128 research outputs found

    An Atypical Survey of Typical-Case Heuristic Algorithms

    Full text link
    Heuristic approaches often do so well that they seem to pretty much always give the right answer. How close can heuristic algorithms get to always giving the right answer, without inducing seismic complexity-theoretic consequences? This article first discusses how a series of results by Berman, Buhrman, Hartmanis, Homer, Longpr\'{e}, Ogiwara, Sch\"{o}ening, and Watanabe, from the early 1970s through the early 1990s, explicitly or implicitly limited how well heuristic algorithms can do on NP-hard problems. In particular, many desirable levels of heuristic success cannot be obtained unless severe, highly unlikely complexity class collapses occur. Second, we survey work initiated by Goldreich and Wigderson, who showed how under plausible assumptions deterministic heuristics for randomized computation can achieve a very high frequency of correctness. Finally, we consider formal ways in which theory can help explain the effectiveness of heuristics that solve NP-hard problems in practice.Comment: This article is currently scheduled to appear in the December 2012 issue of SIGACT New

    Secret-Sharing for NP

    Get PDF
    A computational secret-sharing scheme is a method that enables a dealer, that has a secret, to distribute this secret among a set of parties such that a "qualified" subset of parties can efficiently reconstruct the secret while any "unqualified" subset of parties cannot efficiently learn anything about the secret. The collection of "qualified" subsets is defined by a Boolean function. It has been a major open problem to understand which (monotone) functions can be realized by a computational secret-sharing schemes. Yao suggested a method for secret-sharing for any function that has a polynomial-size monotone circuit (a class which is strictly smaller than the class of monotone functions in P). Around 1990 Rudich raised the possibility of obtaining secret-sharing for all monotone functions in NP: In order to reconstruct the secret a set of parties must be "qualified" and provide a witness attesting to this fact. Recently, Garg et al. (STOC 2013) put forward the concept of witness encryption, where the goal is to encrypt a message relative to a statement "x in L" for a language L in NP such that anyone holding a witness to the statement can decrypt the message, however, if x is not in L, then it is computationally hard to decrypt. Garg et al. showed how to construct several cryptographic primitives from witness encryption and gave a candidate construction. One can show that computational secret-sharing implies witness encryption for the same language. Our main result is the converse: we give a construction of a computational secret-sharing scheme for any monotone function in NP assuming witness encryption for NP and one-way functions. As a consequence we get a completeness theorem for secret-sharing: computational secret-sharing scheme for any single monotone NP-complete function implies a computational secret-sharing scheme for every monotone function in NP

    Oracles Are Subtle But Not Malicious

    Full text link
    Theoretical computer scientists have been debating the role of oracles since the 1970's. This paper illustrates both that oracles can give us nontrivial insights about the barrier problems in circuit complexity, and that they need not prevent us from trying to solve those problems. First, we give an oracle relative to which PP has linear-sized circuits, by proving a new lower bound for perceptrons and low- degree threshold polynomials. This oracle settles a longstanding open question, and generalizes earlier results due to Beigel and to Buhrman, Fortnow, and Thierauf. More importantly, it implies the first nonrelativizing separation of "traditional" complexity classes, as opposed to interactive proof classes such as MIP and MA-EXP. For Vinodchandran showed, by a nonrelativizing argument, that PP does not have circuits of size n^k for any fixed k. We present an alternative proof of this fact, which shows that PP does not even have quantum circuits of size n^k with quantum advice. To our knowledge, this is the first nontrivial lower bound on quantum circuit size. Second, we study a beautiful algorithm of Bshouty et al. for learning Boolean circuits in ZPP^NP. We show that the NP queries in this algorithm cannot be parallelized by any relativizing technique, by giving an oracle relative to which ZPP^||NP and even BPP^||NP have linear-size circuits. On the other hand, we also show that the NP queries could be parallelized if P=NP. Thus, classes such as ZPP^||NP inhabit a "twilight zone," where we need to distinguish between relativizing and black-box techniques. Our results on this subject have implications for computational learning theory as well as for the circuit minimization problem.Comment: 20 pages, 1 figur

    Pseudorandomness and the Minimum Circuit Size Problem

    Get PDF

    A New View on Worst-Case to Average-Case Reductions for NP Problems

    Full text link
    We study the result by Bogdanov and Trevisan (FOCS, 2003), who show that under reasonable assumptions, there is no non-adaptive worst-case to average-case reduction that bases the average-case hardness of an NP-problem on the worst-case complexity of an NP-complete problem. We replace the hiding and the heavy samples protocol in [BT03] by employing the histogram verification protocol of Haitner, Mahmoody and Xiao (CCC, 2010), which proves to be very useful in this context. Once the histogram is verified, our hiding protocol is directly public-coin, whereas the intuition behind the original protocol inherently relies on private coins
    corecore