1,245 research outputs found

    Distributed averaging integral Nash equilibrium seeking on networks

    Get PDF
    Continuous-time gradient-based Nash equilibrium seeking algorithms enjoy a passivity property under a suitable monotonicity assumption. This feature has been exploited to design distributed algorithms that converge to Nash equilibria and use local information only. We further exploit the passivity property to interconnect the algorithms with distributed averaging integral controllers that tune on-line the weights of the communication graph. The main advantage is to guarantee convergence to a Nash equilibrium without requiring a strong coupling condition on the algebraic connectivity of the communication graph over which the players exchange information, nor a global high-gain

    On the linear convergence of distributed Nash equilibrium seeking for multi-cluster games under partial-decision information

    Full text link
    This paper considers the distributed strategy design for Nash equilibrium (NE) seeking in multi-cluster games under a partial-decision information scenario. In the considered game, there are multiple clusters and each cluster consists of a group of agents. A cluster is viewed as a virtual noncooperative player that aims to minimize its local payoff function and the agents in a cluster are the actual players that cooperate within the cluster to optimize the payoff function of the cluster through communication via a connected graph. In our setting, agents have only partial-decision information, that is, they only know local information and cannot have full access to opponents' decisions. To solve the NE seeking problem of this formulated game, a discrete-time distributed algorithm, called distributed gradient tracking algorithm (DGT), is devised based on the inter- and intra-communication of clusters. In the designed algorithm, each agent is equipped with strategy variables including its own strategy and estimates of other clusters' strategies. With the help of a weighted Fronbenius norm and a weighted Euclidean norm, theoretical analysis is presented to rigorously show the linear convergence of the algorithm. Finally, a numerical example is given to illustrate the proposed algorithm

    Continuous-time integral dynamics for Aggregative Game equilibrium seeking

    Get PDF
    In this paper, we consider continuous-time semi-decentralized dynamics for the equilibrium computation in a class of aggregative games. Specifically, we propose a scheme where decentralized projected-gradient dynamics are driven by an integral control law. To prove global exponential convergence of the proposed dynamics to an aggregative equilibrium, we adopt a quadratic Lyapunov function argument. We derive a sufficient condition for global convergence that we position within the recent literature on aggregative games, and in particular we show that it improves on established results

    A Feedback Control Algorithm to Steer Networks to a Cournot-Nash Equilibrium

    Get PDF
    We propose a distributed feedback control that steers a dynamical network to a prescribed equilibrium corresponding to the so-called Cournot-Nash equilibrium. The network dynamics considered here are a class of passive nonlinear second-order systems, where production and demands act as external inputs to the systems. While productions are assumed to be controllable at each node, the demand is determined as a function of local prices according to the utility of the consumers. Using reduced information on the demand, the proposed controller guarantees the convergence of the closed loop system to the optimal equilibrium point dictated by the Cournot-Nash competition
    corecore