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Abstract

An econometric methodology is developed for nonparametric estimation of concave pro-
duction technologies. The methodology, based on the principle of maximum likelihood, uses
entropic distance and convex programming techniques to estimate production functions.
Empirical applications are presented to demonstrate the feasibility of the methodology in
small and large data sets.
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1 Introduction

The econometric analysis of production functions has a long history, dating back to the pioneer-
ing efforts of Cobb and Douglas (1928). A constant theme to this history has been the search for
ever more flexible functional forms. The legendary Cobb-Douglas production function assumes
that the elasticity of substitution (ES) between factors of production is unity and returns to
scale (RTS) are constant. Arrow et al (1961) relaxed the restriction that ES = 1 in their CES
production function, but assumed that ES is constant. Subsequently, Christensen, Jorgenson
and Lau (1973) proposed the translog production function (TL) by permitting ES to vary
between different factors of production and at different scales of output. Lau (1986) provides
a survey of these, and related, developments. More recently, Zellner and Ryu (1998) suggest
using the Box-Cox transformation to allow RTS and ES to vary. Below we follow Zellner
and Ryu and refer to this highly flexible functional form by NRVES.1 A further advantage of
NRVES is that, unlike TL, it is quasiconcave and therefore satisfies the neoclassical properties
of a production function.

In this paper we suggest a nonparametric methodology for estimating production functions.
We make no parametric assumptions about the distribution of the disturbances, and only
the weakest of assumptions about functional form. We assume the production function is
nonnegative, nondecreasing, and concave (diminishing marginal returns).2 We show that the
Maximum Likelihood (ML) estimation problem may be equivalently formulated as a convex
program. For large-size problems, where either or both the number of observations and the
number of factors of production are large, we explain how one may approximate the convex
program with a linear program. Our approach is therefore feasible when there are several factor
inputs and hundreds of data points.

Our approach is based upon the theoretical work of Hanoch and Rothschild (1972) and Afriat
(1971), who suggested a sort of litmus test for quasiconcavity, monotonicity, and homotheticity
given empirical data on inputs, outputs, and prices, or inputs and outputs only. The basic idea
dates back to Afriat (1967) in the context of consumer spending. Hanoch and Rothschild’s idea
was to check the data to see whether the isoquants happen to cross each other or bend in the
“wrong” direction. They clearly saw the possibility of turning their approach into a production
function estimator, but they desisted because they were reluctant to make “blithe parametric
assumptions” about the disturbances. They were also concerned about the computational
complexities involved, especially when there are several factors of production and the number
of observations is large.

In a series of papers Varian extended Hanoch and Rothschild’s and Afriat’s idea to consumer
data (1982 and 1983) and to production data (Varian, 1984 and 1985).3 He asked if there exists
a well-behaved production function that is empirically consistent with cost minimization or

1NR refers to Nerlove and Ringstad who suggested the Box-Cox specification, and VES refers to variable ES.
2This echoes Manski (1995, Chapter 7), who makes the minimal assumption that the demand curve slopes

downwards for purposes of nonparametric estimation of demand schedules.
3Matzkin (1991, 1993) considered the case where the variable of interest is discrete, as in consumer choice

theory, rather than continuous, as here.
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profit maximization. Our efforts are similar in spirit to Varian’s. However, they differ in
several important respects. First, we show that our estimator is consistent. Secondly, we use
convex programming rather than quadratic programming to carry out the optimization. Third,
we demonstrate that our methodology works even when the sample size is large and when the
number of factors of production exceeds 2 as in Varian’s example. Fourth, unlike Varian, we do
not have price data, so we test for concavity and homotheticity rather than cost minimization.
The existence of price data naturally provides more information, thereby easing the burden of
estimation. Therefore our estimation problem is more challenging than Varian’s.

Banker and Maindiratta (1992) suggested a similar idea to ours, except they decompose
the noise into two components: measurement error, which is assumed to be normally and
identically distributed, and optimization (efficiency) error, which is assumed to be truncated
(at zero) normal. Like us they assume that output varies directly with inputs and that the
technology is convex. Because Banker and Maindiratta did not apply their methodology to
empirical data, it is difficult to judge whether it is feasible.4 By contrast, we demonstrate with
empirical examples that our methodology is feasible, even when the sample size is large, and
we do not make arbitrary parametric assumptions about the noise.

Our proposed estimator joins a small but expanding literature on nonparametric estima-
tion subject to shape constraints. The two key shape constraints under consideration here are
monotonicity and concavity. Statisticians, e.g. Hall and Huang (2001), have devoted consider-
able attention to the former but not the latter. Econometricians, however, have focused upon
both monotonicity and concavity. Zellner and Ryu (1998) suggest a semiparametric proce-
dure in which both monotonicity and concavity apply. Yatchew and Bos (1997) use penalized
least squares to estimate monotonic and concave functions. Finally, Matzkin (1999) develops a
specialized algorithm for nonparametric estimation of concave technologies under a variety of
general shape constraints, and demonstrates it by solving a number of test problems involving
two inputs and approximately 100 data points. The advantages of the convex and linear pro-
gramming approach presented herein are twofold: first, convex and linear programming software
are readily available, and second, our approach can solve large-size problems. We refer to our
proposed estimator as Convex Entropic Nonparametric or CENP, because convex programming
and entropy are used for purposes of nonparametric estimation.

We restrict our empirical applications to cross-section data. Because time-series data are
typically nonstationary, they raise special econometric problems of their own (Beenstock 1997),
which we wish to avoid here. We also avoid other important issues, such as the identification
problem first raised by Marschak and Andrews (1944). Finally, we assume that the data on
factor inputs are measured without error, and that all the error is in the dependent variable.
Had this not been the case it would not have been possible to turn the matter into a convex pro-
gramming program, which is relatively easy to solve from a nonconvex programming problem,
which is very difficult to solve. Therefore we side-step the important issues of stochastic regres-
sors and errors-in-variables. Our main concern is therefore to propose CENP as an econometric
methodology and to illustrate its feasibility and performance in the context of production data.

4We are doubtful if it is feasible because their Problem 3 is a bi-level programming problem, and their Problem
4 is a nonconvex programming problem, both of which are very difficult to solve.
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The remainder of the paper is organized as follows. Section 2 describes the Maximum
Likelihood (ML) approach to estimation of the production function. Section 3 shows that the
ML estimation problem may be equivalently formulated as a convex program, and includes
a brief discussion of numerical procedures used to solve such problems. Section 4 reports
numerical results obtained with the data used by Zellner and Ryu (1998). In particular, we
show how to evaluate various economic parameters once the CENP was solved. We use these
data because we wish to compare CENP with results obtained by Zellner and Ryu’s flexible
estimators. Specifically, we re-estimate Zellner and Ryu’s (1998) NRVES model5, and compare
its results with models estimated using our suggested methodology, CENP.

These data do not put CENP through its paces. This is because the data used by Zellner
and Ryu happen to include only two factors of production and only 25 data points. Since
dimensionality is often a problem in obtaining results with non-parametric estimators, it is
important to demonstrate that CENP is feasible when the number of data points is large and
when there are more than two factors of production. Therefore, a larger sample is required to
assess whether CENP can be used for typical sample sizes. Also, it is desirable to have more than
two inputs, if we wish to assess the ability of CENP to cope with the computational complexity
of higher dimensionality. To these ends we applied our methodology to US manufacturing
data, which contain more than 400 data points and several factors of production, and found
that CENP performs well. Section 5 contains concluding remarks. In Appendix A, we prove
that the obtained ML estimator is consistent in the sense that it converges with probability
one to the true function as the sample size increases to infinity. In Appendix B, we describe
our approach to estimating the marginal rates of substitution and the elasticity of substitution
used in our numerical analyses.6

2 Maximum Likelihood Estimation

In this section we discuss statistical modelling of the considered data. By IRn
+ (IRn

++) we denote
the nonnegative (positive) orthant of the n-dimensional vector space IRn. Let x1, ..., xN be
input vectors and let y1, ..., yN be the corresponding observed outputs. We assume that the
input vectors xi lie in a convex compact set Ξ ⊂ IRn

+ \ {0} and that the outputs yi are positive,
and consider the multiplicative model

yi = ηif(xi), i = 1, ..., N. (2.1)

Here ηi are positive-valued random variables representing the errors (noise) of the model and
f : IRn

+ → IR+ is viewed as the “true” production function. We assume that f(·) satisfies the
following properties: (i) f is concave, (ii) f is componentwise nondecreasing, (iii) f(0) = 0, and
(iv) f(x) > 0 for any x ∈ Ξ. We denote the class of such functions by F . Note that (2.1) is
equivalent to

ln yi = ln f(xi) + εi, i = 1, ..., N, (2.2)
5This is model 42 reported in their Table IV, which has the best goodness-of-fit.
6In the nonparametric setting the level sets are piecewise-linear, hence not differentiable, and so calculation

of such parameters is not a trivial exercise.
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where7 εi := ln ηi. We make the following assumptions about the distribution of εi.

(A1) The random variables εi are independently identically distributed (iid) with common
probability density function (pdf) g(·).

(A2) The pdf g(·) is even (i.e., g(z) = g(−z) for all z ∈ IR), and monotonically decreasing on
[0,+∞) function.

The input variables xi vary by firm, and, as mentioned in Section 1, are assumed to be
measured without error and are assumed to be independendent of the errors ηi (and hence
εi). The multiplicative specification of equation (2.1) ensures that the outputs yi are positive
as appropriate. The assumption that the errors εi are iid (assumption (A1)) is equivalent,
of course, to the assumption that the multiplicative errors ηi are iid, and is quite standard.
Assumption (A2) is rather mild and is made for technical convenience.

Since g(·) is even it follows that the mean of εi is zero (provided, of course, that it is finite),
and that g(·) is monotonically increasing on (−∞, 0]. It is straightforward then to show that
the pdf p(y) of the response variables yi, conditional on xi, can be written as follows

p(y) = y−1g( ln y − ln f(xi)) = y−1g

(
ln

(
y

f(xi)

))
, y > 0,

and p(y) = 0 for y ≤ 0. Consequently, conditional on xi, i = 1, ..., N , the likelihood function,
of the parameter function φ varying over the space F , can be written as follows:

L(φ) =
N∏

i=1

[
y−1

i g

(
ln

(
yi

φ(xi)

))]
]. (2.3)

The maximum likelihood (ML) estimate of f is obtained by maximizing L(φ), or equivalently
by minimizing − lnL(φ), over φ ∈ F . That is, the ML estimate of f is given by an optimal
solution of the problem

Min
φ∈F

N∑

i=1

θ

(
yi

φ(xi)

)
, (2.4)

where8 θ(t) ∝ − ln g(ln t), t > 0.
The assumed properties on g(·) imply the following properties of the function θ(·):

(a) The function θ(·) is monotonically decreasing on (0, 1] and monotonically increasing on
[1,+∞), and hence has its minimum at t = 1.

(b) θ(t) → +∞ as t → 0 or t → +∞.

(c) θ(t−1) = θ(t) for any t > 0.
7The notation “ := ” means “equal by definition”.
8The notation “θ(t) ∝ ” means that θ(·) is proportional (i.e., is equal up to a positive multiplicative constant)

to a given function.
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Property (a) follows directly from the assumption (A2). Property (b) holds since g(z) → 0
as z tends to +∞ or −∞. Property (c) follows from the definition of θ(·) and since g(·) is an
even function. We may consider the following examples of the function θ(·). If εi have a normal
distribution (with zero mean), then θ(t) = (ln t)2, and if g(z) ∝ e−(ez+e−z), then θ(t) = t + t−1.

Since the function θ(·) satisfies the above conditions (a), (b) and (c), it attains its minimum
at the point t = 1. Therefore, if in addition θ(·) is smooth, then θ′(1) = 0 and θ′′(1) ≥ 0.
Consequently θ(·) has the following second order Taylor expansion at t = 1,

θ(t) = a + b(t− 1)2 + o((t− 1)2), (2.5)

where a = θ(1) and b = 1
2θ
′′(1) ≥ 0. Therefore, for errors ηi = yi/f(xi) close to one, estimation

procedures based on solving (2.4) for two different functions θ are asymptotically equivalent,
as long as θ′′(1) > 0 for both of them. In particular, for θ(t) := (ln t)2 and θ(t) := t + t−1

the second derivative at t = 1 is 2, and hence the corresponding estimation procedures are
asymptotically equivalent. Note, however, that from a computational perspective the function
θ(t) = t + t−1 is preferred since it is convex.

Let us observe at this point that typically the optimization problem (2.4) has many (in-
finitely many) optimal solutions. It is possible to show, however, that under mild regularity
conditions, any optimal solution f̂N of (2.4) converges w.p.1 to the true function f as N →∞.
We will discuss this consistency property of ML estimators in the Appendix.

3 Nonparametric Estimation as a Convex Program

In this section we discuss an approach to a numerical solution of the ML optimization problem.
We start by giving a characterization of functions from the class F which take given values at
the input points.

Definition 3.1 A data set D := {(xi, yi)}N
i=1 of input-output pairs is said to be concave-

representable if there exists a function Φ ∈ F for which Φ(xi) = yi.

It is natural to view the function Φ in the above definition as defined on the set

X := conv{x1, ..., xN}+ IRn
+, (3.1)

where conv{x1, ..., xN} denotes the convex hull of the input vectors. That is, x ∈ X if there
exist λi ≥ 0, i = 1, ..., N , such that

∑N
i=1 λi = 1 and x ≥ ∑N

i=1 λixi.
Given a data set D and a vector σ ∈ IRN

+ , let D(σ) denote the data set given by
{(xi, σiyi)}N

i=1, and let Σ(D) denote the set of all such vectors σ for which D(σ) is concave-
representable. Obviously, D is concave-representable if and only if the vector (1, 1, . . . , 1) ∈
Σ(D). Using property (c) of function θ(·), problem (2.4) can be written in the form

Min
σ

N∑

i=1

θ(σi) subject to σ ∈ Σ(D). (3.2)

We now turn to characterizing the implicit constraint “σ ∈ Σ(D)” into a set of explicit
constraints so that the problem (3.2) can be computationally solved.
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3.1 Characterization of concave-representable data sets

For a given data set D and x ∈ X , denote by Φ∗(x) the optimal value of the following linear
programming problem:

Φ∗(x) := Max
λ

N∑

i=1

λiyi subject to
N∑

i=1

λixi ≤ x,
N∑

i=1

λi = 1, λi ≥ 0, i = 1, ..., N. (3.3)

Lemma 3.1 If D is concave-representable, then Φ∗ is its minimal representation, namely,
Φ(·) ≥ Φ∗(·) on X for any other representation Φ.

Proof. For every x ∈ X , the feasible set of problem (3.3) is nonempty. Clearly, Φ∗ is
nonnegative, nondecreasing and finite-valued. A straightforward argument shows that Φ∗ is
also concave. Hence, Φ∗ ∈ F . Let Φ denote a representation for D. Pick an x ∈ X and a
feasible vector λ in (3.3). Since Φ is both nondecreasing and concave,

Φ(x) ≥ Φ

(∑

i

λixi

)
≥

∑

i

λiΦ(xi) =
∑

i

λiyi. (3.4)

Since (3.4) holds for all feasible λ the minimality of Φ∗ immediately follows.

Proposition 3.1 The data set D is concave-representable if and only if Φ∗(xk) = yk for all
k = 1, ..., N .

Proof. The if part follows immediately from the concavity of Φ∗. Since λi = 0, i 6= k, and
λk = 1 is feasible for (3.3) we have that Φ∗(xk) ≥ yk for each k. The converse now immediately
follows from Lemma 3.1, since yk = Φ(xk) ≥ Φ∗(xk) ≥ yk.

Remark. The characterization given by Proposition 3.1 is essentially the same as presented in
Banker and Maindiratta [7]. Our proof establishes the minimality of Φ∗ to obtain a concise
proof.

3.2 Dual representation

Let Φ∗σ(x) denote the function defined as the optimal value of problem (3.3) in which each
yk has been replaced with σkyk. Theorem 3.1 demonstrates that σ ∈ Σ(D) if and only if
Φ∗σ(xk) = σkyk for all k. However, as it stands, this equivalence is not directly helpful for
the purpose of solving (3.2), since σ appears on both sides of the identity. Fortunately, the
optimization problem that defines Φ∗(xk) is a linear program, and so we may appeal to the
duality theory of linear programming. For x = xk the dual linear program to (3.3) is

Min
p≥0

pT xk + π subject to pT xi + π ≥ yi, i = 1, ..., N. (3.5)

When D is concave-representable, (3.5) has an optimal solution (pk, πk), which satisfies the
following equations:

pT
k xi + πk ≥ yi, i = 1, ..., N, (3.6)

6



pT
k xk + πk = yk. (3.7)

Note that if (3.6) and (3.7) hold, then the optimal value for the dual linear program is obviously
yk, which must equal Φ∗(xk) by linear programming duality. Thus, we have established the
following result.

Corollary 3.1 The set D is concave-representable if and only if for each k = 1, ..., N, there
exist pk ≥ 0 and πk that satisfy (3.6) and (3.7).

As a direct consequence of Corollary 3.1, problem (3.2), and hence problem (2.4), can be
formulated as the following optimization problem:

Min
σ≥0, p≥0, π

N∑

k=1

θ(σk)

subject to pT
k xi + πk ≥ σiyi, i, k = 1, ..., N, (3.8)

pT
k xk + πk = σkyk, k = 1, ..., N.

The above problem has convex objective function and linear constraints, and hence is a convex
programming problem.

We note that elimination of πk in equations (3.6) and (3.7) shows that D is also concave-
representable if and only if for each k there exist pk ≥ 0 for which

yk − pT
k xk ≥ yi − pT

k xi, i = 1, ..., N. (3.9)

Equations (3.9) show that each pk defines a supergradient of the concave function Φ∗ at (xk, yk).
The use of supergradients provides an alternative, direct means to establish the existence of
(3.6) and (3.7). In particular, given a set of supergradients that satisfy (3.9) one may define

φ(x) := min
1≤k≤N

{yk + pT
k (x− xk)}.

The function φ(·), being the minimum of a finite collection of linear functions, is concave,
and it is not difficult to show it is a valid representation of the data—see Matzkin (1999)
[Lemma 1] for details. However, this representation is dependent on the particular choice of
supergradients, and is therefore not unique. The above duality approach taken here shows that
the optimal value of (3.5) gives the corresponding minimal representation. We use this minimal
representation to estimate the returns to scale and the elasticity of substitution.

Equations (3.9) have a natural economic interpretation very much in the spirit of the Re-
vealed Preference literature. Normalizing the price on output to be 1 these equations simply
state that D is concave-representable if and only if for each “firm” k there exist prices on inputs
for which the observed input-output choice (xk, yk) maximizes the firm’s profit. Similar types
of equations will exist to characterize the technology depending on what one assumes about
what data (inputs, outputs, prices, cost, profits, etc.) are observed. See Varian (1982, 1983,
1984).
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3.3 Entropic distance

The objective function of problem (3.8),

Θ(σ|1) :=
N∑

i=1

θ(σi), (3.10)

may be viewed as a distance between a given vector of adjustments {σ1, σ2 · · · , σN} and the
ideal vector of adjustments given by 1 = {1, 1 · · · , 1}. The properties on θ imply that Θ fits
the notion of Entropic distance introduced first by Csiszar (1967). Ostensibly, other entropic
distance functions could be used in (3.10); for a discussion of such functions, see Ben-Tal (1989).
Due to its connections with entropic distance and convex programming, we have termed our
proposed ML estimator as formulated in (3.8) as Convex Entropic Nonparametric (CENP) .
Note that the functions φn(σ) = σn+σ−n−2 for n = 1, 2, . . . are all entropic distance functions.
In the present paper we experimented with three different entropic functions:

(a) θ1(σ) = φ1(σ)
(b) θ2(σ) = φ2(σ) (3.11)
(c) θ3(σ) = φ2(σ)− 4φ1(σ)− 8.

3.4 Convex programming algorithms

We used the LMI ToolBox to solve our separable convex programming formulation D for small-
sized problems (N < 50). It is a standard ToolBox supplied with the MATLAB software
package. We also used GAMS MINOS, which is a commercially available optimization package.
While LMI was found to be inefficient for larger problems (N > 130), GAMS MINOS solved
efficiently, within few minutes, problems with data sets containing up to 200-230 points. It was
not, however, possible to solve a very large problem (N > 400) using either software package.

There are a number of specialized algorithms to solve problems like D that exploit the
separability and strict convexity of the objective function (consult, for example, Bazarra et
al 1993). A simple approach, which is conceptually easy to understand and not difficult to
formulate and implement, is based on constructing a finite supporting hyperplanes to provide
a piecewise linear approximation of θ that bounds it from below.

Problem (3.8) can be formulated as

Minσ≥0, p≥0,π,γ

N∑

k=1

γk

subject to θ(σk) ≤ γk, k = 1, ..., N, (3.12)
pT

k xi + πk ≥ σiyi, i, k = 1, ..., N,

pT
k xk + πk = σkyk, k = 1, ..., N.
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Choose a set of “grid points” σk`, ` = 1, · · · ,M, k = 1, · · · , N , preferably with values around
and closed to 1, and define θk` = θ(σk`). Due to convexity, we can replace the convex inequality
(3.12) for each k with the set of linear inequalities given by:

θk` + [dθ(s)/d s] ||
s = σk `

×(σ − σk`) ≤ γk , ` = 1, · · ·M.

The corresponding new problem is a linear program. Since the piecewise linear approximation
supports the original objective function, the solution of the linear program,

∑N
k=1 γ∗k , serves

as a lower bound for the true solution of problem (3.8). If (σ∗, γ∗) is a solution of the linear
program, then

∑N
k=1 θ(σ∗k) serves as an upper bound for the true solution of problem (3.8).

4 Results

In this section we report an empirical application of CENP to data used by Zellner and Ryu
(1998), which were collected in 1957 for a cross-section of 25 US states. This data set consists
of two inputs, man-hours (measured in millions) and capital services (measured in millions of
US dollars) used to manufacture a single output, the value-added of transportation equipment
(measured in millions of US dollars). We use this data set because we could re-estimate the
various models estimated parametrically by Zellner and Ryu, and compare them with models
estimated nonparametrically using our suggested methodology, CENP. The data have been
normalized by Zellner and Ryu by the number of establishments in each state9.

As mentioned in Sections 1 and 2 CENP assumes that all the measurement error is in the
y’s. Therefore the x’s are assumed to be measured without error and are not stochastic. If,
however, the x’s and the y’s contained measurement error CENP estimates would most prob-
ably be biased and inconsistent. CENP also assumes that measurement errors in the y’s are
independent. If states happened to experienced common shocks in 1957 the errors would not be
independent; they will be positively correlated. For example, if the transportation equipment
sector happened to be booming in 1957 total factor productivity would likely to be higher in
each state. This would not matter if this effect was identical in each state, because y in each
state would increase by the same proportion. However, if this effect is heterogeneous positive
error dependence would be induced. Error dependence creates inefficiency but not inconsistency
in linear regression models, and it induces both inefficiency and inconsistency in nonlinear re-
gression models. Most probably positive error dependence also induces inconsistency in CENP.
Therefore error independence is important for CENP just as it is for parametric estimators,
such as those suggested by Zellner and Ryu. These restrictions obviously qualify the results
that we are about to report.

In this section, we shall check the sensitivity of CENP to the three chosen entropic distance
functions, (3.11), compare the results obtained by parametric methods with those obtained by
CENP, and discuss how estimates of production technologies obtained by CENP may be used
to calculate a variety of economic phenomena, such as elasticity of substitution and returns to
scale.

9The data are available on the web site of the Journal of Applied Econometrics.
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4.1 Estimation by CENP

To check the sensitivity of the solution to various Entropic distances we have solved it for
each function θi(σ), i = 1, 2, 3, in (3.11). The quality of each estimation function is measured

by the percentage root mean square error (RMSE =
√

1
N

∑
(yi−ŷi

yi
)2 ). The three entropic

functions generate similar estimated values for value added, and RMSE is 0.1336 for the first
two functions and is slightly larger for the third. The 95% confidence interval for RMSE
obtained by the bootstrapping procedure described later is 0.130 - 0.141, in which case CENP
estimates RMSE quite precisely despite the small sample size.

A natural question arises whether it is possible to verify the assumption of monotonicity and
concavity of the “true”response function. That is, is it possible to test the hypothesis that f(·) is
monotone and/or concave assuming that for given data the model (2.1) holds for some function
f(·). Such questions were studied in the literature on testing shape (or curvature) constraints
(see Robertson et al 1988). A parametric approach to testing monotonicity (concavity) can be
based on the likelihood ratio method and the so-called chi-bar-squared distributions (see Doveh
et al 2002). An interesting nonparametric approach and a survey of relevant literature can be
found in Abrevaya and Jiang (2002). All these tests are asymptotic and cannot be reasonably
applied to the small data sets analyzed here.

In the meanwhile we consider whether the null hypothesis of a monotonic and concave
production technology is rejected by the data. The probability of rejection naturally increases
with RMSE. If σ̂i = 1 for all the data points then the data satisfy the null hypothesis precisely
and RMSE = 0. Strictly speaking any

∧
σi 6= 1 would constitute a rejection of the null hypothesis.

However, if the data happen to contain measurement error such rejections of the null may not
be statistically significant. We follow Varian (1985) in asking how large measurement error
in y would have to be for RMSE not to reject the null. Let ν denote the unknown variance
of measurement error, let ESS = N(RMSE)2 denote the error sum of squares generated
by CENP, and define S = ESS

ν . If the errors generated by CENP happen to be normally
distributed Varian suggests rejecting the null if S > χ2

p,N , where χ2
p,N denotes the critical value

of chi − square at probability p with N degrees of freedom. S is larger the greater is ESS
relative to the unknown variance of measurement error.

Since ν is unknown, Varian suggests calculating
−
ν= ESS

χ2
p,N

as the upper-bound for ν below

which we would reject the null. The smaller is
−
ν the more reasonable it would be not to reject

the null. For example, in the case of θ1(σ) the ESS = 0.4462 and χ2
0.05,25 = 14.61 in which

case
−
ν= 0.0305. If the true measurement error variance is less than 0.0305, or 3.05%, we should

reject the null hypothesis, but if it is larger than 3.05% we should accept the null. Since 3.05%
is a modest error variance we are inclined not to reject the null of concavity. Indeed, when two
outliers are omitted (Kentucky and New York)

−
ν falls substantially.

Varian’s test would only be valid if the CENP residuals happened to be normally distributed
and independent. In Varian (1985) the data are time series, in which case serial correlation
would invalidate the assumption of independence. Varian did not check whether the model
errors were independent or normally distributed. Because we use cross section data it is more
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reasonable to assume that the errors are independent, although as already noted, common
shocks may induce positive error dependence in cross-sections. We use the Jarque-Bera statistic
(JB), which has a chi-square distribution with 2 degrees of freedom, and which does not require
the errors to be independent, to check whether the CENP residuals happen to be normally
distributed.

The mean error generated by case θ1(σ) is 0.0099, or almost 1%, which is not significantly
different from zero. Note that although we did not impose the restriction of a zero mean error,
CENP generates this result spontaneously. The JB statistic is 2.52, which is less than the
critical value of χ2

0.05,2 = 5.99. Therefore, the CENP residuals seem to be normally distributed,
which suggests that in the present case Varian’s test is appropriate. When the two outliers
mentioned above are omitted the case for normality is even stronger. Note that CENP does
not assume normality; it is a spontaneous result.

There are a number of problems with Varian’s test. The first is that it assumes that the
population errors are normally distributed. It seems rather odd to propose a parametric testing
procedure in a nonparametric context. The second is that ν is unknown so that the test is
inevitably subjective. Third, the number of degrees of freedom is less than N if

∧
σiare not

independent. The measurement of degrees of freedom is not straightforward in nonparametric
estimation, and it remains a problem here. However, we suggest the Kolmogorov-Smirnov test
(KS) as a nonparametric alternative to Varian’s test. The advantage of KS is that it makes no
parametric assumptions about the distribution of the population errors. A disadvantage is that
KS assumes that measurement error in the y’s is independent. Gleser and Moore (1983) discuss
the implications of positive error dependence for KS. Not surprisingly they show that positive
dependence adversely affects the level of significance and power because positive dependence is
confounded with lack of fit.

The KS test statistic is D(N) = max
∣∣∣G(σi − 1)− F (

∧
σi −1)

∣∣∣ where F (·) is the observed
cumulative distribution of the estimated model errors and G(·) is the hypothesized cumulative
distribution. The critical values of D(25) range between 0.21 at p = 0.2 to 0.32 at p = 0.01. If,
for example, we assume that G(·) is cumulative normal with variance equal to 0.01 (1 percent)
the calculated value for D is 0.121, which falls well short of its critical value. We therefore cannot
reject the null hypothesis that σi = 1. Hypothesizing a lower variance naturally increases the
calculated value for D and raises the chances of rejecting the null. For example, if the variance
is only 1

2% instead of 1% D = 0.173, which still falls short of its critical value. Most probably
these results are sufficiently strong despite the adverse effect of positive dependence on their
statistical power.

4.2 CENP vs Parametric Methods

To compare estimates obtained by CENP to parametric estimates requires replication of the
results reported by Zellner and Ryu (1998). Their most flexible parametric model (NRV ES),
which also happens to have the best goodness-of-fit, uses a Box-Cox transformation that allows
the elasticity of substitution to vary both with respect to factor proportions and with respect
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to scale10. We use NRVES to represent the generalized production function approach para-
metrically. For completeness, we also estimate a translog model, despite the fact that it does
not necessarily possess neoclassical properties, and for which reason Zellner and Ryu did not
estimate it. We continue to use percentage root mean square to measure goodness-of-fit.

CENP Translog NRVES
RMSE - Estimation 0.135 0.1514 0.1537

RMSE - Cross validation 0.2128 0.2137 0.2142

Table 1: Cross Validation RMSE vs Estimation RMSE

For comparison purposes, we calculate the outputs of CENP derived from the three entropy
functions. The results are reported in Table 1. We wish to stress that the comparisons are
not intended as a horse race in which the winner takes all. Nevertheless, it is reassuring to
note that CENP performs well against flexible parametric alternatives. This is to be expected
because parametric estimators are more parsimonious than their nonparametric counterparts.
Unfortunately there is no agreed way to correct nonparametric estimates for degrees of freedom
since the concept of degrees of freedom is foreign to nonparametric statistics. Nevertheless,
Hastie and Tibshirani (1990, chapter 3) suggest a heuristic measure of “degrees of freedom
equivalence” for smoothers, which varies inversely with the degree of smoothing. Although we
recognize the importance of the issue we have not been able to calculate formal df equivalences
for CENP. However, informally we do not think that CENP is expensive in terms of degrees
of freedom since, like NRVES, it imposes only two restrictions upon the data, monotonicity
and concavity. And like NRVES, CENP does not restrict returns-to-scale and elasticity of
substitution to be constant, so the number of degrees of freedom used by CENP is most probably
similar to that of NRVES. Therefore the comparison between CENP and NRVES in Table 1 is
not invidious.

To test for robustness, we sequentially omitted one data point and estimated the production
function based only on 24 observations. We then estimated the value of the production function
at the deleted data point. The results of this cross validation test are provided in Table 1.
RMSE naturally increases. For CENP it increases from 0.135 to 0.213 and the advantage of
CENP over NRVES and translog11 narrows but does not disappear.

4.3 Applications of CENP

In this section we apply the methods described in Appendix B to calculate such parameters of
interest as ES and RTS from the CENP model estimates reported in Section 4.1. We begin by

10Zellner and Ryu do not name a “preferred” model out of the numerous models they estimated. However,
they name several models as inappropriate. We choose NRVES not merely on the grounds of goodness-of-fit, but
also because Z&R mention that it has desirable properties.

11Of course, the translog model may be inconsistent with neoclasical production theory, and therefore unde-
sirable even had its goodness-of-fit been superior.
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plotting the isoquants or level sets associated with several states—see Figure 1. By construction
these sets are convex and piecewise linear, except for the ones corresponding to the smallest
and largest adjusted outputs, Florida and Michigan, whose isoquants collapse onto a single
point. The isoquants depicted in Figure 1 have a vertical segment on the left-hand side and a
horizontal segment on the right-hand-side, which reflect the support of the data. This means
that the data do not permit CENP to extrapolate beyond the observations. Data points in
the center of the data set naturally have more linear segments because we learn more about
the production technology for such data points, and less at the extremes of the data. The
largest number of segments is five (excluding the vertical and horizontal segments). Within
any internal segment we cannot say how the production technology varies, because there are
not sufficient data to guide us. Had there been more data points the derived isoquants would
have had more segments, and would have appeared more continuous. In the limit the isoquants
would tend to be continuous.

The isoquants plotted in Figure 1 are estimates, which are subject to estimation error.
It is therefore natural to ask about the confidence intervals for the estimates that we report.
Some non-parametric estimators have analytical expressions for confidence intervals, e.g. Hardle
(1990) for the kernel estimator. Since there is no analytical expression for calculating confi-
dence intervals for CENP we bootstrap them for various parameters of interest. We found 100
bootstraps to be sufficient for our purposes in the sense that confidence intervals tended to
converge on some constant value. This number is quite low compared to what might have been
expected from Andrews and Buchinsky (2001). The 95% confidence intervals for value added
in Figure 5 are 5.7281 - 5.9443 for Kansas, 4.6369 - 4.7431 for Missouri, 3.8911 - 3.9899 for
Georgia, 2.5579 - 2.5963 for Illinois, and 1.8501 - 1.8707 for Alabama. The upper confidence
intervals vary from 0.55% of the mean in the case Alabama to 1.85% in the case of Kansas.
These confidence bands are quite small and seem to be scale dependent. These calculations
show that CENP estimates value added to a reasonable degree of precision.

Next we examine returns-to-scale. In Figure 2, we plot the returns to scale generated by the
CENP model at three different levels of labor intensity. The point marked “Alabama” is the
coordinate for capital services and output in Alabama where the capital - labor ratio is 0.12.
Imagine a ray from the origin that passes through the indicated coordinates on the isoquant
for Alabama in Figure 1. This ray would intersect higher and lower isoquants (not shown).
Along the Alabama schedule in Figure 2 the capital - labor ratio is held constant at 0.12.
Since the vertical axis measures the logarithm of output and the horizontal axis measures the
logarithm of capital services, the returns to scale at any point is the derivative of the (plotted)
function at this point. Returns-to-scale are increasing if the derivative is greater than one and
decreasing if the derivative is less than one. As each of the returns-to-scale functions are almost
piecewise-linear, the slopes of each line segment can easily be calculated.

At the point marked “Alabama” the derivative is greater than unity in which case returns
to scale are increasing at this point, i.e. the slope of the line exceeds 45 degrees. The 95%
confidence interval obtained by bootstrapping is 1.302 - 1.799, therefore we can rule out the
possibility of constant returns-to-scale, although returns-to-scale are not estimated precisely.
The slope of the Alabama schedule in Figure 2 becomes steeper as the scale of output is
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reduced. This implies that when the capital - labor ratio is 0.12 returns to scale are greater the
lower the level of output. Indeed, while returns-to-scale decrease at higher output levels, the
Alabama schedule shows that at the end of the support of the data there are still increasing
returns-to-scale.

Along the Illinois schedule in Figure 2 the capital - labor ratio is held constant at 0.67, which
is the ratio for Illinois. Production in Illinois was considerably more capital intensive than in
Alabama. At the point marked “Illinois” the derivative of the schedule is less than unity, hence
there are diminishing returns-to-scale at this point. The 95% confidence interval obtained by
bootstrapping is 0.950 - 0.968, therefore returns-to-scale are clearly diminishing, and in this
case RTS is estimated precisely. The Illinois schedule shows, however, that at lower levels of
output returns-to-scale are increasing. Hence, at some point returns-to-scale start decreasing,
and they continue to decrease with the scale of output. Finally, the Missouri schedule refers
to a capital - labor ratio of 0.39, as in Missouri. At the point marked “Missouri” there are
decreasing returns-to-scale. The bootstrapped confidence interval is 0.885 - 0.899, so we can
be sure that while returns-to-scale decrease in Missouri, they decrease more strongly than in
Illinois. Note also that RTS is estimated quite precisely. However, at lower scales of production
there are increasing returns-to-scale in Missouri.

We turn next to the elasticity-of-substitution. We calculate the elasticity of substitution
between labor and capital at different levels of output and at different levels of labor intensity.
Figure 3 plots the relationship between the elasticity of substitution and the labor-capital
ratio that is generated along the level sets corresponding to the level of output in Wisconsin.
Because the calculation of the elasticity of substitution involves the second derivative of the
production function, and because the isoquants are piecewise linear, the elasticity of substitution
is not always defined. Hence, the discontinuities observed in Figure 3. There are smaller
discontinuities too in Figure 3, but these are too small to be observed by the naked eye.

The elasticity of substitution is less than unity, but increases with the labor-capital ratio.
The 95% confidence interval obtained by bootstrapping for the elasticity of substitution is 0.853
- 0.913 in Wisconsin and 0.384 - 0.428 in Kentucky. Therefore we can be sure that the elasticity
of substitution is less than unity. Indeed, CENP estimates this parameter quite precisely. The
estimated relationship between the capital - labor ratio and the elasticity of substitution is not
monotonic, and the elasticity of substitution eventually decreases.

In a further exercise we use the CENP model to calculate the elasticity of substitution for
each of the 25 states as a function of their observed capital - labor ratios. These capital - labor
ratios range between 0.2 and 0.7 and the elasticities of substitution range between 0.2 and 1.2.
Figure 4 shows that the elasticity of substitution varies quite substantially at given capital -
labor ratios. The reason for this is that the elasticity of substitution depends on the scale of
output as well as factor proportions. If one ignores the three observations at the bottom-left
of Figure 4, it suggests that the elasticity of substitution tends, on the whole, to vary inversely
with the capital - labor ratio.

Finally, Figure 5 plots the distribution of the estimated elasticity of substitution obtained
by bootstrapping . At each bootstrap we calculate for each state the elasticity of substitution at
the means of the data for labor and capital. The estimated elasticity of substitution turns out
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to have an asymmetric distribution. The mode of the distribution is 0.7, but with probability
0.15 the elasticity of substitution is only 0.2. The probability that the elasticity of substitution
exceeds unity is only about 0.15. Figure 5 creates the misleading impression that CENP does
not estimated ES very precisely. However, the confidence intervals reported for Wisconsin and
Kentucky show that CENP estimates ES quite precisely.

4.4 CENP with a Large Data Set

The empirical application of CENP reported in Section 4.1 had only 25 data points and 2
covariates. As the number of data points and covariates increases the dimensionality of the
estimation problem naturally grows. It is therefore reasonable to ask how the “curse of di-
mensionality”, which as discussed e.g. by Hardle (1990) arises in other forms of nonparametric
estimation, affects CENP.

In Section 3.4 we suggested a linear programming procedure for approximating the original
objective function. We applied this procedure to a much larger problem in which the number of
data points is 448 and the number of covariates is 3. In this problem the dependent variable is
value added in 448 manufacturing sectors in the US (downloaded from the web site of NBER)
in 1954, and the covariates consist of capital, labor and raw materials as factor inputs.

We have solved the linear program with M = 5 so the number of grid points was 448×M =
2240. This problem was solved using the CPLEX software for linear programming. It took less
then 30 minutes to obtain near-optimal solution with a provable error bound of less than 10%.
Of course, solution quality increases with larger M . It is possible to sequentially improve quality
by simply adding the supporting hyperplane to each point (σk, θk(σk)) after each iteration, and
then stopping when the ratio of the upper to lower bounds is sufficiently close to 1. In our
experimentation a fixed value of M = 5 proved adequate. Computation time for CENP depends
merely on the number of data points through the number of the constraints. If the number
of data points increases from N to (N + 1), the number of constraints increases by (2N + 1).
However, computation time is virtually insensitive to the number of the inputs. If the number
of inputs increases by 1 the number of variables increases by 1, while keeping the constraints
unchanged.

5 Conclusions

More than 30 years ago Hanoch and Rothschild (1972) suggested a nonparametric methodology
for testing the predictions of production theory. They saw that their methodology could, in
principle, be used to provide nonparametric estimates of the production function. However,
they did not envisage that this was practically feasible. Rather they saw their approach in the
less ambitious role as a screening device, as a technique for inspecting the data for coherence
with production theory. During the early 1980s Varian returned to this theme, but stopped
short of proposing a nonparametric estimator of production and other functions in economics.
Instead, he limited himself to screening the data along the lines suggested by Hanoch and
Rothschild.
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The last two decades have been virtually silent on the issue. Exceptions include Matzkin’s
(1991, 1993, 1994, 1999) and Banker and Maindiratta (1992), who suggested a way to estimate
production functions nonparametrically. Banker and Maindiratta did not, however, show that
their proposal is feasible, and we doubt that it is for reasons stated in Section 1. Matzkin (1999)
proposed a specialized algorithm that shows promise for small-size problems. In any case, we
are unaware of subsequent applications, successful or otherwise. Our main contribution has
been to show how the Hanoch - Rothschild methodology can be turned into a nonparametric
estimator from a mere screening device. Our solution to the problem is based on convex
programming and entropic methods. Hence, we refer to our estimator as CENP. Our most
important contribution therefore is a practical solution to an old problem. CENP joins the
small but expanding literature on non-parametric estimation subject to shape constraints.

To demonstrate the feasibility of CENP we reported two empirical applications. In the first
the data set was small containing only 25 data points. We chose this data set so that we could
compare results obtained by CENP with flexible functional forms estimated parametrically by
Zellner and Rhu (1998). CENP outperforms its most flexible parametric rivals because such
parameters as returns-to-scale and elasticity of substitution vary empirically in a way that even
very flexible functional forms find difficult to accommodate. In the second empirical application
there were more than 400 data points. Our intention was to demonstrate the feasibility of CENP
when the data set is relatively large. We show that this is indeed the case.

Since analytical estimates of parameter uncertainty are not available for CENP, we boot-
strapped CENP in order to estimate confidence intervals for key parameters. Even though
the sample size was small, we found that CENP estimates value added and parameters such
as returns-to-scale and elasticity of substitution quite precisely. Therefore, CENP is not only
feasible as a non-parametric estimator subject to shape constraints, but it also lends itself to
testing hypotheses regarding such matters as the constancy of returns-to-scale and the size and
variability of the elasticity of substitution.

CENP is computer intensive. However, the falling cost of computing does not explain
the timing of the present research. On the other hand, the falling cost of computing makes
CENP more attractive than it might have been a decade ago. We see CENP as part of the
econometrician’s toolkit, which has applications in other fields of economic inquiry apart from
production where monotonicity and concavity are relevant shape constraints.

References

[1] Abrevaya, J. and W. Jiang (2002), A Simplex Statistics for Testing Joint Curvature, e-print
available at: http://www.mgmt.purdure.edu/faculty/abrevaya/simplex.pdf.

[2] Afriat, S.N. (1967), The Construction of a Utility Function from Expenditure Data, Inter-
national Economic Review, 8: 67-77.

[3] Afriat, S.N. (1971), The Output Limit Function in General and Convex Programming and
the Theory of Production, Econometrica, 39: 309-339.

16



[4] Afriat, S.N. (1972), Efficiency Estimation of Production Functions, International Economic
Review, 13: 568-598.

[5] Andrews, D.W.K. and M. Buchinsky (2001), A 3-Step Method for Choosing the Number
of Bootstrap Repetitions, Econometrica, 68:23-51.

[6] Arrow, K.J., Chenery, H.B., Minhas, B.S. and R.M. Solow (1961), Capital – Labor Sub-
stitution and Economic Efficiency, Review of Economics and Statistics, 43: 225-250.

[7] Banker, R.D. and A. Maindiratta (1992), Maximum Likelihood Estimation of Monotone
and Concave Production Frontiers, Journal of Productivity Analysis, 3: 401-415.

[8] Bazaraa, M. S., Shetty, C. M. and H. Sherali (1993), Nonlinear Programming: Theory and
Algorithms, 2nd edition, John Wiley & Sons, New York.

[9] Beenstock, M. (1997), Business Sector Production in the Short and Long-Run in Israel,
Journal of Productivity Analysis, 8: 53-70.

[10] Ben-Tal, A., Charnes, A., and M. Teboulle (1989), Entropic Means, J. Math. Ana. Appl.,
138: 537-557.

[11] Billingsley, P. (1999), Convergence of Probability Measures, 2nd edition, John Wiley &
Sons, New York.

[12] Christensen, L.R., D.W. Jorgenson, and L.J. Lau (1973), Transcendental Logarithmic
Production Frontiers. Review of Economics and Statistics, 55: 28-45.

[13] Cobb, C.W. and P.C. Douglas (1928), A Theory of Production. American Economic Re-
view, Supplement, 18: 139-165.

[14] Csiszar, I. (1967), Information Type Measurements of Difference of Probability Distribu-
tions and Indirect Observations, Studia Sci. Mat. Hungarica, 2: 299-318.

[15] Doveh, E., Shapiro, A. and Feigin, P.D. (2002), Testing of Monotonicity in Regression
Models, Journal of Statistical Planning and Inference, 107: 2289-306.

[16] Gleser, L.J. and D.S. Moore (2003), The Effect of Dependence in Chi-Squared and Empiric
Distribution Tests of Fit, Annals of Statistics, 11:1100-8.

[17] Hall, P. and L. Huang (2001), Nonparametric Kernel Regression Subject to Monotonicity
Constraints, Annals of Statistics, 29: 624-47.

[18] Hanoch, G. and M. Rothschild (1972), Testing the Assumptions of Production Theory: A
Nonparametric Approach, Journal of Political Economy, 80: 256-275.

[19] Hastie, T.J. and R.J. Tishbirani (1990), Generalized Additive Models, Chapman & Hall,
London.

17



[20] Lau, L.J. (1986), Flexible Functional Forms, Handbook of Econometrics, Vol 3, Z. Griliches
and M. Intrilligator (eds), North-Holland.

[21] Manski, C.F. (1995), Identification Problems in the Social Sciences, Harvard University
Press.

[22] Marschak, J. and W. Andrews (1944), Random Simultaneous Equations and the Theory
of Production, Econometrica, 12: 143-153.

[23] Matzkin, R. L. (1991), Semiparametric Estimation of Monotone Concave Utility Functions
for Polychotomous Choice Models, Econometrica, 59: 1351-1327.

[24] Matzkin, R. L. (1993), Nonparametric Identification and Estimation of Polychotomous
Choice Models, Journal of Econometrics, 58: 137-168.

[25] Matzkin, R. L. (1994), Restrictions of Economic Theory in NonParametric Methods, Hand-
book of Econometrics, Volume IV, Edited by R.F. Engle and D. L. McFadden.

[26] Matzkin, R. L. (1999), Computation of Nonparametric Concavity-Restricted Estimators,
unpublished manuscript.

[27] Newey, W. K. and MacFadden, D. L. (1994), Large Sample Estimation and Hypothesis
Testing, Handbook of Econometrics, volume IV, Edited by R.F. Engle and D. L. McFadden.

[28] Robertson, T., Wright, F.T. and Dykstra, R.L. (1988). Order Restricted Statistical Infer-
ence, Wiley, Chichester.

[29] Varian, H.R. (1982), The Nonparametric Approach to Demand Analysis, Econometrica,
50: 945-973.

[30] Varian, H.R. (1983), Nonparametric Tests of Consumer Behavior, Review of Economic
Studies, 50: 99-110.

[31] Varian, H.R. (1984), The Nonparametric Approach to Production Analysis, Econometrica,
52: 579- 597.

[32] Varian, H.R., (1985), Nonparametric Analysis of Optimizing Behavior with Measurement
Error, Journal of Econometrics, 30: 445-458.

[33] Wald, A. (1949), Note on the Consistency of the Maximum Likelihood Estimates, Annals
Mathematical Statistics, 20: 595-601.

[34] Yatchew, A.J. and L. Bos (1997), Nonparametric Least Squares Regression and Testing in
Economic Models, Journal of Quantitative Economics, 13: 81-131.

[35] Zellner, A. and H. Ryu (1998), Alternative Functional Forms for Production, Cost and
Returns to Scale Functions, Journal of Applied Econometrics, 13: 101-127.

18



Appendix A

In this Appendix, we show that under mild regularity conditions, the maximum likelihood
optimization procedure produces a consistent estimator of the true function f(x). In addition
to the assumptions (A1) and (A2), specified in Section 2, we assume that the distribution of
the random variables εi is log-concave. That is:

(A3) The function h(z) := − ln g(z) is strictly convex on IR.

Note that h(z) := θ(ez) and θ(t) = h(ln t), and that h(·) is an even function since g(·) is
even. For example, the functions θ(t) := (ln t)2 and θ(t) := t+ t−1 satisfy the above assumption
(A3). We also assume that all involved expectations do exist.

Lemma A.1. Under the assumptions (A1)–(A3), the function ψ(t) := IE{θ(tη)}, where
ln η ∼ g(·), attains its minimum, over IR++, at the point t = 1, and this minimizer is unique.

Proof. We have that
θ(tη) = h(ln(tη)) = h(ln η + ln t),

and hence ψ(t) = IE[h(ε + τ)], where ε ∼ g(·) and τ := ln t. Since functions h(·) and g(·) are
even, we have

IE[h(ε + τ)− h(ε)] =
∫ +∞

−∞
[h(z + τ)− h(z)]g(z)dz

=
∫ +∞

0
[h(z + τ) + h(z − τ)− 2h(z)]g(z)dz.

Moreover, since h(·) is strictly convex, we have h(z + τ) + h(z − τ) − 2h(z) > 0 for all z and
τ 6= 0. It follows that IE[h(ε + τ)] > IE[h(ε)] for any τ 6= 0, and hence ψ(t) attains its minimum
when ln t = 0, i.e., t = 1, and this minimizer is unique.

Recall that it was assumed that xi ∈ Ξ, where Ξ is a convex compact subset of IRn
+ \ {0}.

Clearly we can have information about the “true” production function only on that set Ξ. We
assume now that xi are continuously distributed on Ξ.

(A4) The input vectors xi are iid random vectors having a continuous distribution whose sup-
port Ξ is a convex compact subset of IRn

+ \ {0}.

For some constant c > 0, let Fc be the subset of F formed by such functions φ ∈ F that
every supergradient ∇φ(x) satisfies ‖∇φ(x)‖ ≤ c for all x ∈ Ξ. This set Fc is closed with
respect to the sup-norm

‖φ‖ := sup
x∈Ξ

|φ(x)|. (5.13)
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Moreover, we have by the mean value theorem that every function φ ∈ Fc is Lipschitz continuous
modulus c, and hence it follows by the Arzelá-Ascoli theorem (e.g., [11, p.81]) that the set Fc

is compact with respect to this sup-norm. We assume that the constant c is large enough such
that the true function f belongs to the set Fc. Since a function φ ∈ F is concave on IRn

+, its
supergradients are uniformly bounded on any compact subset of IRn

++. Yet it may happen that
these supergradients are unbounded at points arbitrary close to the boundary of the set IRn

+.
So by saying that f ∈ Fc we assume that this does not happen for the true function f .

Let f̂N be an optimal solution of the (restricted) problem:

Min
φ∈Fc

N∑

i=1

θ

(
yi

φ(xi)

)
. (5.14)

In view of Lemma A.1 the following result about consistency of the estimators f̂N should be
not surprising. Such consistency results go back to the pioneering work of Wald (1949), and
were discussed extensively in the Statistics literature. We quickly outline its proof for the sake
of completeness.

Theorem A.2. Suppose that the assumptions (A1)–(A4) hold and f ∈ Fc. Then f̂N con-
verges, with respect to the sup-norm (5.13), w.p.1 as N →∞ to the true function f .

Proof. For φ ∈ F consider the functional

LN (φ) := N−1
N∑

i=1

θ

(
yi

φ(xi)

)
.

Note that f̂N ∈ arg minφ∈Fc LN (φ). By the Law of Large Numbers (LLN) we have that, for
any fixed φ ∈ F , LN (φ) converges w.p.1 as N →∞ to the expectation

`(φ) := IE
[
θ

(
η

f(X)
φ(X)

)]
] = IEX

{
IE

[
θ

(
η

f(X)
φ(X)

) ∣∣∣X
]
]
}

, (5.15)

where X is a random variable distributed according to the distribution of the input vectors xi.
By applying Lemma A.1 we obtain that, for a given X, the minimum of IE

[
θ

(
η f(X)

φ(X)

) ∣∣∣X
]

over
positive values of φ(X) is attained at φ(X) = f(X). Consequently, because by assumption (A4)
the support of X is Ξ, we obtain that `(φ) attains its minimum, over the set Fc, at φ = f and
this minimizer is unique. The remainder of the proof is rather standard. Since Fc is compact
the convergence (w.p.1) of LN (·) to `(·) is uniform on Fc, and the convergence of f̂N to f follows
by compactness arguments. We refer to Newey and McFadden (1994) and Matzkin (1994), for
example, for a discussion of such consistency results.

The assumption that the input sequence xi is iid (assumption (A4)), in the above proof,
was used to justify the application of the LLN to obtain convergence w.p.1 of LN (φ) to `(φ).
This assumption can be relaxed in several ways. Suppose, for instance, that xi are viewed now
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as forming a deterministic sequence. Then we can simply postulate that LN (φ) converges w.p.1
to function `(φ) defined as

`(φ) :=
∫

Ξ
IE

[
θ

(
η

f(x)
φ(x)

)]
]h(x)dx, (5.16)

where h : Ξ → IR++ is a density function. This is a form of LLN (recall that the sequence ηi

of the error terms is assumed to be iid) with density h(x) representing distribution of xi over
the set Ξ. By replacing assumption (A4) with this assumption we can proceed as in the proof
above to show consistency of the ML estimators.

Appendix B

In this Appendix, we describe procedures for calculating the marginal rate of technical
substitution RTS and the elasticity of substitution ES used in our numerical analyzes.

We begin with the marginal rate of technical substitution. Figure 6 depicts a typical level
set, or isoquant, L(y∗) in two dimensions, taken from an empirical application in Section 4. First
consider point B, a vertex of the level set. Note that the slopes of the line segments [A,B] and
[B,C], SL and SR, respectively, equal the tangent of the angles depicted, i.e., SL = tan(θL)
and SR = tan(θR). Since B lies at the intersection of these two line segments, its “average
angle” is θavg := 1/2(θL + θR). The approximation we have devised for the RTS at B is given
by tan(θavg). As for the extreme vertex located left to A, its θL = −π/2 and for the extreme
vertex located right to C, its θR = 0. Finally, if the level set has only a single vertex, then its
θL = −π/2 and its θR = 0.

Now consider a point x = λxL + (1− λ)xR that lies in the interior of a line segment joining
two vertices xL and xR whose corresponding average angles are θxL and θxR , respectively. In
this case we shall define its RTS as tan(λθxL + (1 − λ)θxR). This approximation generates a
continuous function, differentiable everywhere except at the vertices of the corresponding level
sets.

Next, we consider the elasticity of substitution. Consider first a point x that is not a vertex.
Let xL and xR denote the left and right neighboring vertices so that x = λxL + (1− λ)xR for
some λ ∈ (0, 1). Observe that

ρ =
x2

x1
=

λxL2 + (1− λ)xR2

λxL1 + (1− λ)xR1
(5.17)

so that
λ(ρ) =

ρxR1 − xR2

(xL2 − xR2)− ρ(xL1 − xR1)
. (5.18)

By definition, RTS at x is given by RTS(ρ) := tan(λ(ρ)θL + (1− λ(ρ))θR). Consequently, the
elasticity of substitution ES at x is given by

ES(x) :=
ρ

RTS(ρ)
×RTS′(ρ) =

ρ

RTS(ρ)
× (θl − θR)λ′(ρ)

cos2(λ(ρ)θL + (1− λ(ρ))θR)
, (5.19)
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where
λ′(ρ) =

xR1(xL2 − xR2)− (xL1 − xR1)xR2

((xL2 − xR2)− ρ(xL1 − xR1))2
. (5.20)

Now consider a vertex like B in Figure 6. Let ESL(0) denote its elasticity when it is viewed
as the right endpoint of the line segment [A,B], and let ESR(1) denote its elasticity when
it is viewed as the left endpoint of the line segment [B,C]. We set its elasticity to be the
1/2(ESL(0) + ESR(1)), the average of the two elasticities.
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