11 research outputs found

    A PatchMatch-based Dense-field Algorithm for Video Copy-Move Detection and Localization

    Full text link
    We propose a new algorithm for the reliable detection and localization of video copy-move forgeries. Discovering well crafted video copy-moves may be very difficult, especially when some uniform background is copied to occlude foreground objects. To reliably detect both additive and occlusive copy-moves we use a dense-field approach, with invariant features that guarantee robustness to several post-processing operations. To limit complexity, a suitable video-oriented version of PatchMatch is used, with a multiresolution search strategy, and a focus on volumes of interest. Performance assessment relies on a new dataset, designed ad hoc, with realistic copy-moves and a wide variety of challenging situations. Experimental results show the proposed method to detect and localize video copy-moves with good accuracy even in adverse conditions

    Determination of the Optimal Threshold Value and Number of Keypoints in Scale Invariant Feature Transform-based Copy-Move Forgery Detection

    Get PDF
    The copy-move forgery detection (CMFD) begins with the preprocessing until the image is ready to process. Then, the image features are extracted using a feature-transform-based extraction called the scale-invariant feature transform (SIFT). The last step is features matching using Generalized 2 Nearest-Neighbor (G2NN) method with threshold values variation. The problem is what is the optimal threshold value and number of keypoints so that copy-move detection has the highest accuracy. The optimal threshold value and number of keypoints had determined so that the detection has the highest accuracy. The research was carried out on images without noise and with Gaussian noise

    Determination of the Optimal Threshold Value and Number of Keypoints in Scale Invariant Feature Transform-based Copy-Move Forgery Detection

    Get PDF
    The copy-move forgery detection (CMFD) begins with the preprocessing until the image is ready to process. Then, the image features are extracted using a feature-transform-based extraction called the scale-invariant feature transform (SIFT). The last step is features matching using Generalized 2 Nearest-Neighbor (G2NN) method with threshold values variation. The problem is what is the optimal threshold value and number of keypoints so that copy-move detection has the highest accuracy. The optimal threshold value and number of keypoints had determined so that the detection has the highest accuracy. The research was carried out on images without noise and with Gaussian noise

    Non-Facial Video Spatiotemporal Forensic Analysis Using Deep Learning Techniques

    Get PDF
    Digital content manipulation software is working as a boon for people to edit recorded video or audio content. To prevent the unethical use of such readily available altering tools, digital multimedia forensics is becoming increasingly important. Hence, this study aims to identify whether the video and audio of the given digital content are fake or real. For temporal video forgery detection, the convolutional 3D layers are used to build a model which can identify temporal forgeries with an average accuracy of 85% on the validation dataset. Also, the identification of audio forgery, using a ResNet-34 pre-trained model and the transfer learning approach, has been achieved. The proposed model achieves an accuracy of 99% with 0.3% validation loss on the validation part of the logical access dataset, which is better than earlier models in the range of 90-95% accuracy on the validation set

    A robust facemask forgery detection system in video

    Get PDF
    An in-depth fake video uses an Artificial Intelligent (AI), AI programming, and a Personal computer (PC) mix to create a deep fake video of the action. Deep-faking can also be used to represent images and sounds. We provide insights into our reviews in this document. We're showing our dataset to start. At this point, we present the subtleties and reproductively of exploratory settings to evaluate the discovered effects finally. It is no surprise to find deep fake videos, which only monitor a tiny section of the video (e.g., the target face appears quickly on the video; hence the time is limited). We remove our system's fixed duration's persistent effects as each video contributes to the preparation, approval, and testing sections to reflect this. The edge groups are isolated from each video successively (without outline skips). The entire pipeline is ready to be finished when the approval stage is ten years old. Convolutional Neural Network (CNN) was the best and most reliable of the classification systems. Fake videos typically use low-quality pictures to mask faults or insist that the general public regard camera defects as unexplainable phenomena. 'This is a common trope with Unidentified Flying Object (UFO) videos: ghostly orbs are lenses; snakes are compression artifacts on one's face. In this study, we have implemented a sophisticated, knowledgeable method to recognize false images. Our test results using various monitored videos have shown that we can reliably predict whether videos are monitored through with simple co-evolutionary Long Short-Term Memory (LSTM) structure

    A PatchMatch-based Dense-field Algorithm for Video Copy-Move Detection and Localization

    No full text
    We propose a new algorithm for the reliable detection and localization of video copy-move forgeries. Discovering well crafted video copy-moves may be very difficult, especially when some uniform background is copied to occlude foreground objects. To reliably detect both additive and occlusive copymoves we use a dense-field approach, with invariant features that guarantee robustness to several post-processing operations. To limit complexity, a suitable video-oriented version of PatchMatch is used, with a multiresolution search strategy, and a focus on volumes of interest. Performance assessment relies on a new dataset, designed ad hoc, with realistic copy-moves and a wide variety of challenging situations. Experimental results show the proposed method to detect and localize video copy-moves with good accuracy even in adverse conditions
    corecore