49,225 research outputs found

    A policy language definition for provenance in pervasive computing

    Get PDF
    Recent advances in computing technology have led to the paradigm of pervasive computing, which provides a means of simplifying daily life by integrating information processing into the everyday physical world. Pervasive computing draws its power from knowing the surroundings and creates an environment which combines computing and communication capabilities. Sensors that provide high-resolution spatial and instant measurement are most commonly used for forecasting, monitoring and real-time environmental modelling. Sensor data generated by a sensor network depends on several influences, such as the configuration and location of the sensors or the processing performed on the raw measurements. Storing sufficient metadata that gives meaning to the recorded observation is important in order to draw accurate conclusions or to enhance the reliability of the result dataset that uses this automatically collected data. This kind of metadata is called provenance data, as the origin of the data and the process by which it arrived from its origin are recorded. Provenance is still an exploratory field in pervasive computing and many open research questions are yet to emerge. The context information and the different characteristics of the pervasive environment call for different approaches to a provenance support system. This work implements a policy language definition that specifies the collecting model for provenance management systems and addresses the challenges that arise with stream data and sensor environments. The structure graph of the proposed model is mapped to the Open Provenance Model in order to facilitating the sharing of provenance data and interoperability with other systems. As provenance security has been recognized as one of the most important components in any provenance system, an access control language has been developed that is tailored to support the special requirements of provenance: fine-grained polices, privacy policies and preferences. Experimental evaluation findings show a reasonable overhead for provenance collecting and a reasonable time for provenance query performance, while a numerical analysis was used to evaluate the storage overhead

    Semantic-based policy engineering for autonomic systems

    No full text
    This paper presents some important directions in the use of ontology-based semantics in achieving the vision of Autonomic Communications. We examine the requirements of Autonomic Communication with a focus on the demanding needs of ubiquitous computing environments, with an emphasis on the requirements shared with Autonomic Computing. We observe that ontologies provide a strong mechanism for addressing the heterogeneity in user task requirements, managed resources, services and context. We then present two complimentary approaches that exploit ontology-based knowledge in support of autonomic communications: service-oriented models for policy engineering and dynamic semantic queries using content-based networks. The paper concludes with a discussion of the major research challenges such approaches raise

    System Support for Managing Invalid Bindings

    Full text link
    Context-aware adaptation is a central aspect of pervasive computing applications, enabling them to adapt and perform tasks based on contextual information. One of the aspects of context-aware adaptation is reconfiguration in which bindings are created between application component and remote services in order to realize new behaviour in response to contextual information. Various research efforts provide reconfiguration support and allow the development of adaptive context-aware applications from high-level specifications, but don't consider failure conditions that might arise during execution of such applications, making bindings between application and remote services invalid. To this end, we propose and implement our design approach to reconfiguration to manage invalid bindings. The development and modification of adaptive context-aware applications is a complex task, and an issue of an invalidity of bindings further complicates development efforts. To reduce the development efforts, our approach provides an application-transparent solution where the issue of the invalidity of bindings is handled by our system, Policy-Based Contextual Reconfiguration and Adaptation (PCRA), not by an application developer. In this paper, we present and describe our approach to managing invalid bindings and compare it with other approaches to this problem. We also provide performance evaluation of our approach

    Using P3P in a web services-based context-aware application platform

    Get PDF
    This paper describes a proposal for a privacy control architecture to be applied in the WASP project. The WASP project aims to develop a context-aware service platform on top of 3G networks, using web services technology. The proposed privacy control architecture is based on the P3P privacy policy description standard defined by W3C. The paper identifies extensions to P3P and its associated preference expression language APPEL that are needed to operate in a context-aware environment

    HiTrust: building cross-organizational trust relationship based on a hybrid negotiation tree

    Get PDF
    Small-world phenomena have been observed in existing peer-to-peer (P2P) networks which has proved useful in the design of P2P file-sharing systems. Most studies of constructing small world behaviours on P2P are based on the concept of clustering peer nodes into groups, communities, or clusters. However, managing additional multilayer topology increases maintenance overhead, especially in highly dynamic environments. In this paper, we present Social-like P2P systems (Social-P2Ps) for object discovery by self-managing P2P topology with human tactics in social networks. In Social-P2Ps, queries are routed intelligently even with limited cached knowledge and node connections. Unlike community-based P2P file-sharing systems, we do not intend to create and maintain peer groups or communities consciously. In contrast, each node connects to other peer nodes with the same interests spontaneously by the result of daily searches

    Active architecture for pervasive contextual services

    Get PDF
    International Workshop on Middleware for Pervasive and Ad-hoc Computing MPAC 2003), ACM/IFIP/USENIX International Middleware Conference (Middleware 2003), Rio de Janeiro, Brazil This work was supported by the FP5 Gloss project IST2000-26070, with partners at Trinity College Dublin and Université Joseph Fourier, and by EPSRC grants GR/M78403/GR/M76225, Supporting Internet Computation in Arbitrary Geographical Locations, and GR/R45154, Bulk Storage of XML Documents.Pervasive services may be defined as services that are available "to any client (anytime, anywhere)". Here we focus on the software and network infrastructure required to support pervasive contextual services operating over a wide area. One of the key requirements is a matching service capable of as-similating and filtering information from various sources and determining matches relevant to those services. We consider some of the challenges in engineering a globally distributed matching service that is scalable, manageable, and able to evolve incrementally as usage patterns, data formats, services, network topologies and deployment technologies change. We outline an approach based on the use of a peer-to-peer architecture to distribute user events and data, and to support the deployment and evolution of the infrastructure itself.Peer reviewe

    Context-aware adaptation in DySCAS

    Get PDF
    DySCAS is a dynamically self-configuring middleware for automotive control systems. The addition of autonomic, context-aware dynamic configuration to automotive control systems brings a potential for a wide range of benefits in terms of robustness, flexibility, upgrading etc. However, the automotive systems represent a particularly challenging domain for the deployment of autonomics concepts, having a combination of real-time performance constraints, severe resource limitations, safety-critical aspects and cost pressures. For these reasons current systems are statically configured. This paper describes the dynamic run-time configuration aspects of DySCAS and focuses on the extent to which context-aware adaptation has been achieved in DySCAS, and the ways in which the various design and implementation challenges are met

    Personalizing Situated Workflows for Pervasive Healthcare Applications

    Get PDF
    In this paper, we present an approach where a workflow system is combined with a policy-based framework for the specification and enforcement of policies for healthcare applications. In our approach, workflows are used to capture entitiespsila responsibilities and to assist entities in fulfilling them. The policy-based framework allows us to express authorisation policies to define the rights that entities have in the system, and event-condition-action (ECA) policies that are used to adapt the system to the actual situation. Authorisations will often depend on the context in which patientspsila care takes place, and our policies support predicates that reflect the environment. ECA policies capture events that reflect the current state of the environment and can perform actions to accordingly adapt the workflow execution. We show how the approach can be used for the Edema treatment and how fine-grained authorisation and ECA policies are expressed and used
    • 

    corecore