1,842 research outputs found

    A performance simulation tool for the analysis of data gathering in both terrestrial and underwater sensor networks

    Get PDF
    Wireless sensor networks (WSNs) have greatly contributed to human-associated technologies. The deployment of WSNs has transcended several paradigms. Two of the most significant features of WSNs are the intensity of deployment and the criticalness of the applications that they govern. The tradeoff between volume and cost requires justified investments for evaluating the multitudes of hardware and complementary software options. In underwater sensor networks (USNs), testing any technique is not only costly but also difficult in terms of full deployment. Therefore, evaluation prior to the actual procurement and setup of a WSN and USN is an extremely important step. The spectrum of performance analysis tools encompassing the test-bed, analysis, and simulation has been able to provide the prerequisites that these evaluations require. Simulations have proven to be an extensively used tool for analysis in the computer network field. A number of simulation tools have been developed for wired/wireless radio networks. However, each simulation tool has several restrictions when extended to the analysis of WSNs. These restrictions are largely attributed to the unique nature of each WSN within a designated area of research. In addition, these tools cannot be used for underwater environments with an acoustic communication medium, because there is a wide range of differences between radio and acoustic communications. The primary purpose of this paper is to present, propose, and develop a discrete event simulation designed specifically for mobile data gathering in WSNs. In addition, this simulator has the ability to simulate 2-D USNs. This simulator has been tailored to cater to both mobile and static data gathering techniques for both topologies, which are either dense or light. The results obtained using this simulator have shown an evolving efficient simulator for both WSNs and USNs. The developed simulator has been extensively tested in terms of its validity and scope of governance

    TDA-MAC : TDMA without clock synchronization in underwater acoustic networks

    Get PDF
    This paper investigates the application of underwater acoustic sensor networks for large scale monitoring of the ocean environment. The low propagation speed of acoustic signals presents a fundamental challenge in coordinating the access to the shared communication medium in such networks. In this paper, we propose two medium access control (MAC) protocols, namely, Transmit Delay Allocation MAC (TDA-MAC) and Accelerated TDA-MAC, that are capable of providing time division multiple access (TDMA) to sensor nodes without the need for centralized clock synchronization. A comprehensive simulation study of a network deployed on the sea bed shows that the proposed protocols are capable of closely matching the throughput and packet delay performance of ideal synchronized TDMA. The TDA-MAC protocols also significantly outperform T-Lohi, a classical contention-based MAC protocol for underwater acoustic networks, in terms of network throughput and, in many cases, end-To-end packet delay. Furthermore, the assumption of no clock synchronization among different devices in the network is a major advantage of TDA-MAC over other TDMA-based MAC protocols in the literature. Therefore, it is a feasible networking solution for real-world underwater sensor network deployments

    UAN: underwater acoustic network

    Get PDF
    Acoustic networks are for underwater what wifi is for terrestrial networks. The ocean is a nearly perfect media for acoustic waves in which regards long range propagation but poses a number of challenges in terms of available bandwidth, Doppler spread and channel fading. These limitations originate in the physical properties of the ocean, namely its anisotropy and boundary interaction which are particularly relevant in coastal waters where acoustic propagation becomes predominantly de- pendent on seafloor and sea surface properties. The acoustic communication channel is therefore multipath dominated and time and Doppler spread variable. The problem is aggravated when involving moving receivers as for instance when attempting to establish communication with or between moving autonomous underwater vehicles. The EU-funded project UAN - Underwater Acoustic Network aims at conceiving, developing and testing at sea an innovative and operational concept for integrating in a unique communication system submerged, surface and aerial sensors with the objective of protecting off-shore and coastline critical infrastructures. UAN went through various phases, including the development of hardware and software specific components, its testing independently and then in an integrated fashion, both in the lab and at sea. This paper reports on the project concept and vision as well as on the progress of its various development phases and the results obtained herein. At the time of writing, a final project sea trial is being planned and will take place two weeks before the conference so, although here we will concentrate on the progress obtained so far, the presentation at the conference may include additional results depending on the outcome of the sea trial

    EFFICIENT DYNAMIC ADDRESSING BASED ROUTING FOR UNDERWATER WIRELESS SENSOR NETWORKS

    Get PDF
    This thesis presents a study about the problem of data gathering in the inhospitable underwater environment. Besides long propagation delays and high error probability, continuous node movement also makes it difficult to manage the routing information during the process of data forwarding. In order to overcome the problem of large propagation delays and unreliable link quality, many algorithms have been proposed and some of them provide good solutions for these issues, yet continuous node movements still need attention. Considering the node mobility as a challenging task, a distributed routing scheme called Hop-by-Hop Dynamic Addressing Based (H2- DAB) routing protocol is proposed where every node in the network will be assigned a routable address quickly and efficiently without any explicit configuration or any dimensional location information. According to our best knowledge, H2-DAB is first addressing based routing approach for underwater wireless sensor networks (UWSNs) and not only has it helped to choose the routing path faster but also efficiently enables a recovery procedure in case of smooth forwarding failure. The proposed scheme provides an option where nodes is able to communicate without any centralized infrastructure, and a mechanism furthermore is available where nodes can come and leave the network without having any serious effect on the rest of the network. Moreover, another serious issue in UWSNs is that acoustic links are subject to high transmission power with high channel impairments that result in higher error rates and temporary path losses, which accordingly restrict the efficiency of these networks. The limited resources have made it difficult to design a protocol which is capable of maximizing the reliability of these networks. For this purpose, a Two-Hop Acknowledgement (2H-ACK) reliability model where two copies of the same data packet are maintained in the network without extra burden on the available resources is proposed. Simulation results show that H2-DAB can easily manage during the quick routing changes where node movements are very frequent yet it requires little or no overhead to efficiently complete its tasks

    Trust model genetic node recovery based on cloud theory for underwater acoustic sensor network

    Get PDF
    Underwater Acoustic Sensor Networks [UASNs] are becoming a very growing research topic in the field of WSNs. UASNs are harmful by many attacks such as Jamming attacks at the physical layer, Collision attacks at the data link layer and Dos attacks at the network layer. UASNs has a unique characteristic such as unreliable communication, mobility, and computation of underwater sensor network. Because of this the traditional security mechanism, e.g. cryptographic, encryption, authorization and authentications are not suitable for UASNs. Many trust mechanisms of TWSNs [Terrestrial Wireless Sensor Networks] had proposed to UASNs and failed to provide security for UASNs environment, due to dynamic network structure and weak link connection between sensors. In this paper, a novel Trust Model Genetic Algorithm based on Cloud Theory [TMC] for UASNs has been proposed. The TMC-GA suggested a genetic node recovery algorithm to improve the TMC network in terms of better network lifetime, residual energy and total energy consumption. Also ensures that sensor nodes are participating in the rerouting in the routing discovery and performs well in terms of successful packet delivery. Simulation result provides that the proposed TMC-Genetic node recovery algorithm outperforms compared to other related works in terms of the number of hops, end-to-end delay, total energy consumption, residual energy, routing overhead, throughput and network lifetime

    Internet of Underwater Things and Big Marine Data Analytics -- A Comprehensive Survey

    Full text link
    The Internet of Underwater Things (IoUT) is an emerging communication ecosystem developed for connecting underwater objects in maritime and underwater environments. The IoUT technology is intricately linked with intelligent boats and ships, smart shores and oceans, automatic marine transportations, positioning and navigation, underwater exploration, disaster prediction and prevention, as well as with intelligent monitoring and security. The IoUT has an influence at various scales ranging from a small scientific observatory, to a midsized harbor, and to covering global oceanic trade. The network architecture of IoUT is intrinsically heterogeneous and should be sufficiently resilient to operate in harsh environments. This creates major challenges in terms of underwater communications, whilst relying on limited energy resources. Additionally, the volume, velocity, and variety of data produced by sensors, hydrophones, and cameras in IoUT is enormous, giving rise to the concept of Big Marine Data (BMD), which has its own processing challenges. Hence, conventional data processing techniques will falter, and bespoke Machine Learning (ML) solutions have to be employed for automatically learning the specific BMD behavior and features facilitating knowledge extraction and decision support. The motivation of this paper is to comprehensively survey the IoUT, BMD, and their synthesis. It also aims for exploring the nexus of BMD with ML. We set out from underwater data collection and then discuss the family of IoUT data communication techniques with an emphasis on the state-of-the-art research challenges. We then review the suite of ML solutions suitable for BMD handling and analytics. We treat the subject deductively from an educational perspective, critically appraising the material surveyed.Comment: 54 pages, 11 figures, 19 tables, IEEE Communications Surveys & Tutorials, peer-reviewed academic journa

    Information-Centric Design and Implementation for Underwater Acoustic Networks

    Get PDF
    Over the past decade, Underwater Acoustic Networks (UANs) have received extensive attention due to their vast benefits in academia and industry alike. However, due to the overall magnitude and harsh characteristics of underwater environments, standard wireless network techniques will fail because current technology and energy restrictions limit underwater devices due to delayed acoustic communications. To help manage these limitations we utilize Information-Centric Networking (ICN). More importantly, we look at ICN\u27s paradigm shift from traditional TCP/IP architecture to improve data handling and enhance network efficiency. By utilizing some of ICN\u27s techniques, such as data naming hierarchy, we can reevaluate each component of the network\u27s protocol stack given current underwater limitations to study the vast solutions and perspectives Information-Centric architectures can provide to UANs. First, we propose a routing strategy used to manage and route large data files in a network prone to high mobility. Therefore, due to UANs limited transmitting capability, we passively store sensed data and adaptively find the best path. Furthermore, we introduce adapted Named Data Networking (NDN) components to improve upon routing robustness and adaptiveness. Beyond naming data, we use tracers to assist in tracking stored data locations without using other excess means such as flooding. By collaborating tracer consistency with routing path awareness our protocol can adaptively manage faulty or high mobility nodes. Through this incorporation of varied NDN techniques, we are able to see notable improvements in routing efficiency. Second, we analyze the effects of Denial of Service (DoS) attacks on upper layer protocols. Since UANs are typically resource restrained, malicious users can advantageously create fake traffic to burden the already constrained network. While ICN techniques only provide basic DoS restriction we must expand our detection and restriction technique to meet the unique demands of UANs. To provide enhanced security against DoS we construct an algorithm to detect and restrict against these types of attacks while adapting to meet acoustic characteristics. To better extend this work we incorporate three node behavior techniques using probabilistic, adaptive, and predictive approaches for detecting malicious traits. Thirdly, to depict and test protocols in UANs, simulators are commonly used due to their accessibility and controlled testing aspects. For this section, we review Aqua-Sim, a discrete event-driven open-source underwater simulator. To enhance the core aspect of this simulator we first rewrite the current architecture and transition Aqua-Sim to the newest core simulator, NS-3. Following this, we clean up redundant features spread out between the various underwater layers. Additionally, we fully integrate the diverse NS-3 API within our simulator. By revamping previous code layout we are able to improve architecture modularity and child class expandability. New features are also introduced including localization and synchronization support, busy terminal problem support, multi-channel support, transmission range uncertainty modules, external noise generators, channel trace-driven support, security module, and an adapted NDN module. Additionally, we provide extended documentation to assist in user development. Simulation testing shows improved memory management and continuous validity in comparison to other underwater simulators and past iterations of Aqua-Sim

    Autonomous Vehicles

    Get PDF
    This edited volume, Autonomous Vehicles, is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of vehicle autonomy. The book comprises nine chapters authored by various researchers and edited by an expert active in the field of study. All chapters are complete in itself but united under a common research study topic. This publication aims to provide a thorough overview of the latest research efforts by international authors, open new possible research paths for further novel developments, and to inspire the younger generations into pursuing relevant academic studies and professional careers within the autonomous vehicle field

    Self-organizing Fast Routing Protocols for Underwater Acoustic Communications Networks

    Get PDF
    To address this problem, in this thesis we propose a cross-layer proactive routing initialization mechanism that does not require additional measurements and, at the same time, is energy efficient. Two routing protocols are proposed: Self-Organized Fast Routing Protocol for Radial Underwater Networks (SOFRP) for radial topology and Self-organized Proactive Routing Protocol for Non-uniformly Deployed Underwater Networks (SPRINT) for a randomly deployed network. SOFRP is based on the algorithm to recreate a radial topology with a gateway node, such that packets always use the shortest possible path from source to sink, thus minimizing consumed energy. Collisions are avoided as much as possible during the path initialization. The algorithm is suitable for 2D or 3D areas, and automatically adapts to a varying number of nodes. In SPRINT the routing path to the gateway is formed on the basis of the distance, measured by the signal strength received. The data sending node prefers to choose the neighbor node which is closest to it. It is designed to achieve high data throughput and low energy consumption of the nodes. There is a tradeoff between the throughput and the energy consumption: more distance needs more transmission energy, and more relay nodes (hops) to the destination node affects the throughput. Each hop increases the packet delay and decreases the throughput. Hence, energy consumption requires nearest nodes to be chosen as forwarding node whereas the throughput requires farthest node to be selected to minimize the number of hops. Fecha de lectura de Tesis Doctoral: 11 mayo 2020Underwater Wireless Sensor Networks (UWSNs) constitute an emerging technology for marine surveillance, natural disaster alert and environmental monitoring. Unlike terrestrial Wireless Sensor Networks (WSNs), electromagnetic waves cannot propagate more than few meters in water (high absorption rate). However, acoustic waves can travel long distances in underwater. Therefore, acoustic waves are preferred for underwater communications, but they travel very slow compare to EM waves (typical speed in water is 1500 m/s against 2x10^8 m/s for EM waves). This physical effect makes a high propagation delay and cannot be avoided, but the end-to-end packet delay it can be reduced. Routing delay is one of the major factors in end-to-end packet delay. In reactive routing protocols, when a packet arrives to a node, the node takes some time to select the node to which the data packet would be forwarded. We may reduce the routing delay for time-critical applications by using proactive routing protocols. Other two critical issues in UWSNs are determining the position of the nodes and time synchronization. Wireless sensor nodes need to determine the position of the surrounding nodes to select the next node in the path to reach the sink node. A Global Navigation Satellite System (GNSS) cannot be used because of the very short underwater range of the GNSS signal. Timestamping to estimate the distance is possible but the limited mobility of the UWSN nodes and variation in the propagation speed of the acoustic waves make the time synchronization a challenging task. For these reasons, terrestrial WSN protocols cannot be readily used for underwater acoustic networks
    corecore