2 research outputs found

    A Performant Web-Based Visualization, Assessment, and Collaboration Tool for Multidimensional Biosignals

    Get PDF
    Biosignal-based research is often multidisciplinary and benefits greatly from multi-site collaboration. This requires appropriate tooling that supports collaboration, is easy to use, and is accessible. However, current software tools do not provide the necessary functionality, usability, and ubiquitous availability. The latter is particularly crucial in environments, such as hospitals, which often restrict users' permissions to install software. This paper introduces a new web-based application for interactive biosignal visualization and assessment. A focus has been placed on performance to allow for handling files of any size. The proposed solution can load local and remote files. It parses data locally on the client, and harmonizes channel labels. The data can then be scored, annotated, pseudonymized and uploaded to a clinical data management system for further analysis. The data and all actions can be interactively shared with a second party. This lowers the barrier to quickly visually examine data, collaborate and make informed decisions

    TSDF: A simple yet comprehensive, unified data storage and exchange format standard for digital biosensor data in health applications

    Full text link
    Digital sensors are increasingly being used to monitor the change over time of physiological processes in biological health and disease, often using wearable devices. This generates very large amounts of digital sensor data, for which, a consensus on a common storage, exchange and archival data format standard, has yet to be reached. To address this gap, we propose Time Series Data Format (TSDF): a unified, standardized format for storing all types of physiological sensor data, across diverse disease areas. We pose a series of format design criteria and review in detail current storage and exchange formats. When judged against these criteria, we find these current formats lacking, and propose a very simple, intuitive standard for both numerical sensor data and metadata, based on raw binary data and JSON-format text files, for sensor measurements/timestamps and metadata, respectively. By focusing on the common characteristics of diverse biosensor data, we define a set of necessary and sufficient metadata fields for storing, processing, exchanging, archiving and reliably interpreting, multi-channel biological time series data. Our aim is for this standardized format to increase the interpretability and exchangeability of data, thereby contributing to scientific reproducibility in studies where digital biosensor data forms a key evidence base
    corecore