59 research outputs found

    Graphs, Matrices, and the GraphBLAS: Seven Good Reasons

    Get PDF
    The analysis of graphs has become increasingly important to a wide range of applications. Graph analysis presents a number of unique challenges in the areas of (1) software complexity, (2) data complexity, (3) security, (4) mathematical complexity, (5) theoretical analysis, (6) serial performance, and (7) parallel performance. Implementing graph algorithms using matrix-based approaches provides a number of promising solutions to these challenges. The GraphBLAS standard (istc- bigdata.org/GraphBlas) is being developed to bring the potential of matrix based graph algorithms to the broadest possible audience. The GraphBLAS mathematically defines a core set of matrix-based graph operations that can be used to implement a wide class of graph algorithms in a wide range of programming environments. This paper provides an introduction to the GraphBLAS and describes how the GraphBLAS can be used to address many of the challenges associated with analysis of graphs.Comment: 10 pages; International Conference on Computational Science workshop on the Applications of Matrix Computational Methods in the Analysis of Modern Dat

    A Match in Time Saves Nine: Deterministic Online Matching With Delays

    Full text link
    We consider the problem of online Min-cost Perfect Matching with Delays (MPMD) introduced by Emek et al. (STOC 2016). In this problem, an even number of requests appear in a metric space at different times and the goal of an online algorithm is to match them in pairs. In contrast to traditional online matching problems, in MPMD all requests appear online and an algorithm can match any pair of requests, but such decision may be delayed (e.g., to find a better match). The cost is the sum of matching distances and the introduced delays. We present the first deterministic online algorithm for this problem. Its competitive ratio is O(mlog25.5)O(m^{\log_2 5.5}) =O(m2.46) = O(m^{2.46}), where 2m2 m is the number of requests. This is polynomial in the number of metric space points if all requests are given at different points. In particular, the bound does not depend on other parameters of the metric, such as its aspect ratio. Unlike previous (randomized) solutions for the MPMD problem, our algorithm does not need to know the metric space in advance

    Unbounded lower bound for k-server against weak adversaries

    Get PDF
    We study the resource augmented version of the kk-server problem, also known as the kk-server problem against weak adversaries or the (h,k)(h,k)-server problem. In this setting, an online algorithm using kk servers is compared to an offline algorithm using hh servers, where hkh\le k. For uniform metrics, it has been known since the seminal work of Sleator and Tarjan (1985) that for any ϵ>0\epsilon>0, the competitive ratio drops to a constant if k=(1+ϵ)hk=(1+\epsilon) \cdot h. This result was later generalized to weighted stars (Young 1994) and trees of bounded depth (Bansal et al. 2017). The main open problem for this setting is whether a similar phenomenon occurs on general metrics. We resolve this question negatively. With a simple recursive construction, we show that the competitive ratio is at least Ω(loglogh)\Omega(\log \log h), even as kk\to\infty. Our lower bound holds for both deterministic and randomized algorithms. It also disproves the existence of a competitive algorithm for the infinite server problem on general metrics.Comment: To appear in STOC 202

    Probabilistic Metric Embedding via Metric Labeling

    Get PDF
    We consider probabilistic embedding of metric spaces into ultra-metrics (or equivalently to a constant factor, into hierarchically separated trees) to minimize the expected distortion of any pairwise distance. Such embeddings have been widely used in network design and online algorithms. Our main result is a polynomial time algorithm that approximates the optimal distortion on any instance to within a constant factor. We achieve this via a novel LP formulation that reduces this problem to a probabilistic version of uniform metric labeling

    Metrical Service Systems with Multiple Servers

    Full text link
    We study the problem of metrical service systems with multiple servers (MSSMS), which generalizes two well-known problems -- the kk-server problem, and metrical service systems. The MSSMS problem is to service requests, each of which is an ll-point subset of a metric space, using kk servers, with the objective of minimizing the total distance traveled by the servers. Feuerstein initiated a study of this problem by proving upper and lower bounds on the deterministic competitive ratio for uniform metric spaces. We improve Feuerstein's analysis of the upper bound and prove that his algorithm achieves a competitive ratio of k((k+ll)1)k({{k+l}\choose{l}}-1). In the randomized online setting, for uniform metric spaces, we give an algorithm which achieves a competitive ratio O(k3logl)\mathcal{O}(k^3\log l), beating the deterministic lower bound of (k+ll)1{{k+l}\choose{l}}-1. We prove that any randomized algorithm for MSSMS on uniform metric spaces must be Ω(logkl)\Omega(\log kl)-competitive. We then prove an improved lower bound of (k+2l1k)(k+l1k){{k+2l-1}\choose{k}}-{{k+l-1}\choose{k}} on the competitive ratio of any deterministic algorithm for (k,l)(k,l)-MSSMS, on general metric spaces. In the offline setting, we give a pseudo-approximation algorithm for (k,l)(k,l)-MSSMS on general metric spaces, which achieves an approximation ratio of ll using klkl servers. We also prove a matching hardness result, that a pseudo-approximation with less than klkl servers is unlikely, even for uniform metric spaces. For general metric spaces, we highlight the limitations of a few popular techniques, that have been used in algorithm design for the kk-server problem and metrical service systems.Comment: 18 pages; accepted for publication at COCOON 201
    corecore