4 research outputs found

    Dynamic Time-Warping Correction for Shifts in Ultrahigh Resolving Power Ion Mobility Spectrometry and Structures for Lossless Ion Manipulations

    Full text link
    Detection of arrival time shifts between ion mobility spectrometry (IMS) separations can limit achievable resolving power (Rp), particularly when multiple separations are summed or averaged, as commonly practiced in IMS. Such variations can be apparent in higher Rp measurements and are particularly evident in long path length traveling wave structures for lossless ion manipulations (SLIM) IMS due to their typically much longer separation times. Here, we explore data processing approaches employing single value alignment (SVA) and nonlinear dynamic time warping (DTW) to correct for variations between IMS separations, such as due to pressure fluctuations, to enable more effective spectrum summation for improving Rp and detection of low-intensity species. For multipass SLIM IMS separations, where narrow mobility range measurements have arrival times that can extend to several seconds, the SVA approach effectively corrected for such variations and significantly improved Rp for summed separations. However, SVA was much less effective for broad mobility range separations, such as obtained with multilevel SLIM IMS. Changes in ions’ arrival times were observed to be correlated with small pressure changes, with approximately 0.6% relative arrival time shifts being common, sufficient to result in a loss of Rp for summed separations. Comparison of the approaches showed that DTW alignment performed similarly to SVA when used over a narrow mobility range but was significantly better (providing narrower peaks and higher signal intensities) for wide mobility range data. We found that the DTW approach increased Rp by as much as 115% for measurements in which 50 IMS separations over 2 s were summed. We conclude that DTW is superior to SVA for ultra-high-resolution broad mobility range SLIM IMS separations and leads to a large improvement in effective Rp, correcting for ion arrival time shifts regardless of the cause, as well as improving the detectability of low-abundance species. Our tool is publicly available for use with universal ion mobility format (.UIMF) and text (.txt) files

    Structure–function analysis of the equine hepacivirus 5′ untranslated region highlights the conservation of translational mechanisms across the hepaciviruses

    Get PDF
    Equine hepacivirus (EHcV) (now also classified as hepacivirus A) is the closest genetic relative to hepatitis C virus (HCV) and is proposed to have diverged from HCV within the last 1000years. The 5′ untranslated regions (UTRs) of both HCV and EHcV exhibit internal ribosome entry site (IRES) activity, allowing cap-independent translational initiation, yet only the HCV 5′UTR has been systematically analysed. Here, we report a detailed structural and functional analysis of the EHcV 5′UTR. The secondary structure was determined using selective 2′ hydroxyl acylation analysed by primer extension (SHAPE), revealing four stem–loops, termed SLI, SLIA, SLII and SLIII, by analogy to HCV. This guided a mutational analysis of the EHcV 5′UTR, allowing us to investigate the roles of the stem–loops in IRES function. This approach revealed that SLI was not required for EHcV IRES-mediated translation. Conversely, SLIII was essential, specifically SLIIIb, SLIIId and a GGG motif that is conserved across the Hepaciviridae. Further SHAPE analysis provided evidence that this GGG motif mediated interaction with the 40S ribosomal subunit, whilst a CUU sequence in the apical loop of SLIIIb mediated an interaction with eIF3. In addition, we showed that a microRNA122 target sequence located between SLIA and SLII mediated an enhancement of translation in the context of a subgenomic replicon. Taken together, these results highlight the conservation of hepaciviral translation mechanisms, despite divergent primary sequences

    Détermination de la structure de tous les viroïdes

    Get PDF
    Les viroïdes sont des agents pathogènes subviraux qui infectent des plantes importantes en agriculture. Jusqu’à aujourd’hui, une trentaine d’espèces ont été découvertes. Celles-ci sont composées d’un brin d’ARN circulaire de longueur variant selon l'espèce de 245 à 400 nucléotides qui ne codent pour aucune protéine. Chaque viroïde dépend de sa structure pour interagir avec son hôte et effectuer toutes les étapes de son cycle biologique. Il est donc de la plus haute importance de bien la connaître. À ce jour, la plupart des études présentent la structure des viroïdes par une prédiction bio-informatique. Au début de mes études, les structures de seulement deux viroïdes étaient connues en solution. Leurs structures avaient été étudiées par cartographie enzymatique ou chimique, cependant ces techniques sont longues et fastidieuses. Malgré cela, des motifs importants et non prédits par les prédictions bio-informatiques ont été découverts. Ces résultats ont renforcé la nécessité de découvrir la structure des viroïdes en solution. C’est pour cette raison que la structure de chaque espèce de viroïdes a été étudiée dans cette thèse. Pour relever ce défi, la technique de SHAPE a été adaptée pour la cartographie rapide et précise des viroïdes. L’efficacité de la technique a été confirmée en comparant les résultats obtenus par SHAPE avec ceux des viroïdes étudiés précédemment. Par la suite, les deux polarités de toutes les espèces de la famille des Avsunviroidae ont été caractérisées. De plus, les structures des membres de la seconde famille de viroïdes nommée Pospiviroidae ont aussi été étudiées. En dernier lieu, lors d'infections virales chez la plante, des particules à ARN circulaire et simple brin peuvent co-infecter les plantes avec certains virus ; ce sont des ARN satellites. Étant très semblables aux viroïdes, deux représentants ont été étudiés afin de comparer leurs structures à celles des viroïdes. Chaque ARN cartographié en solution a précisé de façon non négligeable le modèle de la structure secondaire par rapport à ceux proposés par la prédiction bio-informatique seule. De plus, des motifs tertiaires ont aussi été trouvés pour quelques-uns de ces ARN. L’ensemble du travail a aussi permis de proposer des améliorations à la classification des viroïdes et de classer de nouvelles espèces. Pour terminer, ce compendium de structures des viroïdes servira de point de départ pour étudier les motifs structuraux importants pour leur biologie
    corecore