
TECHNOLOGY AND CODE
published: 24 September 2019
doi: 10.3389/fninf.2019.00065

Frontiers in Neuroinformatics | www.frontiersin.org 1 September 2019 | Volume 13 | Article 65

Edited by:

Sean L. Hill,

Centre for Addiction and Mental

Health, Canada

Reviewed by:

David Rotenberg,

Centre for Addiction and Mental

Health (CAMH), Canada

Padraig Gleeson,

University College London,

United Kingdom

*Correspondence:

Maximilian Beier

maximilian.beier@charite.de

Received: 02 May 2019

Accepted: 09 September 2019

Published: 24 September 2019

Citation:

Beier M, Penzel T and Krefting D

(2019) A Performant Web-Based

Visualization, Assessment, and

Collaboration Tool for Multidimensional

Biosignals. Front. Neuroinform. 13:65.

doi: 10.3389/fninf.2019.00065

A Performant Web-Based
Visualization, Assessment, and
Collaboration Tool for
Multidimensional Biosignals

Maximilian Beier 1,2*, Thomas Penzel 1 and Dagmar Krefting 2,3

1Center of Sleep Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany, 2Center for Biomedical Image and

Information Processing, University of Applied Sciences, Berlin, Germany, 3Department of Medical Informatics, University

Medical Center Goettingen, Göttingen, Germany

Biosignal-based research is often multidisciplinary and benefits greatly from multi-site

collaboration. This requires appropriate tooling that supports collaboration, is easy to

use, and is accessible. However, current software tools do not provide the necessary

functionality, usability, and ubiquitous availability. The latter is particularly crucial in

environments, such as hospitals, which often restrict users’ permissions to install

software. This paper introduces a new web-based application for interactive biosignal

visualization and assessment. A focus has been placed on performance to allow for

handling files of any size. The proposed solution can load local and remote files. It

parses data locally on the client, and harmonizes channel labels. The data can then

be scored, annotated, pseudonymized and uploaded to a clinical data management

system for further analysis. The data and all actions can be interactively shared with

a second party. This lowers the barrier to quickly visually examine data, collaborate and

make informed decisions.

Keywords: biosignals, visualization, collaboration, EDF, PSG

1. INTRODUCTION

Biosignals are an integral part of different medical fields like neurology, cardiology,
pneumology or sleep medicine (Semmlow, 2012). These disciplines strongly rely on the visual
interpretation of biosignals to find pathological patterns and obtain information about a patient’s
condition (Naït-Ali, 2009). The signals are acquired digitally and assessed by researchers or
clinicians via a variety of software solutions. Since the causes of diseases can be manifold,
diagnosis increasingly require interdisciplinary knowledge and cooperation (Körner, 2010). In
general, however, non-commercial solutions only allow a single user. Thus, if one wants to consult
another person, he or she has to be physically available to work in front of the same monitor
and finger point to interesting aspects of the biosignals. And although data can be uploaded to
private or public online repositories (Goldberger et al., 2000; Krefting et al., 2013) or viewed
using screen-sharing methods or remote desktop tools (that are barely found in hospitals due to
security reasons), this highly interactive kind of discussion on biosignals has currently no virtual
counterpart. Furthermore, since hospitals work with sensitive data, their computer systems are
restrictive to maintain integrity and users usually cannot install their own software (Anderson,
1996). They are thereby bound to certain computers and the programs available on them,
which further hinders collaborative work between disciplines. For the presented application, sleep
medicine was chosen as the primary application area, as it covers a wide range of biosignals and is
inherently interdisciplinary.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Repository of the Freie Universität Berlin

https://core.ac.uk/display/250248462?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2019.00065
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2019.00065&domain=pdf&date_stamp=2019-09-24
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:maximilian.beier@charite.de
https://doi.org/10.3389/fninf.2019.00065
https://www.frontiersin.org/articles/10.3389/fninf.2019.00065/full
http://loop.frontiersin.org/people/731400/overview
http://loop.frontiersin.org/people/43626/overview
http://loop.frontiersin.org/people/764698/overview

Beier et al. Web-Based Biosignal Collaboration Tool

1.1. Sleep Medicine
The comprehensive analytical method to investigate the course,
depth and quality of sleep is the so-called polysomnography
(PSG) (Ibáñez et al., 2018). They usually span a whole night
sleep of about 8 h and contain multiple biosignals like brain
activity (EEG), eye movement (EOG), muscle tone (EMG), and
cardiac activity (ECG). The AASM Manual for the Scoring of
Sleep (Berry et al., 2017) recommends a minimum of 16 signals
for a routine PSG1, but recordings can contain up to 40 different
sensors (Roebuck et al., 2014). A typical PSG today encompasses
about 300 MB of biosignal data. Sleep is a dynamic process and
can be divided into awake (W), light (N1, N2), deep (N3), and
REM (R) sleep (Iber et al., 2007). These are traversed in typical
sleep patterns over the night and are assigned by reviewing the
recorded signals in 30 s windows, so-called epochs. This results
in a graph called hypnogramm. In addition, special events can
be marked, e.g., cessation of breathing (apnea) or limb twitching.
Based on this data, a diagnosis can be made and the referral to a
specialist recommended.

2. REQUIREMENTS AND CONCEPT

The aim of our work is a solution that enables researchers and
clinicians to inspect and evaluate biosignals in a familiar user
interface and easily consult another person in order to work
together, interactively receive feedback and jointly gain insights.
In qualitative interviews with researchers and technical staff from
different sleep labs in Germany, we have deduced the following
requirements. The solution should:

(a) Work location independent
The application should run on common desktop computers
and mobile devices without installation.

(b) Be performant
The user interface should provide a fast initial rendering
and allow for uninterrupted scrolling through the data. Its
performance should be independent of a file’s size.

(c) Support assessment
The user interface shouldmimic established applications and
allow to assess a PSG, in particular to create a hypnogramm
and mark events. Events need to be imported and exported.

(c) Allow for collaboration
Multi-user operation and live interactive data exchange with
at least one other authenticated party must be possible
without additional tools or browser plugins.

(d) Protect patient data
Identifying information should only be transmitted in
pseudonymized form by default.

(e) Support most browsers
All modern browsers like Chrome, Firefox, Safari and Edge
must be supported. IE11 should be supported as much
as possible.

1Depending on the variation; 3 × EEG, 2 EOG, 2 × chin EMG, 2 × leg EMG,

2 × airflow (nose, mouth), 2 × respiratory effort, blood oxygen saturation, body

position, ECG.

(f) Support most biosignal devices
The application should support a file format that most
devices are able to export.

(g) Enable advanced analysis
It should be possible to employ external analysis tools, such
as automatic preprocessing of the data.

To fulfill requirement (a), a web-based application is the method
of choice. All modern desktop computers andmobile devices ship
with a pre-installed web browser, that is capable of executing
arbitrary JavaScript (JS) code. An implementation as a Single
Page Application in HTML, CSS, and JS ensures that it works
on any of these systems without local installation. Interactive
assessment (c) can also be realized with these technologies.
Requirement (b) is addressed by testing different data loading
methods and rendering approaches. For collaboration (d) over
the web, WebRTC is used. Pseudonymization (e) can be achieved
by replacing identifying data in the transfer stream with locally
generated substitutes. The solution should also work offline if
used alone to guarantee that there is no data-leakage. To fulfill
(f), only methods currently supported by all modern browsers
are implemented. Most software tools that come with biosignal
devices allow to export data to the European Data Format2

(EDF). Therefore, the solution is based on EDF (g). Data transfer
to XNAT, a popular biomedical research platform, and ingestion
of analysis results from XNAT is supported (h).

3. RELATED WORK

Most commercial PSG devices store recordings in proprietary
formats that can be visualized with also proprietary software
provided by the manufacturers, e.g., Domino (Somnomedics),
Noxturnal (ResMed), or Sleepware G3 (Philips). They all support
assessment (c), are performant (b) and can import and export
EDF (g) but need to be installed (a) and don’t offer collaboration
functionality (d).

With regard to biosignal viewers there are several open-
source tools to visualize EDF files listed on the EDF website.
Among them Sleep (Combrisson et al., 2017) and SigViewer for
Windows, macOS and Linux, or Polyman for Windows (Kemp
and Roessen, 2007).

Furthermore, an increasing number of online EDF viewers
are available3, including commercial services for sleep scoring
training like the AASM Sleep ISR. However, they are all
interfaces to online data repositories, require special server-side
applications to parse EDF into a custom format, or cannot be
used for own data.

In 2015 our proof-of-concept version of a purely web-
browser-based EDF parser and visualizer was published as part
of a biosignal research infrastructure (Beier et al., 2017). It
supports requirements (a) and (e)–(g), but is relatively slow
and offers no further features. In 2017, Bilal Zonjy released a
web browser-based EDF viewer4 that also supports local and

2http://www.edfplus.info
3e.g., LightWAVE: https://physionet.org/lightwave, Altamira: https://github.com/

nsrr/altamira, Interactive EEG Atlas: http://www.atlas.ansuk.org
4https://github.com/BilalZonjy/EDFViewer

Frontiers in Neuroinformatics | www.frontiersin.org 2 September 2019 | Volume 13 | Article 65

http://www.edfplus.info
https://physionet.org/lightwave
https://github.com/nsrr/altamira
https://github.com/nsrr/altamira
http://www.atlas.ansuk.org
https://github.com/BilalZonjy/EDFViewer
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Beier et al. Web-Based Biosignal Collaboration Tool

remote EDF files, supporting requirements (a), (f), (g), and (h).
Justus Schwabedal released a similar application5 in 2018 that
additionally offers automatic sleep stage scoring (c). None of
those solutions allows for remote collaboration. On the other
hand, several solutions for web-based collaboration have been
proposed, like CBRAIN (Sherif et al., 2014) for neuroimaging
research, P2Care (Maglogiannis et al., 2006; Andriopoulou et al.,
2015) for general real-time teleconsultation, or BUCOMAX (Puel
et al., 2014) and HERMES (Andrikos et al., 2019) for radiologists.
But these solutions do not support biosignal recordings.

4. METHODS

As stated in requirement (b), the application should show at least
the performance as existing solutions for the user. This includes
two aspects: At application startup, the First Meaningful Paint
(FMP), i.e., the time from the start of the application to the
first rendered graphs, is considered the respective performance
measure. We assume FMP ≤ 2 s as acceptable. The second
measure is the time the application needs to update these graphs
due to user input, for example while scrolling on the time axis; the
latency L. This does not only include the applications work but
also the browsers work like layouting, painting, and handling user
input. If the application code uses too much time, the rendering
process is blocked, frames are dropped and the response to user
interaction is delayed, which leads to visible inconsistencies. We
assume a L≤ 100 ms response time as good, as this is typically an
accepted time delay in computer networks. As the application is
for inspection of static data and is typically not in a time critical
context we assume L ≤ 200 ms as acceptable. A lower limit for
L would be the frame rate of the monitor (60 Hz), resulting in
L_min = 16 ms. Both RAM consumption as well as CPU load can
contribute to low performance, and are both considered.

4.1. Data Formats
EDF (Kemp et al., 1992) [and its successor EDF+ Kemp and
Olivan, 2003] is a free and open format designed to store time
series of multiple signals and is the de facto standard for biosignal
recordings. It consists of three parts: a static header, a dynamic
header, and the signal data.

The static header contains metadata about the recording,
the recorded channels, and the patient. Only the “local
patient identification” field is intended to contain identifying
information like name and birth date.

The dynamic header includes metadata for each channel. EDF
specifies the structure of the metadata and the signals, but not
the signal description labels. EDF+ added obligatory standard
names and naming schemes (Kemp et al., 2003), but they are
not enforced. Due to low compliance, several variations for
the same signal can be found in different devices. They might
differ slightly (e.g., “C4-A1”= “EEGC4-A1”= “EEG C4-A1”) or
strongly (e.g., “LEGBEINLI” = “EMG LAT”). Most of the labels
are acquired by the staff in the clinical routine with a limited set
of devices in a lab. However, they are problematic in automated
environments or whenworking inmulticenter studies. Therefore,

5https://github.com/jusjusjus/edfjs

a list of commonly used variants of channel names and their
equivalent in the standard has been manually compiled (Beier
et al., 2017). It currently lists 350 variations of 88 standard
signals, among them 47 EEG channels, 11 EMG channels and 9
EOG locations).

The signal data itself is a sequence of 16 bit integers. However,
the data is stored in so-called records, where the measures of all
channels in a certain time interval are appended subsequently.
The data of a certain channel is thereby spread across a
file (Figure 1).

Depending on the number of signals and their sampling rate,
file sizes of a whole night PSG in EDF might range from 30 MB
to 2 GB, but are usually between 300 and 500 MB6.

There is no standard text-based export format for events,
such as the sleep stages. EDF+ does allow an “EDF Annotations”
signal as a separate channel for storing annotations and events.
However, these would be limited in size, binary encoded and
bound to the (large) data file, which makes it cumbersome to
work with. Therefore, JSON is chosen as the export format for
annotation data, where one object contains an unlimited number
of events as key-value pairs. The key is a UNIX timestamp7 in
milliseconds and the value is a string that describes the event.

4.2. Signal Compression Technologies
Typically, there is a higher time resolution of the biosignals
than the horizontal display resolution. For example, the AASM
recommends a sampling rate of 500 Hz for EEG, ECG, EOG, and
EMG (Berry et al., 2017), i.e., 500 values within 1 s. In contrast,
when displaying an epoch of 30 s on a standard monitor with a
horizontal resolution of 1,200 pixels (px), there are 40 px available
for the data of each second. Therefore, 12 signal values would be
drawn in the same pixel column and overlay during rendering.
The same visual result can be obtained by only drawing the
minimum and maximum values. Such a compression would lead
to a space gain of 80% in thementioned example while preserving
an accurate representation of the signal data (Hadjileontiadis,
2006). The reduced RAM consumption would minimize the risk
of crashing the browser tab. However, such compression requires
re-parsing of the data if the browser window gets resized or
the displayed time range is changed, which may lead to high
CPU consumption.

4.3. Web Technologies
The solution builds upon modern web technologies. To develop
the application in separate components that can be used
independently or in composition, React, a JS library for building
user interfaces, is utilized. It allows to embed the application
or a subset of these components in other applications, build
variations of it or extend it with own components. The final
code is provided as static files, so no server-side processing
is required and any web-server can be used to deploy the
application. For biosignal rendering, different drawing methods
have been considered, in particular Scalable Vector Graphics

6Based on data from https://sleepdata.org/datasets (Zhang et al., 2018).
7A way to describe a point in time by the number of seconds that have elapsed

since the 1st of January 1970.

Frontiers in Neuroinformatics | www.frontiersin.org 3 September 2019 | Volume 13 | Article 65

https://github.com/jusjusjus/edfjs
https://sleepdata.org/datasets
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Beier et al. Web-Based Biosignal Collaboration Tool

FIGURE 1 | EDF in the context from measurement to visualization. Every few seconds the recorded the signal data of each channel is appended. Later, this structure

gets transformed into a channel-based representation.

(SVG) and the HTML Canvas element. The prevailing opinion
is, that Canvas renders faster than SVG (Kee et al., 2012). But
this may not be generally the case today and depends on factors
like the number of rendered elements (Horak et al., 2018). Based
on preliminary performance tests, described in section 4.4.1, a
library is chosen that employs the fastest rendering technique,
that is then further optimized.

Peer-to-peer (P2P) architectures, where end-users can
communicate directly with each other over the internet, as
envisioned for the collaboration use case, have been standardized
over the last years as Web Real-Time Communication
(WebRTC). It is now supported by most browsers (e.g., Chrome,
Firefox, Edge, Safari) and allows for audio, video and data
communication without any additional plugins. Connections
are end-to-end encrypted by default and communication with a
server is only necessary for signaling (i.e., initial peer discovery).

4.4. Performance Test System
Web applications are difficult to reliably test for performance,
especially when they require user interaction, such as selecting
a file from the local file system for an input element. And
while most browsers include developer tools that help measure
application performance, they also require user interaction, for
example, to start and stop the profiler and to measure RAM
usage or the distribution of computing time over a specific period
of time. Both problems have been solved with Puppeteer, a JS
library that allows to automatically start, control and profile a
Chrome instance. Therefore, a dedicated test system based on
Puppeteer is developed to make informed decisions based on real
performance data during development of the application. The
tests are described as JS scripts, which load test HTML files and
precisely measure specific properties like the execution time of
certain parts of the code or the overall RAM consumption. All
tests are executed on a Mid 2013 MacBook Air with an 1.3 GHz
Intel Core i5 and 8 GB of RAM.

4.4.1. Preliminary Performance Tests

To evaluate the performance of different technologies for our
particular use case of rendering time series data, three test cases
have been implemented: one based on Canvas and two based on
SVG, using the Path element and the Polyline element, which

are both commonly used to render graphs. Each test case is
additionally split into two versions, one for single uncompressed
values and one for min-max pairs. The test data consists of
1,200 random data points per channel, generated in advance. To
further mitigate any unknown browser-internal optimizations,
two different sets of the data have been generated and each draw
uses a random mix of both sets.

A common problem in testing rendering performance is to
onlymeasure JavaScript execution time, thusmissing the time the
browser takes to calculate styles, lay out the changes and paint
them, which also blocks the main thread. Therefore, each draw
is queued via setTimeout to let the browser finish all work
before continuing. Each implementation was tested for 8, 16, 32,
and 64 channels with 100 draws each. For every test, a trace was
recorded and evaluated for the time spent on scripting, painting
and rendering.

4.5. Integration Into Data Analytics
Environment
XNAT8 is a free and open-source web-based data management
system developed to support clinical trials and offers structured
storage capabilities for popular formats in neuroscience (Marcus
et al., 2007). It can be easily extended to support other formats
like EDF (Beier et al., 2017). Data is mainly organized in a
hierarchy of projects, subjects, and experiments. XNAT provides
a user management system with fine-grained access control
capabilities for the stored data. Users authenticate with username
and password and receive an authorized token within a cookie
that is valid for the current session. XNAT offers a comprehensive
REST API, which makes it easy for other applications to interact
with it over the web. XNAT also includes a so-called pipeline
engine that allows for arbitrary data analysis by defining an
analysis pipeline, a sequence of subsequent tasks that are stored
in XML-based pipeline definition. It is possible to call executables
within these pipelines that can receive parameters. These can be
passed in three different ways: dynamically (based on the current
context), automatically (as pre-defined values) and manually (via
the user interface or REST call).

8https://www.xnat.org

Frontiers in Neuroinformatics | www.frontiersin.org 4 September 2019 | Volume 13 | Article 65

https://www.xnat.org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Beier et al. Web-Based Biosignal Collaboration Tool

In our context, XNAT is used to store EDF files, analysis
results, and related artifacts. The presented application can
upload data to XNAT and visualize automatically detected
events. To allow communication between both, the same-origin
policy (SOP) has to be respected. The SOP is a fundamental
security model of the web, that restricts JS scripts to only access
data served under the same origin, i.e., the combination of
protocol, host, and port. Therefore, the application is integrated
into the Apache Tomcat instance that also runs XNAT. All
communication between them is encrypted.

4.6. Open Development
The application is developed under the MIT
license. All source code is hosted on GitHub under
github.com/somnonetz/copla-editor which can be freely
used and extended. The repository also includes all test files and
sample results. This makes it easy to inspect, reproduce and
compare the results. It is therefore also possible to deploy and
use the application in systems without access to the internet,
e.g., a hospital intranet.

5. IMPLEMENTATION

The application’s core consists of two distinct parts: a parser and a
visualizer. A collaboration add-on utilizes this core to enable live
peer-to-peer communication with another user.

To be able to also use the application offline, it is fully loaded
and cached the first time it is accessed by the user. This is
possible by leveraging a Service Worker, a script that acts as
an intermediate between other scripts and the browser, and can
handle network requests and fulfill them with data from a cache
in case no network is available.

From then on, a network connection is only needed to view
remote files or to collaborate. EDF files can be opened by
providing a URL to a remote file via a query parameter or by
drag and drop of local files. Channel names are automatically
substituted with their equivalent from the EDF+ standard to
provide a homogeneous view to the user.

To achieve a fast FMP, the application first loads only the
headers and the signal data for the application’s current window
size, the so-called viewport. Then a buffer of two viewport widths
left and right of the currently shown signal part is preloaded and
cached. From then on the cache constantly provisions new data
for time ranges that are likely to be viewed next and removes data
that has become dispensable, when a user moves through the file.

5.1. Parser
The parser converts EDF data into a JS data structure. Data values
in EDF have implicit time information based on their position
in the file. To make it easier to address time points within the
data, the parser converts each value into a tuple containing the
value and its absolute time as a JS Date object. Due to its high
RAM consumption, this solution is not feasible to parse a whole
PSG of 300 MB in the browser. But since EDF arranges data
chronologically, it is possible to only load a specific segment of
a file to provide parsed data for a certain time range. Therefore,
the parser has been build to be able to parse EDF segments of
arbitrary length (rounded to the nearest record).

The parser itself offers the asynchronous method getData,
that receives a time range and optionally a frequency parameter.
The frequency describes the maximum number of values the
resulting data should contain per second. The parser then
compresses the signal data by reducing all values of a certain
time range to its minimum andmaximum values. The time range
parameter is internally translated into its corresponding byte
range, i.e., the exact position of the first and last byte in the file.

To decouple the parser from a concrete data source, it depends
on an abstract loading strategy. This can be any JS object that
implements a read method. This method receives a byte range
from getData and returns a Promise object that will resolve
with the corresponding EDF data. Three loading strategies have
been implemented, for local files, remote files and a WebRTC
peer. To support partial loading, the local strategy relies on the
ability of the FileReader API to read slices of a file. The remote
strategy in contrast uses HTTP range requests that must be
supported by the web server that hosts the file.

5.2. Visualizer
The user interface mimics those of other applications used in
sleep labs. It displays the signal graphs of all channels, supports
scoring, has controls to switch between common time windows
(e.g., 30 s, 5 min, full) and allows to inspect a files header
information (Figure 2).

5.2.1. Preliminary Performance Test Results

The results of the tests, as described in section 4.4.1, are
presented in Figure 3. It shows the overall time needed for several
implementations using different approaches (Canvas and SVG)
and data structures (single values and min-max pairs) to draw
the given test data for 8–64 signals (rows) 100 times each. The
drawing time is divided into the different categories of browser
work: scripting, rendering and painting. Scripting refers to the
computational time spent on executing script code. Rendering
includes computation of styles associated with HTML elements
and their positioning in the layout. Painting refers to the time
needed to rasterize graphical data and draw it. The Canvas based
implementations spent no time on rendering, as the same HTML
element is re-used. The SVG versions on the other hand spent
nearly no time on painting because previous data points can be
reused, but they need to be re-positioned, which is whymore time
is needed for the rendering step.

The most relevant tests regarding our use case are CNV_1
(Canvas with min-max-pairs) and SVG_2 (SVG using min-max-
pairs). The Canvas implementation performed best in every
configuration. It is about three times faster for 16 channels and
about five times faster for 64 channels.

Based on these results, the open source JS library dygraphs9

was chosen, as it uses a Canvas element to plot data. It supports
panning and zooming, handles user input (e.g., dragging
elements with the mouse), automatically enriches the chart axes
with value labels, and offers utility functions (e.g., to translate
pixel coordinates to timestamps). It also offers are plugin API.
However, dygraphs showed some performance issues when
updating a graph frequently, therefore the library was forked

9https://github.com/danvk/dygraphs

Frontiers in Neuroinformatics | www.frontiersin.org 5 September 2019 | Volume 13 | Article 65

mailto:github.com/somnonetz/copla-editor
https://github.com/danvk/dygraphs
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Beier et al. Web-Based Biosignal Collaboration Tool

FIGURE 2 | Overlay with the EDF file header information, showing the static and the dynamic header data.

and optimized for our particular use case. The changes include
(ordered according to the impact on the rendering performance):

• Reusing HTML elements by introducing an element pool to
save time from frequent destruction and recreation, e.g., for
timestamp labels)

• Memorizing values calculated in loops, deterministic function
call results, and colors (color strings like "red" were translated
into RGB by applying them to a hidden HTML element and
then reading the resulting color code from it)

• Using binary search instead of linear search to find the indices
of the first and last data points of the currently visible viewport

• Replacing CPU based positioning of timestamps by a GPU-
based method

• Not updating HTML elements that are hidden or whose
content didn’t change, such as the legend or graph labels)

Furthermore, a dygraphs plugin has been developed to support
the visualization and handling of events within the biosignals
[requirement (d)]. Events can be added manually by selecting a
time range in a channel and then add a label. The plugin supports
shortcuts for common apnoe labels10. Events can also be resized,
moved, and removed. Existing events can be imported and are
immediately added to the visualization.

10H, hypopnoe; Z, central apnoe; G, mixed apnea; O, obstructive apnea.

5.3. Collaboration Add-on
The application enables collaboration with one other party
utilizing WebRTC. To start a collaboration session, one party
has to load a local or remote EDF file, as described before.
A share button appears, which, when clicked, generates a PIN

and shows a URL containing it. These have to be shared
with the other party over a second medium, e.g., phone or

email. The other party then opens the URL or manually

enters the PIN to join. Thereafter, all actions are synchronized

and both parties act with the same priority. To ease the
communication, each user also sees the live position of the

mouse pointer of its counterpart as a red dot (see Figure 4).
Both users can also initiate a call directly in the application
(via a click on the phone icon in the header), to establish an
audio channel.

There is not functionality to resolve conflicting behavior
yet, e.g., if both parties move in different directions at the
same time. Such conflicts currently have to be solved on
the social level, e.g., by communicating ones intent via the
audio channel.

Technically, the sharing behavior is implemented
as another loading strategy of the parser (see
Figure 5). When a client requests data from the
resource, it is transparently transferred from a
connected peer.

Frontiers in Neuroinformatics | www.frontiersin.org 6 September 2019 | Volume 13 | Article 65

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Beier et al. Web-Based Biosignal Collaboration Tool

FIGURE 3 | Runtime data for different SVG and Canvas implementations drawing different amounts of signals (rows) using single values and min-max pairs as data.

CNV_1, Canvas with min-max-pairs; CNV_2, Canvas with single values; SVG_1, SVG using multiple path elements and min-max pairs; SVG_2, SVG using one path

element for all min-max pairs; SVG_3, SVG using multiple path elements and single values; SVG_4, SVG using a polyline element and single values.

FIGURE 4 | A PSG session in Google Chrome on MacOS (left, host) and an emulated tablet (right, peer). Both parties see the same data range and the marked

events. The mouse position of the other party is shown as a red dot.

As in the case of the other loading strategies, still only the
currently needed segments of the EDF file are transferred. The
app sends raw EDF data instead of serializing and sending
parsed data as it turned out to be much faster and mitigates
compression problems for diverging display resolutions. The data
is not persisted by default. However, to allow file sharing the
receiving party has a button to download the entire file.

5.4. Pseudonymization
To account for patient data protection, the application
pseudonymizes each file locally before network transfer by
default. Pseudonyms are randomly generated strings. The
application also handles their management, import and export:
All pseudonyms are put in a persistent key-value store in the
browser, the so-called Local Storage. The mapping of patient data

Frontiers in Neuroinformatics | www.frontiersin.org 7 September 2019 | Volume 13 | Article 65

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Beier et al. Web-Based Biosignal Collaboration Tool

FIGURE 5 | Message and data flow within the applications and between the two instances in the collaboration setting. Data sources are always handled through the

parser. To enable visualization of data provided by a peer, the cached data is sent over the WebRTC data channel and is presented to the parser of the receiving

instance as a WebRTC data source.

and pseudonyms can be exported as an Excel file11. They can
also be imported in the same format, e.g., to re-pseudonymize
remotely stored EDF files. The default behavior can be disabled
by the sending party giving the user the full control over the
privacy level.

5.5. Integration With Data Management
The application allows users to log in to a remote XNAT instance
and upload local EDF files. The files are then automatically
analyzed in the platform as a feature of XNAT. These analyses can
produce events, e.g., detected artifacts or apnea episodes, which
are then pulled back by the application and are used to enrich the
local visualization (see Figure 6) (Witt et al., 2017).

6. PERFORMANCE OPTIMIZATION

The visualization library dygraphs provides many needed
features out of the box, but its original use case is different from
ours and some of its constraints turned out to be suboptimal for
the proposed application regarding RAM usage and rendering
performance. The application has achieved an FMP of about
1100 ms. This includes loading the site with empty cache from
a remote server (440 ms), loading a remote EDF file (450 ms)
and rendering the first epoch (210 ms). It updates with about
7 frames per second in constant scrolling, resulting in L = 143
ms. This is acceptable but does not reach the envisioned update
time of below 100 ms, and leads to notable lagging if one scrolls
quickly through the data. Therefore, alternative approaches have
been tested that show better performance. Although they were
finally not employed, because they either were not compatible
with dygraphs or did not meet requirement (f) as they depend
on modern browser features, the attempts are here described for
completeness and as starting point for further improvements.
All implementations and tests and available in the application’s
GitHub repository.

11Excel may not seem like a good technical choice, but in our experience it is the

format most clinicians can work with efficiently.

6.1. RAM Consumption
Dygraphs requires time series data to be specifically structured12.
Each entry has to be an array containing a JS Date object, the
value and in our case, when compression is used, an additional
array containing the min and max values. Unfortunately, parsing
EDF into a JS representation with this structure leads to a
substantial increase in space usage: Parsing 10 MB of EDF results
in 1 GB of RAM usage and takes about 5 s. Replacing the
Date objects with timestamps as numbers reduces the RAM
usage to 440 MB and parsing time to 890 ms. A full PSG
of 300 MB would therefore theoretically need 52 s to parse
while consuming 13 GB of RAM instead of 150 s and 30
GB of RAM without optimization. Compression mitigates this
problem and parsing 10 MB EDF data with a frequency of 40
decreases RAM usage to 168 MB with a similar parsing time
of 780 ms. However, RAM consumption and parsing times
could be even further reduced to 430 ms and 61 MB (for 10
MB with a frequency of 40) by not using a separate array for
each entry, but one flat array for all data of a channel with
a repeating sequence of the three numbers: timestamp, min
value and max value. This representation would be feasible to
hold many more data without risking to crash the browser
tab, but it would require a substantial modification of the
visualization library.

6.2. Rendering Performance
One way to increase rendering performance is to offload
as much work as possible to a Web Worker, a thread like
model that allows for concurrent code execution (Verdu
and Pajuelo, 2016). They follow the actor model, so they
don’t share state and communicate asynchronously over
messages. All steps in Figure 7 are candidates for offloading
to a Web Worker. As parsing and rendering are the most
computational expensive parts, they were targeted first.
Unfortunately the dygraphs library is tightly coupled with

12http://dygraphs.com/data.html#array

Frontiers in Neuroinformatics | www.frontiersin.org 8 September 2019 | Volume 13 | Article 65

http://dygraphs.com/data.html#array
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Beier et al. Web-Based Biosignal Collaboration Tool

FIGURE 6 | The user interface when a user is logged in to XNAT and had uploaded a file, which was automatically analyzed. Detected events like artifacts (blue areas)

were played back into the visualization.

FIGURE 7 | All distinct steps involved from raw data to final picture, and different optimization approaches investigated.

the HTML element structure, which is not available in a Web
Worker thread.

If only the parser runs in a Web Worker, the overhead
for transferring the result becomes more expensive than the
parsing itself, because Web Workers use structured cloning to
transfer complex data. Loading 10 MB EDF data (frequency of
40; timestamps as Date objects) from a Web Worker took 2,340
ms with 1,080 ms spent on the transfer.

To mitigate this kind of problem, Shared Array Buffer
(SAB) was introduced to the web platform. A SAB is a fixed-
length raw binary data buffer. It is accessible to both the Web

Worker and the main thread without cloning. However, they
do not support complex data types, so it would have been
necessary to fully flatten the compressed EDF data and adjust
the visualization library accordingly. Beyond that, SABs were
disabled in Chrome at the time of development (and re-enabled
since), Firefox (now behind a feature toggle which is turned off
by default and needs to be explicitly enabled by the user) and
Edge to mitigate the speculative execution side-channel attacks
Meltdown and specter.

To make it easier to transfer data between a Web Worker and
the main thread, browsers also introduced Transferable Objects,

Frontiers in Neuroinformatics | www.frontiersin.org 9 September 2019 | Volume 13 | Article 65

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Beier et al. Web-Based Biosignal Collaboration Tool

which are not prone to structured cloning and can be passed
much faster. One of these objects is Image Data, a representation
of pixel data for a Canvas element. They can be used to handle
loading, parsing and rasterization in a Web Worker and transfer
the results back to the main thread with nearly no overhead
(around 3.7 ms for an 1,200× 800 px image).

Lastly, the currently experimental Offscreen Canvas was
evaluated, which provides a Canvas that can be rendered off
screen, especially in a Worker. It showed the best performance
with nearly no overhead for transfer. However, it is currently only
supported in Chrome and Firefox (behind a feature toggle).

A different optimization approach investigated is tiling.
Instead of re-rendering all graphs while scrolling, one dedicated
Canvas, i.e., a tile, is rendered for each time range. These tiles are
placed next to each other in a row and the browsers normal scroll
behavior is used for movement. To manage the number of tiles,
the library “react-window” was used to render the whole EDF
time span as a virtual list of tiles each as wide as one viewport
width. It renders up to four tiles in advance and uses Offscreen
Canvases to offload work. The application runs at the desired 60
frames per second, with nearly no workload on the main thread,
and stays responsive to user input.

Again, dygraph does not support this behavior. In case an own
visualization solution would be developed to replace dygraphs,
it should use tiling. Beyond that, especially Image Data and
Offscreen Canvas are promising potential optimizations.

The code for all mentioned optimization efforts can be found
in the “performance-tests” directory in the GitHub repository.

7. USER ACCEPTANCE TESTING

To evaluate whether the proposed solution meets the user
requirements, user acceptance tests have been conducted
with partners from different backgrounds (medical technical
assistants, clinicians, and sleep researchers) and different facilities
in multiple cities in Germany.

The test scenario consisted of several steps to determine if:

1. a user can open a local EDF file
2. a user can open an EDF file from XNAT when logged in
3. a user can inspect an opened file
4. a user can move within the timespan of a file
5. a user can mark events and manipulate them
6. a user can download the annotations
7. a user can share a file and gather an PIN
8. a user can connect with a host
9. a user can call the other user
10. data shared over a connection is pseudonymized
11. data is synchronized between connected users, especially the

EDF data, the time resolution, the viewport, event data and
the mouse cursor

12. a user can download the shared EDF file
13. a host can download all pseudonyms along with the original

patient data

The tests were carried out with five participants. Initially, all
participants were called via phone and instructions were given

orally. Once step 9 was reached, the phone call was ended and
both parties switched to the app internal audio channel. All
participants were able to successfully complete all test steps. In
one case, a network error occurred, presumably due to proxy
settings of the hospital network; this was mitigated by tethering
over a mobile hotpot and the test could then be continued.
All tests were carried out successfully and the participants were
able to complete the given tasks after a short introduction. All
participants answered yes to the questions as to whether in
their opinion the application was intuitive to use and whether
they were satisfied with the performance. While the local usage
has shown to be robust within different hardware, operating
systems and browsers, collaboration depends on a stable and
non-restrictive internet connection.

8. CONCLUSION AND OUTLOOK

The presented application enables clinicians and researchers
to assess biosignals in EDF and to collaborate with others,
while protecting sensitive patient data. Implemented as a web
application, it runs without installation and on all modern
browsers. The application was presented at the annual congresses
of both the GMDS (GermanAssociation forMedical Informatics)
and the DGSM (German Sleep Society). The DGSM plans
to freely host the application for its members to foster
communication between researchers, clinicians and patients. The
most requested feature was video support (patients are usually
filmed during sleep to ease signal interpretation), in particular for
teleconsultation, to discuss the data and the resulting diagnoses
with patients, especially in rural or less urban areas. However,
video poses data protection issues, as patient’s faces are typically
seen in the videos. Furthermore, higher data transfer rates are
required to reach the accepted performance, and synchronicity
between biosignal and video data is difficult to reach, as typically
recorded with different non-synchronized devices.

The application is also envisioned to be used it in a web-
based learning platform to train medical-technical assistants for
functional diagnostics by scoring against expert’s assessments.
This would not only make the trainees more independent about
the time, place and duration of their training; but would also help,
as the need for close proximity between trainer and apprentice
is expensive and inhibiting. Support for more than two peers is
possible and envisioned, but full synchronization between many
peers might lead to lags and the number of editing users may
need to be restricted to ensure the stability of the tool. Regarding
online repositories like sleepdata.org and physionet.org that offer
free access to biosignal recordings, the application could be
used to allow inspection of recordings without the need to
download them. The integration of analysis methods, such as
filters, frequency analysis or automatic artifact detection would
further enhance the usability of the application.

DATA AVAILABILITY STATEMENT

The datasets generated for this study can be found in the GitHub
repository at github.com/somnonetz/copla-editor.

Frontiers in Neuroinformatics | www.frontiersin.org 10 September 2019 | Volume 13 | Article 65

https://www.github.com/somnonetz/copla-editor
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Beier et al. Web-Based Biosignal Collaboration Tool

AUTHOR CONTRIBUTIONS

MB developed the application and ran the experiments.
DK and MB wrote the article. TP reviewed
the article.

ACKNOWLEDGMENTS

We acknowledge support from the German Research Foundation
(DFG; KR 4247/1-1) and the Open Access Publication Fund of
Charité–Universitätsmedizin Berlin.

REFERENCES

Anderson, R. J. (1996). Security in Clinical Information Systems. London: British

Medical Association.

Andrikos, C., Rassias, G., Tsanakas, P., and Maglogiannis, I. (2019). An enhanced

device-transparent real-time teleconsultation environment for radiologists.

IEEE J. Biomed. Health Inform. 23, 374–386. doi: 10.1109/JBHI.2018.2824312

Andriopoulou, F. G., Birkos, K., and Lymberopoulos, D. (2015). P2care: a dynamic

peer-to-peer network for collaboration in personalized healthcare service

delivery. Comput. Ind. 69, 45–60. doi: 10.1016/j.compind.2014.09.007

Beier, M., Jansen, C., Mayer, G., Penzel, T., Rodenbeck, A., Siewert, R., et al. (2017).

Multicenter data sharing for collaboration in sleepmedicine. Fut. Gen. Comput.

Syst. 67, 466-480. doi: 10.1016/j.future.2016.03.025

Berry, R. B., Brooks, R., Gamaldo, C., Harding, S. M., Lloyd, R.M., Quan, S. F., et al.

(2017). AASM scoringmanual updates for 2017 (version 2.4). J. Clin. SleepMed.

13, 665–666. doi: 10.5664/jcsm.6576

Combrisson, E., Vallat, R., Eichenlaub, J.-B., O’Reilly, C., Lajnef, T.,

Guillot, A., et al. (2017). Sleep: an open-source python software for

visualization, analysis, and staging of sleep data. Front. Neuroinform. 11:60.

doi: 10.3389/fninf.2017.00060

Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark,

R. G., et al. (2000). PhysioBank, PhysioToolkit, and PhysioNet: components

of a new research resource for complex physiologic signals. Circulation 10,

E215–E220. doi: 10.1161/01.cir.101.23.e215

Hadjileontiadis, L. J. (2006). “Biosignals and compression standards,” inM-Health,

eds R. S. H. Istepanian, S. Laxminarayan, and C. S. Pattichis (Boston, MA:

Springer US), 277–292.

Horak, T., Kister, U., and Dachselt, R. (2018). Comparing Interactive Web-Based

Visualization Rendering Techniques. TU Dresden: Interactive Media Lab.

Ibáñez, V., Silva, J., and Cauli, O. (2018). A survey on sleep assessment methods.

PeerJ 6:e4849. doi: 10.7717/peerj.4849

Iber, C., Ancoli-Israel, S., Chesson, A., and Quan, S. F. (2007). The AASM Manual

for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical

Specifications. Westchester, IL: American Academy of Sleep Medicine.

Kee, D. E., Salowitz, L., and Chang, R. (2012). Comparing Interactive Web-Based

Visualization Rendering Techniques. Medford, MA: Tufts University.

Kemp, B., and Olivan, J. (2003). European data format ‘plus’ (EDF+), an EDF alike

standard format for the exchange of physiological data. Clin. Neurophysiol. 114,

1755–1761. doi: 10.1016/S1388-2457(03)00123-8

Kemp, B., and Roessen, M. (2007). “Polyman: a free(ing) viewer for standard

edf(+) recordings and scorings,” in Sleep-Wake Research in the Netherlands,

eds G. S. F. Ruijgt, T. De Boer, V. Van Kasteel, G. van Luijtelaar, and S. Overeem

(Amsterdam: Dutch Society for Sleep-Wake Research), 71–73.

Kemp, B., Värri, A., Penzel, T., and Olivan, J. (2003). Standard Texts and Polarity

Rules.

Kemp, B., Värri, A., Rosa, A. C., Nielsen, K. D., and Gade, J. (1992). A simple

format for exchange of digitized polygraphic recordings. Electroencephalogr.

Clin. Neurophysiol. 82, 391–393. doi: 10.1016/0013-4694(92)90009-7

Körner, M. (2010). Interprofessional teamwork in medical rehabilitation:

a comparison of multidisciplinary and interdisciplinary team

approach. Clin. Rehabil. 24, 745–755. doi: 10.1177/0269215510

367538

Krefting, D., Canisius, S., Hoheisel, A., Loose, H., Tolxdorff, T., and

Penzel, T. (2013). Grid based sleep research–analysis of polysomnographies

using a grid infrastructure. Fut. Gen. Comput. Syst. 29, 1671–1679.

doi: 10.1016/j.future.2010.03.008

Maglogiannis, I., Delakouridis, C., and Kazatzopoulos, L. (2006). Enabling

collaborative medical diagnosis over the internet via peer-to-peer

distribution of electronic health records. J. Med. Syst. 30, 107–116.

doi: 10.1007/s10916-005-7984-1

Marcus, D., Olsen, T. R., Ramaratnam, M., and Buckner, R. L. (2007).

The extensible neuroimaging archive toolkit–an informatics platform for

managing, exploring, and sharing neuroimaging data. Neuroinformatics 5,

11–34. doi: 10.1385/NI:5:1:11

Naït-Ali, A. (Ed.). (2009). Advanced Biosignal Processing. Berlin; Heidelberg:

Springer Berlin Heidelberg.

Puel, A., Wangenheim, V. A., Meurer, M. I., and Macedo, D. D. D. J. (2014).

“Bucomax: collaborative multimedia platform for real time manipulation

and visualization of bucomaxillofacial diagnostic images,” in IEEE 27th

International Symposium on Computer-BasedMedical Systems (NewYork, NY).

Roebuck, A., Monasterio, V., Gederi, E., Osipov, M., Behar, J., Malhotra, A., et al.

(2014). A review of signals used in sleep analysis. Physiol. Meas. 35, R1–R57.

doi: 10.1088/0967-3334/35/1/R1

Semmlow, J. (2012). “The big picture,” in Signals and Systems for Bioengineers, ed

J. Bronzino (Hartford, CT: Elsevier; Trinity College), 3–33.

Sherif, T., Rioux, P., Rousseau, M.-E., Kassis, N., Beck, N., Adalat, R.,

et al. (2014). CBRAIN: a web-based, distributed computing platform

for collaborative neuroimaging research. Front. Neuroinform. 8:54.

doi: 10.3389/fninf.2014.00054

Verdu, J., and Pajuelo, A. (2016). Performance scalability analysis of JavaScript

applications with web workers. IEEE Comput. Archit. Lett. 15, 105–108.

doi: 10.1109/LCA.2015.2494585

Witt, M., Jansen, C., Breuer, S., Beier, M., and Krefting, D. (2017).

Artefakterkennung über eine cloud-basierte Plattform. Somnologie 21:2067.

doi: 10.1007/s11818-017-0138-0

Zhang, G.-Q., Cui, L., Mueller, R., Tao, S., Kim, M., Rueschman, M., et al. (2018).

The National Sleep Research Resource: towards a sleep data commons. J. Am.

Med. Inform. Assoc. 25, 1351–1358. doi: 10.1093/jamia/ocy064

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2019 Beier, Penzel and Krefting. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 11 September 2019 | Volume 13 | Article 65

https://doi.org/10.1109/JBHI.2018.2824312
https://doi.org/10.1016/j.compind.2014.09.007
https://doi.org/10.1016/j.future.2016.03.025
https://doi.org/10.5664/jcsm.6576
https://doi.org/10.3389/fninf.2017.00060
https://doi.org/10.1161/01.cir.101.23.e215
https://doi.org/10.7717/peerj.4849
https://doi.org/10.1016/S1388-2457(03)00123-8
https://doi.org/10.1016/0013-4694(92)90009-7
https://doi.org/10.1177/0269215510367538
https://doi.org/10.1016/j.future.2010.03.008
https://doi.org/10.1007/s10916-005-7984-1
https://doi.org/10.1385/NI:5:1:11
https://doi.org/10.1088/0967-3334/35/1/R1
https://doi.org/10.3389/fninf.2014.00054
https://doi.org/10.1109/LCA.2015.2494585
https://doi.org/10.1007/s11818-017-0138-0
https://doi.org/10.1093/jamia/ocy064
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	A Performant Web-Based Visualization, Assessment, and Collaboration Tool for Multidimensional Biosignals
	1. Introduction
	1.1. Sleep Medicine

	2. Requirements and Concept
	3. Related Work
	4. Methods
	4.1. Data Formats
	4.2. Signal Compression Technologies
	4.3. Web Technologies
	4.4. Performance Test System
	4.4.1. Preliminary Performance Tests

	4.5. Integration Into Data Analytics Environment
	4.6. Open Development

	5. Implementation
	5.1. Parser
	5.2. Visualizer
	5.2.1. Preliminary Performance Test Results

	5.3. Collaboration Add-on
	5.4. Pseudonymization
	5.5. Integration With Data Management

	6. Performance Optimization
	6.1. RAM Consumption
	6.2. Rendering Performance

	7. User Acceptance Testing
	8. Conclusion and Outlook
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References

