∥∥∥Πλ
ν12,µ1

(∆1 ◦ Γ1,2)Πλ
ν12,µ1

∥∥∥ =

∣∣∣Tr
Ä
Πλ
ν12,µ1

(∆1 ◦ Γ1,2)
ä∣∣∣

dimλ dim ν

=

∣∣∣Tr
Ä
(∆1 ◦Πλ

ν12,µ1
)Γ1,2

ä∣∣∣
dimλdim ν

=

∣∣∣Tr
Ä
(Πλ

ν12,µ1
− dimλ

n dimµΠν12,µ1)Γ1,2

ä∣∣∣
dimλdim ν

=

∣∣∣∣∣Tr
Ä
Πλ
ν12,µ1

Γ1,2

ä
dimλdim ν

−
Tr
Ä
Πν12,µ1Γ1,2

ä
n dimµ dim ν

∣∣∣∣∣ ≤
√

dimµ

(n− 1) dim ν
,

where the second and third equalities are due to (5.11) and (B.1), respectively. We obtain the
same inequality with λ′ instead of λ, and the result follows from the triangle inequality.

Corollary B.3. Consider λ ` n, ν ⊂⊂rc λ, and µ, µ′ ` n − 1 such that ν ⊂ µ ⊂ λ, ν ⊂ µ′ ⊂ λ,
and µ appears after µ′ in the lexicographical order. If ‖∆1 ◦ Γ′‖ ≤ 1, then∣∣∣∣∣αλid,ν

»
d2
λ,ν − 1

2dλ,ν
− αλsgn,ν

dλ,ν − 1

2dλ,ν

∣∣∣∣∣ ≤
√

dimµ

(n− 1) dim ν
,

∣∣∣∣∣αλid,ν
»
d2
λ,ν − 1

2dλ,ν
+ αλsgn,ν

dλ,ν + 1

2dλ,ν

∣∣∣∣∣ ≤
√

dimµ′

(n− 1) dim ν
,

Proof. Since λ is the unique n-box Young diagram that has both µ and µ′ as subdiagrams, we
have

Πν12,µ′1
Γ1,2Πν12,µ1 = Πλ

ν12,µ′1
Γ1,2Πλ

ν12,µ1
.
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Hence, due to (B.2) and the commutativity relations (5.12), we have

Πλ
ν12,µ′1

(∆1 ◦ Γ1,2)Πλ
ν12,µ1

= Πλ(∆1 ◦ (Πν12,µ′1
Γ1,2Πν12,µ1))Πλ = Πλ

ν12,µ′1
Γ1,2Πλ

ν12,µ1
.

The same holds with µ and µ′ swapped. From (5.14) and (5.15), we get that

Πλ
ν12,µ′1

Γ1,2Πλ
ν12,µ1

=

Ç
αλid,ν

»
d2
λ,ν − 1

2dλ,ν
− αλsgn,ν

dλ,ν − 1

2dλ,ν

å
Πλ
ν12,µ′1←ν12,µ1

,

Πλ
ν12,µ1

Γ1,2Πλ
ν12,µ′1

=

Ç
αλid,ν

»
d2
λ,ν − 1

2dλ,ν
+ αλsgn,ν

dλ,ν + 1

2dλ,ν

å
Πλ
ν12,µ1←ν12,µ′1

,

and we apply Lemma B.1 to complete the proof.

Lemma B.4. Let θ be a Young diagram having at most n/2−2 boxes and η ⊃ θ. If ‖∆1◦Γ′′‖ ≤ 1,
then ∣∣∣∣∣∣αη̄id,η̄12

− αθ̄id,θ̄12
+

2(αη̄
id,θ̄12

− αη̄id,η̄12
)

dη̄,θ̄12
(dη̄,θ̄12

− 1)

∣∣∣∣∣∣ ≤ 2

Ã
dim θ̄3(n−1

2

)
dim θ̄123

.

Proof. Note that Πη̄
θ̄123,θ̄3

(∆3 ◦ Γ1,2) can be expressed as a linear combination of Πη̄
θ̄123,θ̄3

and

Πη̄
θ̄123,θ̄3←id,θ̄123,η̄3

, while Πθ̄
θ̄123

(∆3 ◦Γ1,2) is proportional to Πθ̄
θ̄123

. Similarly to Lemma B.1, we can

show that

∥∥∥Πη̄
θ̄123,θ̄3

(∆3 ◦ Γ1,2)Πη̄
θ̄123,θ̄3

∥∥∥ ≤
Ã

dim θ̄3(n−1
2

)
dim θ̄123

,
∥∥∥Πθ̄

θ̄123
(∆3 ◦ Γ1,2)Πθ̄

θ̄123

∥∥∥ ≤
Ã

dim θ̄3(n−1
2

)
dim θ̄123

,

where, instead of (5.18), we have to use (analogously proven)

∑
π∈R′′

VπΠη̄
θ̄123,θ̄3

Vπ−1 =

Ç
n− 1

2

å
dim θ̄123

dim θ̄3
Πη̄
θ̄3

and
∑
π∈R′′

VπΠη̄
id,θ̄123,η̄3↔θ̄123,θ̄3

Vπ−1 = 0.

Then, similarly to Corollary B.2, we get∣∣∣∣∣∣
Tr(Πη̄

θ̄123,θ̄3
Γ1,2)

dim η̄ dim θ̄123
−

Tr(Πθ̄
θ̄123

Γ1,2)

dim θ̄ dim θ̄123

∣∣∣∣∣∣ ≤ 2

Ã
dim θ̄3(n−1

2

)
dim θ̄123

.

We conclude by noticing that

Πθ̄
θ̄123

Γ1,2 = Πθ̄
θ̄123

Ä
αθ̄id,θ̄12

Πθ̄
θ̄12

ä
= αθ̄id,θ̄12

Πθ̄
θ̄123
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and, due to (5.16),

Πη̄
θ̄123,θ̄3

Γ1,2 Πη̄
θ̄123,θ̄3

= Πη̄
θ̄123,θ̄3

Ä
αη̄id,η̄12

Πη̄
η̄12

+ αη̄
id,θ̄12

Πη̄
id,θ̄12

ä
Πη̄
θ̄123,θ̄3

=

Ç(
1− 2

dη̄,θ̄12
(dη̄,θ̄12

− 1)

)
αη̄id,η̄12

+
2

dη̄,θ̄12
(dη̄,θ̄12

− 1)
αη̄

id,θ̄12

å
Πη̄
θ̄123,θ̄3

.

B.3 Proof of Claim 5.4

We can assume that all the coefficients β in the expression (5.4) for Γ are at most n, as n is
the trivial upper bound on the quantum query complexity of Element Distinctness. That,
in turn, means that we can assume that the coefficients α in Point 1, Point 2, and Point 3 of
Claim 5.4 are, respectively, at most O(1), O(

√
n), and O(n). Let us prove sequentially every

point of the claim.

Point 1. Consider k = O(1), θ ` k, and η ⊃ θ, so dη̄,θ̄12
= n−O(1) and dim θ̄3/dim θ̄123 = Θ(1).

From Lemma B.4, we get that |αη̄id,η̄12
− αθ̄

id,θ̄12
| = O(1/n), which proves that αθ̄

id,θ̄12
= n−1/3 +

O(1/n) by the induction over k, where we take α
(n)
id,(n−2) = n−1/3 as the base case.

Point 2. Consider θ ` O(1) and η ⊃ θ, so dim θ̄1/ dim θ̄12 = Θ(1). From the first inequality of
Corollary B.3 (in which we choose λ := η̄ and ν := θ̄12, forcing µ = θ̄1), we get that |αη̄

id,θ̄12
−

αη̄
sgn,θ̄12

| = O(1/
√
n). From Corollary B.2 (in which we choose ν := θ̄12, µ := θ̄1, λ := θ̄, and

λ′ := η̄), we get ∣∣∣∣∣ Tr(Πθ̄
θ̄12

Γ1,2)

dim θ̄ dim θ̄12
−

Tr(Πη̄
θ̄12,θ̄1

Γ1,2)

dim η̄ dim θ̄12

∣∣∣∣∣ = O(1/
√
n),

where we have

Πθ̄
θ̄12

Γ1,2 = αθ̄id,θ̄12
Πθ̄
θ̄12
, Πη̄

θ̄12,θ̄1
Γ1,2Πη̄

θ̄12,θ̄1
=

Ç
αη̄

id,θ̄12

dη̄,θ̄12
− 1

2dη̄,θ̄12

+ αη̄
sgn,θ̄12

√
d2
η̄,θ̄12
− 1

2dη̄,θ̄12

å
Πη̄
θ̄12,θ̄1

from (5.14) and (5.15). Therefore, |αθ̄
id,θ̄12

− (αη̄
id,θ̄12

+ αη̄
sgn,θ̄12

)/2| = O(1/
√
n), which together

with previously proven αθ̄
id,θ̄12

= n−1/3 +O(1/n) and |αη̄
id,θ̄12

−αη̄
sgn,θ̄12

| = O(1/
√
n) imply αη̄

id,θ̄12
=

n−1/3 + O(1/
√
n) and αη̄

sgn,θ̄12
= n−1/3 + O(1/

√
n).
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Point 3. Consider λ ` n and ν ⊂⊂c λ that is obtained from λ by removing two boxes in different
columns below the first row. Let us consider two cases.

Case 1: ν ⊂⊂rc λ. Let µ, µ′ ` n − 1 be such that ν ⊂ µ ⊂ λ, ν ⊂ µ′ ⊂ λ, and µ 6= µ′. Since
dλ,ν ≥ 2, dimµ/ dim ν = Θ(n), and dimµ′/ dim ν = Θ(n), both inequalities of Corollary B.3
together imply αλid,ν = O(1) and αλsgn,ν = O(1).

Case 2: ν ⊂⊂c λ and ν 6⊂⊂r λ (i.e., ν is obtained from λ by removing two boxes in the same,
but not the first, row). Let µ ` n− 1 be the unique Young diagram that satisfies ν ⊂ µ ⊂ λ, and
let λ′ be obtained from µ by adding a box in the first row. For Point 2 we already have shown
that αλ

′
id,ν = o(1) and αλ

′
sgn,ν = o(1), so, from Corollary B.2 and dimµ/dim ν = Θ(n), we get that

αλid,ν = O(1).
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