4 research outputs found

    Artificial intelligence in health care: accountability and safety

    Get PDF
    The prospect of patient harm caused by the decisions made by an artificial intelligence-based clinical tool is something to which current practices of accountability and safety worldwide have not yet adjusted. We focus on two aspects of clinical artificial intelligence used for decision-making: moral accountability for harm to patients; and safety assurance to protect patients against such harm. Artificial intelligence-based tools are challenging the standard clinical practices of assigning blame and assuring safety. Human clinicians and safety engineers have weaker control over the decisions reached by artificial intelligence systems and less knowledge and understanding of precisely how the artificial intelligence systems reach their decisions. We illustrate this analysis by applying it to an example of an artificial intelligence-based system developed for use in the treatment of sepsis. The paper ends with practical suggestions for ways forward to mitigate these concerns. We argue for a need to include artificial intelligence developers and systems safety engineers in our assessments of moral accountability for patient harm. Meanwhile, none of the actors in the model robustly fulfil the traditional conditions of moral accountability for the decisions of an artificial intelligence system. We should therefore update our conceptions of moral accountability in this context. We also need to move from a static to a dynamic model of assurance, accepting that considerations of safety are not fully resolvable during the design of the artificial intelligence system before the system has been deployed

    Reliability Assessment and Safety Arguments for Machine Learning Components in Assuring Learning-Enabled Autonomous Systems

    Get PDF
    The increasing use of Machine Learning (ML) components embedded in autonomous systems -- so-called Learning-Enabled Systems (LES) -- has resulted in the pressing need to assure their functional safety. As for traditional functional safety, the emerging consensus within both, industry and academia, is to use assurance cases for this purpose. Typically assurance cases support claims of reliability in support of safety, and can be viewed as a structured way of organising arguments and evidence generated from safety analysis and reliability modelling activities. While such assurance activities are traditionally guided by consensus-based standards developed from vast engineering experience, LES pose new challenges in safety-critical application due to the characteristics and design of ML models. In this article, we first present an overall assurance framework for LES with an emphasis on quantitative aspects, e.g., breaking down system-level safety targets to component-level requirements and supporting claims stated in reliability metrics. We then introduce a novel model-agnostic Reliability Assessment Model (RAM) for ML classifiers that utilises the operational profile and robustness verification evidence. We discuss the model assumptions and the inherent challenges of assessing ML reliability uncovered by our RAM and propose practical solutions. Probabilistic safety arguments at the lower ML component-level are also developed based on the RAM. Finally, to evaluate and demonstrate our methods, we not only conduct experiments on synthetic/benchmark datasets but also demonstrate the scope of our methods with a comprehensive case study on Autonomous Underwater Vehicles in simulation
    corecore