19,206 research outputs found

    Personalized content retrieval in context using ontological knowledge

    Get PDF
    Personalized content retrieval aims at improving the retrieval process by taking into account the particular interests of individual users. However, not all user preferences are relevant in all situations. It is well known that human preferences are complex, multiple, heterogeneous, changing, even contradictory, and should be understood in context with the user goals and tasks at hand. In this paper, we propose a method to build a dynamic representation of the semantic context of ongoing retrieval tasks, which is used to activate different subsets of user interests at runtime, in a way that out-of-context preferences are discarded. Our approach is based on an ontology-driven representation of the domain of discourse, providing enriched descriptions of the semantics involved in retrieval actions and preferences, and enabling the definition of effective means to relate preferences and context

    Hierarchical Attention Network for Visually-aware Food Recommendation

    Full text link
    Food recommender systems play an important role in assisting users to identify the desired food to eat. Deciding what food to eat is a complex and multi-faceted process, which is influenced by many factors such as the ingredients, appearance of the recipe, the user's personal preference on food, and various contexts like what had been eaten in the past meals. In this work, we formulate the food recommendation problem as predicting user preference on recipes based on three key factors that determine a user's choice on food, namely, 1) the user's (and other users') history; 2) the ingredients of a recipe; and 3) the descriptive image of a recipe. To address this challenging problem, we develop a dedicated neural network based solution Hierarchical Attention based Food Recommendation (HAFR) which is capable of: 1) capturing the collaborative filtering effect like what similar users tend to eat; 2) inferring a user's preference at the ingredient level; and 3) learning user preference from the recipe's visual images. To evaluate our proposed method, we construct a large-scale dataset consisting of millions of ratings from AllRecipes.com. Extensive experiments show that our method outperforms several competing recommender solutions like Factorization Machine and Visual Bayesian Personalized Ranking with an average improvement of 12%, offering promising results in predicting user preference for food. Codes and dataset will be released upon acceptance

    Image-based Recommendations on Styles and Substitutes

    Full text link
    Humans inevitably develop a sense of the relationships between objects, some of which are based on their appearance. Some pairs of objects might be seen as being alternatives to each other (such as two pairs of jeans), while others may be seen as being complementary (such as a pair of jeans and a matching shirt). This information guides many of the choices that people make, from buying clothes to their interactions with each other. We seek here to model this human sense of the relationships between objects based on their appearance. Our approach is not based on fine-grained modeling of user annotations but rather on capturing the largest dataset possible and developing a scalable method for uncovering human notions of the visual relationships within. We cast this as a network inference problem defined on graphs of related images, and provide a large-scale dataset for the training and evaluation of the same. The system we develop is capable of recommending which clothes and accessories will go well together (and which will not), amongst a host of other applications.Comment: 11 pages, 10 figures, SIGIR 201

    A Benchmark for Image Retrieval using Distributed Systems over the Internet: BIRDS-I

    Full text link
    The performance of CBIR algorithms is usually measured on an isolated workstation. In a real-world environment the algorithms would only constitute a minor component among the many interacting components. The Internet dramati-cally changes many of the usual assumptions about measuring CBIR performance. Any CBIR benchmark should be designed from a networked systems standpoint. These benchmarks typically introduce communication overhead because the real systems they model are distributed applications. We present our implementation of a client/server benchmark called BIRDS-I to measure image retrieval performance over the Internet. It has been designed with the trend toward the use of small personalized wireless systems in mind. Web-based CBIR implies the use of heteroge-neous image sets, imposing certain constraints on how the images are organized and the type of performance metrics applicable. BIRDS-I only requires controlled human intervention for the compilation of the image collection and none for the generation of ground truth in the measurement of retrieval accuracy. Benchmark image collections need to be evolved incrementally toward the storage of millions of images and that scaleup can only be achieved through the use of computer-aided compilation. Finally, our scoring metric introduces a tightly optimized image-ranking window.Comment: 24 pages, To appear in the Proc. SPIE Internet Imaging Conference 200

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    A Model for Personalized Keyword Extraction from Web Pages using Segmentation

    Full text link
    The World Wide Web caters to the needs of billions of users in heterogeneous groups. Each user accessing the World Wide Web might have his / her own specific interest and would expect the web to respond to the specific requirements. The process of making the web to react in a customized manner is achieved through personalization. This paper proposes a novel model for extracting keywords from a web page with personalization being incorporated into it. The keyword extraction problem is approached with the help of web page segmentation which facilitates in making the problem simpler and solving it effectively. The proposed model is implemented as a prototype and the experiments conducted on it empirically validate the model's efficiency.Comment: 6 Pages, 2 Figure

    Theory-based user modeling for personalized interactive information retrieval

    Get PDF
    In an effort to improve users’ search experiences during their information seeking process, providing a personalized information retrieval system is proposed to be one of the effective approaches. To personalize the search systems requires a good understanding of the users. User modeling has been approved to be a good method for learning and representing users. Therefore many user modeling studies have been carried out and some user models have been developed. The majority of the user modeling studies applies inductive approach, and only small number of studies employs deductive approach. In this paper, an EISE (Extended Information goal, Search strategy and Evaluation threshold) user model is proposed, which uses the deductive approach based on psychology theories and an existing user model. Ten users’ interactive search log obtained from the real search engine is applied to validate the proposed user model. The preliminary validation results show that the EISE model can be applied to identify different types of users. The search preferences of the different user types can be applied to inform interactive search system design and development

    Adversarial Training Towards Robust Multimedia Recommender System

    Full text link
    With the prevalence of multimedia content on the Web, developing recommender solutions that can effectively leverage the rich signal in multimedia data is in urgent need. Owing to the success of deep neural networks in representation learning, recent advance on multimedia recommendation has largely focused on exploring deep learning methods to improve the recommendation accuracy. To date, however, there has been little effort to investigate the robustness of multimedia representation and its impact on the performance of multimedia recommendation. In this paper, we shed light on the robustness of multimedia recommender system. Using the state-of-the-art recommendation framework and deep image features, we demonstrate that the overall system is not robust, such that a small (but purposeful) perturbation on the input image will severely decrease the recommendation accuracy. This implies the possible weakness of multimedia recommender system in predicting user preference, and more importantly, the potential of improvement by enhancing its robustness. To this end, we propose a novel solution named Adversarial Multimedia Recommendation (AMR), which can lead to a more robust multimedia recommender model by using adversarial learning. The idea is to train the model to defend an adversary, which adds perturbations to the target image with the purpose of decreasing the model's accuracy. We conduct experiments on two representative multimedia recommendation tasks, namely, image recommendation and visually-aware product recommendation. Extensive results verify the positive effect of adversarial learning and demonstrate the effectiveness of our AMR method. Source codes are available in https://github.com/duxy-me/AMR.Comment: TKD
    corecore