1,599 research outputs found

    Synthetic Observational Health Data with GANs: from slow adoption to a boom in medical research and ultimately digital twins?

    Full text link
    After being collected for patient care, Observational Health Data (OHD) can further benefit patient well-being by sustaining the development of health informatics and medical research. Vast potential is unexploited because of the fiercely private nature of patient-related data and regulations to protect it. Generative Adversarial Networks (GANs) have recently emerged as a groundbreaking way to learn generative models that produce realistic synthetic data. They have revolutionized practices in multiple domains such as self-driving cars, fraud detection, digital twin simulations in industrial sectors, and medical imaging. The digital twin concept could readily apply to modelling and quantifying disease progression. In addition, GANs posses many capabilities relevant to common problems in healthcare: lack of data, class imbalance, rare diseases, and preserving privacy. Unlocking open access to privacy-preserving OHD could be transformative for scientific research. In the midst of COVID-19, the healthcare system is facing unprecedented challenges, many of which of are data related for the reasons stated above. Considering these facts, publications concerning GAN applied to OHD seemed to be severely lacking. To uncover the reasons for this slow adoption, we broadly reviewed the published literature on the subject. Our findings show that the properties of OHD were initially challenging for the existing GAN algorithms (unlike medical imaging, for which state-of-the-art model were directly transferable) and the evaluation synthetic data lacked clear metrics. We find more publications on the subject than expected, starting slowly in 2017, and since then at an increasing rate. The difficulties of OHD remain, and we discuss issues relating to evaluation, consistency, benchmarking, data modelling, and reproducibility.Comment: 31 pages (10 in previous version), not including references and glossary, 51 in total. Inclusion of a large number of recent publications and expansion of the discussion accordingl

    An Integrated Social Actor and Service Oriented Architecture (SOA) Approach for Improved Electronic Health Record (EHR) Privacy and Confidentiality in the US National Healthcare Information Network (NHIN)

    Get PDF
    The emerging US National Healthcare Information Network (NHIN) will improve healthcare’s efficacy, efficiency, and safety. The first-generation NHIN being developed has numerous advantages and limitations. One of the most difficult aspects of today’s NHIN is ensuring privacy and confidentiality for personal health data, because family and caregivers have multiple complex legal relationships to a patient. A Social Actor framework is suggested to organize and manage these legal roles, but the Social Actor framework would be very difficult to implement in today’s NHIN. Social Actor Security Management could, however, be effectively implemented using Service Oriented Architectures (SOAs), which are rapidly becoming accepted for supporting complex information exchange across heterogeneous information systems fabrics. The Department of Defense is applying SOA to all of its enterprises. It is using customized simulation and modeling tools to achieve security and robustness goals and to reduce the intrinsic design and implementation risks for SOA’s complex Systems of Systems environment. This paper integrates all of these approaches into a next-generation NHIN-2 design based on a specific Air Force SOA named MCSOA. This NHIN-2 design uses MCSOA to create Security Management, Service Discovery, and Presence Management agents to implement Social Actor support for improved confidentiality and privacy

    Balancing patient control and practical access policy for electronic health records via blockchain technology

    Get PDF
    Electronic health records (EHRs) have revolutionized the health information technology domain, as patient data can be easily stored and accessed within and among medical institutions. However, in working towards nationwide patient engagement and interoperability goals, recent literature adopts a very patient-centric model---patients own their universal, holistic medical records and control exactly who can access their health data. I contend that this approach is largely impractical for healthcare workflows, where many separate providers require access to health records for care delivery. My work investigates the potential of a blockchain network to balance patient control and provider accessibility with a two-fold approach. First, I conduct a survey investigation to identify patient concerns and determine the level of control patients would like over their health information. Second, I implement a blockchain network prototype to address the spectrum of patient control preferences and automate practical access policy. There are conflicting demands amongst patients and providers for EHR access---privacy versus flexibility. Yet, I find blockchain technology, when manipulated to model access states, automate an organizational role-based access scheme, and provide an immutable history of behavior in the network, to be a very plausible solution for balancing patient desires and provider needs. My approach is, to my knowledge, the first example of blockchain\u27s use for less patient-centric, nudge theory-based EHR access control, an idea that could align access control interests as academics, the government, and the healthcare industry make strides towards interoperable, universal patient records

    An OpenEHR repository based on a native XML database

    Get PDF
    OpenEHR is an open standard specification that describes the management, storage, retrieval and exchange of data in Electronic Health Record (EHR). Despite its growing importance in the field, the lack of open source solutions is hindering a larger visibility. In this paper we present an openEHR-based repository supported by a native XML database, which allows to store and query OpenEHR records through the DB service layer and a set of REST web services. The obtained results highlight the efficiency of this API and show that it can be used as a persistence component in any OpenEHR solution

    Toward Effective Access Control Using Attributes and Pseudoroles

    Get PDF
    Sharing of information is fundamental to modern computing environments across many application domains. Such information sharing, however, raises security and privacy concerns that require effective access control to prevent unauthorized access and ensure compliance with various laws and regulations. Current approaches such as Role-Based Access Control (RBAC), and Attribute-Based Access Control (ABAC) and their variants are inadequate. Although it provides simple administration of access control and user revocation and permission review, RBAC demands complex initial role engineering and makes access control static. ABAC, on the other hand, simplifies initial security setup and enables flexible access control, but increases the complexity of managing privileges, user revocation and user permissions review. These limitations of RBAC and ABAC have thus motivated research into the development of newer models that use attributes and policies while preserving RBAC\u27s advantages. This dissertation explores the role of attributes---characteristics of entities in the system---in achieving effective access control. The first contribution of this dissertation is the design and development of a secure access system using Ciphertext-Policy Attribute-Based Encryption (CP-ABE). The second contribution is the design and validation of a two-step access control approach, the BiLayer Access Control (BLAC) model. The first layer in BLAC checks whether subjects making access requests have the right BLAC pseudoroles---a pseudorole is a predefined subset of a subject\u27s static attributes. If requesting subjects hold the right pseudoroles, the second layer checks rule(s) within associated BLAC policies for further constraints on access. BLAC thus makes use of attributes effectively while preserving RBAC\u27s advantages. The dissertation\u27s third contribution is the design and definition of an evaluation framework for time complexity analysis, and uses this framework to compare BLAC model with RBAC and ABAC. The fourth contribution is the design and construction of a generic access control threat model, and applying it to assess the effectiveness of BLAC, RBAC and ABAC in mitigating insider threats

    360 Quantified Self

    Get PDF
    Wearable devices with a wide range of sensors have contributed to the rise of the Quantified Self movement, where individuals log everything ranging from the number of steps they have taken, to their heart rate, to their sleeping patterns. Sensors do not, however, typically sense the social and ambient environment of the users, such as general life style attributes or information about their social network. This means that the users themselves, and the medical practitioners, privy to the wearable sensor data, only have a narrow view of the individual, limited mainly to certain aspects of their physical condition. In this paper we describe a number of use cases for how social media can be used to complement the check-up data and those from sensors to gain a more holistic view on individuals' health, a perspective we call the 360 Quantified Self. Health-related information can be obtained from sources as diverse as food photo sharing, location check-ins, or profile pictures. Additionally, information from a person's ego network can shed light on the social dimension of wellbeing which is widely acknowledged to be of utmost importance, even though they are currently rarely used for medical diagnosis. We articulate a long-term vision describing the desirable list of technical advances and variety of data to achieve an integrated system encompassing Electronic Health Records (EHR), data from wearable devices, alongside information derived from social media data.Comment: QCRI Technical Repor

    Explanation-Based Auditing

    Full text link
    To comply with emerging privacy laws and regulations, it has become common for applications like electronic health records systems (EHRs) to collect access logs, which record each time a user (e.g., a hospital employee) accesses a piece of sensitive data (e.g., a patient record). Using the access log, it is easy to answer simple queries (e.g., Who accessed Alice's medical record?), but this often does not provide enough information. In addition to learning who accessed their medical records, patients will likely want to understand why each access occurred. In this paper, we introduce the problem of generating explanations for individual records in an access log. The problem is motivated by user-centric auditing applications, and it also provides a novel approach to misuse detection. We develop a framework for modeling explanations which is based on a fundamental observation: For certain classes of databases, including EHRs, the reason for most data accesses can be inferred from data stored elsewhere in the database. For example, if Alice has an appointment with Dr. Dave, this information is stored in the database, and it explains why Dr. Dave looked at Alice's record. Large numbers of data accesses can be explained using general forms called explanation templates. Rather than requiring an administrator to manually specify explanation templates, we propose a set of algorithms for automatically discovering frequent templates from the database (i.e., those that explain a large number of accesses). We also propose techniques for inferring collaborative user groups, which can be used to enhance the quality of the discovered explanations. Finally, we have evaluated our proposed techniques using an access log and data from the University of Michigan Health System. Our results demonstrate that in practice we can provide explanations for over 94% of data accesses in the log.Comment: VLDB201

    A Two-Level Identity Model To Support Interoperability of Identity Information in Electronic Health Record Systems.

    Get PDF
    The sharing and retrieval of health information for an electronic health record (EHR) across distributed systems involves a range of identified entities that are possible subjects of documentation (e.g., specimen, clinical analyser). Contemporary EHR specifications limit the types of entities that can be the subject of a record to health professionals and patients, thus limiting the use of two level models in healthcare information systems that contribute information to the EHR. The literature describes several information modelling approaches for EHRs, including so called “two level models”. These models differ in the amount of structure imposed on the information to be recorded, but they generally require the health documentation process for the EHR to focus exclusively on the patient as the subject of care and this definition is often a fixed one. In this thesis, the author introduces a new identity modelling approach to create a generalised reference model for sharing archetype-constrained identity information between diverse identity domains, models and services, while permitting reuse of published standard-based archetypes. The author evaluates its use for expressing the major types of existing demographic reference models in an extensible way, and show its application for standards-compliant two-level modelling alongside heterogeneous demographics models. This thesis demonstrates how the two-level modelling approach that is used for EHRs could be adapted and reapplied to provide a highly-flexible and expressive means for representing subjects of information in allied health settings that support the healthcare process, such as the laboratory domain. By relying on the two level modelling approach for representing identity, the proposed design facilitates cross-referencing and disambiguation of certain demographics standards and information models. The work also demonstrates how it can also be used to represent additional clinical identified entities such as specimen and order as subjects of clinical documentation
    corecore