17,033 research outputs found

    Commitment and Dispatch of Heat and Power Units via Affinely Adjustable Robust Optimization

    Get PDF
    The joint management of heat and power systems is believed to be key to the integration of renewables into energy systems with a large penetration of district heating. Determining the day-ahead unit commitment and production schedules for these systems is an optimization problem subject to uncertainty stemming from the unpredictability of demand and prices for heat and electricity. Furthermore, owing to the dynamic features of production and heat storage units as well as to the length and granularity of the optimization horizon (e.g., one whole day with hourly resolution), this problem is in essence a multi-stage one. We propose a formulation based on robust optimization where recourse decisions are approximated as linear or piecewise-linear functions of the uncertain parameters. This approach allows for a rigorous modeling of the uncertainty in multi-stage decision-making without compromising computational tractability. We perform an extensive numerical study based on data from the Copenhagen area in Denmark, which highlights important features of the proposed model. Firstly, we illustrate commitment and dispatch choices that increase conservativeness in the robust optimization approach. Secondly, we appraise the gain obtained by switching from linear to piecewise-linear decision rules within robust optimization. Furthermore, we give directions for selecting the parameters defining the uncertainty set (size, budget) and assess the resulting trade-off between average profit and conservativeness of the solution. Finally, we perform a thorough comparison with competing models based on deterministic optimization and stochastic programming.Comment: 31 page

    Ensemble updating of binary state vectors by maximising the expected number of unchanged components

    Full text link
    In recent years, several ensemble-based filtering methods have been proposed and studied. The main challenge in such procedures is the updating of a prior ensemble to a posterior ensemble at every step of the filtering recursions. In the famous ensemble Kalman filter, the assumption of a linear-Gaussian state space model is introduced in order to overcome this issue, and the prior ensemble is updated with a linear shift closely related to the traditional Kalman filter equations. In the current article, we consider how the ideas underlying the ensemble Kalman filter can be applied when the components of the state vectors are binary variables. While the ensemble Kalman filter relies on Gaussian approximations of the forecast and filtering distributions, we instead use first order Markov chains. To update the prior ensemble, we simulate samples from a distribution constructed such that the expected number of equal components in a prior and posterior state vector is maximised. We demonstrate the performance of our approach in a simulation example inspired by the movement of oil and water in a petroleum reservoir, where also a more na\"{i}ve updating approach is applied for comparison. Here, we observe that the Frobenius norm of the difference between the estimated and the true marginal filtering probabilities is reduced to the half with our method compared to the na\"{i}ve approach, indicating that our method is superior. Finally, we discuss how our methodology can be generalised from the binary setting to more complicated situations

    Convex Optimal Uncertainty Quantification

    Get PDF
    Optimal uncertainty quantification (OUQ) is a framework for numerical extreme-case analysis of stochastic systems with imperfect knowledge of the underlying probability distribution. This paper presents sufficient conditions under which an OUQ problem can be reformulated as a finite-dimensional convex optimization problem, for which efficient numerical solutions can be obtained. The sufficient conditions include that the objective function is piecewise concave and the constraints are piecewise convex. In particular, we show that piecewise concave objective functions may appear in applications where the objective is defined by the optimal value of a parameterized linear program.Comment: Accepted for publication in SIAM Journal on Optimizatio

    Nonparametric estimation of concave production technologies by entropic methods

    Get PDF
    An econometric methodology is developed for nonparametric estimation of concave production technologies. The methodology, bases on the priciple of maximum likelihood, uses entropic distance and concvex programming techniques to estimate production functions.convex programming, production functions, entropy

    Graphical Models for Optimal Power Flow

    Get PDF
    Optimal power flow (OPF) is the central optimization problem in electric power grids. Although solved routinely in the course of power grid operations, it is known to be strongly NP-hard in general, and weakly NP-hard over tree networks. In this paper, we formulate the optimal power flow problem over tree networks as an inference problem over a tree-structured graphical model where the nodal variables are low-dimensional vectors. We adapt the standard dynamic programming algorithm for inference over a tree-structured graphical model to the OPF problem. Combining this with an interval discretization of the nodal variables, we develop an approximation algorithm for the OPF problem. Further, we use techniques from constraint programming (CP) to perform interval computations and adaptive bound propagation to obtain practically efficient algorithms. Compared to previous algorithms that solve OPF with optimality guarantees using convex relaxations, our approach is able to work for arbitrary distribution networks and handle mixed-integer optimization problems. Further, it can be implemented in a distributed message-passing fashion that is scalable and is suitable for "smart grid" applications like control of distributed energy resources. We evaluate our technique numerically on several benchmark networks and show that practical OPF problems can be solved effectively using this approach.Comment: To appear in Proceedings of the 22nd International Conference on Principles and Practice of Constraint Programming (CP 2016
    corecore