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a b s t r a c t

Continuous-time gradient-based Nash equilibrium seeking algorithms enjoy a passivity property under
a suitable monotonicity assumption, which has been exploited to design distributed Nash equilibrium
seeking algorithms. We further exploit the passivity property to interconnect the algorithms with
distributed nonlinear averaging integral controllers that tune on-line the weights of the communication
graph. The main advantage is to guarantee convergence to a Nash equilibrium without requiring a
strong coupling condition on the algebraic connectivity of the communication graph over which the
players exchange information, nor a global fixed high-gain.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In the literature on optimization and control, continuous-
time algorithms that solve optimization problems are gaining
increasing attention for several reasons (Cherukuri, Mallada, &
Cortés, 2016; Goebel, 2017). First, the control-theoretic properties
are more easily unveiled in a continuous-time setting and this
permits to naturally establish connections with control method-
ologies, eventually leading to technical advances in the analysis
and design of the optimization algorithms themselves. Second,
a way to achieve optimal performance in control systems is to
interconnect the physical process with optimization algorithms
and study the stability and optimality of the resulting closed-loop
system (Stegink, Cherukuri, De Persis, van der Schaft, & Cortés,
2019). In the case of complex network systems, such as power
and social networks, multiple agents or players make decisions
to optimize their own objective functions. This leads to a game-
theoretic setup, where algorithms are commonly designed with
the purpose of converging to Nash equilibria, possibly using lim-
ited or local information. The local nature of the information is
defined by the topology of the network over which the game
takes place. With similar motivations as before, more attention
is currently being paid to Nash equilibrium seeking algorithms in
continuous-time.

✩ This work was partially supported by NWO under research projects URSES-
ENBARK (408.13.037), OMEGA (613.001.702) and P2P-TALES (647.003.003), and
by the ERC under research project COSMOS (802348). The material in this
paper was not presented at any conference. This paper was recommended for
publication in revised form by Associate Editor Vijay Gupta under the direction
of Editor Christos G. Cassandras.

∗ Corresponding author.
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(S. Grammatico).

Related literature: Nash-equilibrium seeking algorithms have a
long history and solutions in continuous-time were proposed in
classical early work on game-theoretic problems (Rosen, 1965).
Game-theoretic problems have also attracted the interest of the
control community already decades ago (Li & Basar, 1987). Ex-
tensions to the case of games with coupling constraints where
generalized Nash equilibria are of interest, has been the subject
of investigation since Rosen (1965), with a wide variety of re-
sults available (Arslan, Demirkol, & Yüksel, 2015; Belgioioso &
Grammatico, 2017; Kulkarni & Shanbhag, 2012; Pavel, 2007; Yin,
Shanbhag, & Mehta, 2011). For general N-player games, the im-
plementation of algorithms for Nash computation requires each
player to access information regarding their own objective func-
tions as well as the decisions taken by the other players in the
game, information which might not be available. A way to rem-
edy this lack of information is provided by model-free methods
inspired by extremum seeking algorithms, see e.g. Frihauf, Krstic,
and Basar (2012), Stankovic, Johansson, and Stipanovic (2012) and
references therein. Other solutions have been proposed to solve
game equilibria in a distributed fashion (Gharesifard & Cortés,
2013; Koshal, Nedić, & Shanbhag, 2016; Li & Marden, 2013;
Salehisadaghiani & Pavel, 2016; Ye & Hu, 2017). The approach
to Nash equilibrium distributed computation which is of major
interest for this paper is the one suggested by Gadjov and Pavel
(2019), which reconstructs the non-local information concerning
the other players in the game based on a communication graph
where each player communicates only with its neighbors. From
a methodological point of view, the paper (Gadjov & Pavel, 2019)
has pointed out the passivity property of Nash equilibrium seek-
ing algorithms and used this property to design and analyze a
consensus-based algorithm that uses local information only.
Paper contribution: In this paper, we further exploit the passiv-
ity property revealed in Gadjov and Pavel (2019) to enrich the

https://doi.org/10.1016/j.automatica.2019.108548
0005-1098/© 2019 Elsevier Ltd. All rights reserved.
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features of Nash equilibrium seeking algorithms. We propose a
new passivity-based algorithm that allows us to relax the re-
quirements on the knowledge of the algebraic connectivity of the
graph or the use of a controller with a fixed high-gain, which
were the solutions proposed in Gadjov and Pavel (2019). Even
though the high-gain controller of Gadjov and Pavel (2019) is
devised with the purpose of avoiding an a priori knowledge of
the algebraic graph connectivity, it still uses a global parameter
(its high-enough fixed gain), which might be difficult to esti-
mate or implement in a network system. Motivated by Kim and
De Persis (2017), the algorithm we propose tunes on-line the
weights of the graph over which the players exchange the coordi-
nating information via a distributed integral control action, thus
enabling the convergence to Nash equilibria without assuming
any information on the graph nor resorting to global parame-
ters. Distributed averaging integral algorithms for Nash equilibria
computation of the kind studied in this paper are new to the best
of our knowledge. In De Persis and Grammatico (2018), different
integral control laws are proposed to solve aggregative games
in continuous-time. The results are discussed in a crescendo of
complexity, from unconstrained games (Section 3), to games with
local constraints (Section 4).
Basic notation: I denotes the identity matrix. 0 (1) denotes a
matrix/vector with all elements equal to 0 (1); to improve clarity,
we may add the dimension of these matrices/vectors as subscript.
A ⊗ B denotes the Kronecker product between matrices A and B.
∥A∥ denotes the maximum singular value of matrix A. Given N
vectors x1, . . . , xN , we define x := col (x1, . . . , xN) =

[
x⊤

1 · · · x⊤

N

]⊤,
and, for each i, x−i := col (x1, . . . , xi−1, xi+1, . . . , xN). Similarly,
given N sets Ω1, . . . , ΩN , we define Ω := Ω1 × · · · × ΩN and, for
each i,Ω−i := Ω1×· · ·×Ωi−1×Ωi+1×· · ·×ΩN . For a differentiable
function v : Rn

→ R, we denote the vector of partial derivatives
as ∇v(x) := col

(
∂v(x)
∂x1

, . . . ,
∂v(x)
∂xN

)
∈ Rn.

Operator-theoretic definitions: The mapping ιS : Rn
→ {0, ∞}

denotes the indicator function for the set S ⊆ Rn, i.e., ιS(x) = 0
if x ∈ S , ∞ otherwise. The set-valued mapping NS : Rn ⇒ Rn

denotes the normal cone operator for the set S ⊆ Rn, i.e., NS(x) =

∅ if x /∈ S ,
{
v ∈ Rn

| supz∈S v⊤(z − x) ≤ 0
}
otherwise. The set-

valued mapping TS : Rn ⇒ Rn denotes the tangent cone operator
for the set S ⊆ Rn. A mapping F : Rn

→ Rn is ℓ-Lipschitz
continuous if, for all x, y ∈ dom(F ), ∥F (x) − F (y)∥ ≤ ℓ ∥x − y∥.
A mapping F : Rn

→ Rn is (strictly) monotone if, for all x, y ∈

dom(F ), (x − y)⊤ (F (x) − F (y)) (>) ≥ 0; F is ϵ-strongly monotone,
with ϵ > 0, if, for all x, y ∈ dom(F ), (x − y)⊤ (F (x) − F (y)) ≥

ϵ ∥x − y∥2. Given a closed convex set C ⊆ Rn and a single-
valued mapping F : C → Rn, the variational inequality problem
VI(C, F ), is the problem to find x∗

∈ C such that (y− x∗)⊤ F (x∗) ≥

0 for all y ∈ C. The mapping projΩ denotes the projection
operator for the set Ω ⊆ Rn, i.e., projΩ (x) := argminy∈Ω ∥y − x∥;
ΠΩ (x, v) denotes the projection of the vector v onto the tangent
cone of Ω at x, i.e., ΠΩ (x, v) := projT (x)(v).

2. Mathematical background

In this section, we recall a few known results to set the ground
for the analysis in the rest of the paper.

2.1. Nash equilibrium problem

A game, denoted by G(I, {Ji}i, {Ωi}i) consists of N players in-
dexed by the set I := {1, 2, . . . ,N}, where each agent i can decide
on a strategy vector xi ∈ Ωi ⊆ Rni , with the aim to minimize its
the cost function Ji(xi, x−i). Let us define M :=

∑N
i=1 ni ≥ N .

Definition 1 (Nash Equilibrium). A vector of strategies x∗
∈ Ω ⊆

RM is a Nash equilibrium if, for all i ∈ I,

Ji(x∗

i , x
∗

−i) ≤ inf
xi∈Ωi

Ji(xi, x∗

−i). □

Assumption 1 (Convexity Gadjov & Pavel, 2019, Assumption 2).
Either condition (i) or (ii) below holds.

(i) For each i ∈ I, Ωi = Rni , and Ji(xi, x−i) is C2, strictly convex
and radially unbounded in xi for every x−i ∈ Ω−i.

(ii) For each i ∈ I, Ωi ⊂ Rni is a nonempty, convex and
compact set, Ji(xi, x−i) is C1 and convex in xi for every x−i ∈

Ω−i. □

It follows from Başar and Olsder (1995, Cor. 4.2) that under
Assumption 1(i), a Nash equilibrium x∗ exists, and it satisfies
∂ Ji
∂xi

(x∗

i , x
∗

−i) = 0, for all i ∈ I. In fact, for the existence of a Nash
equilibrium, continuity of Ji is sufficient (Rosen, 1965, Th. 1).

Let us introduce the so-called pseudo-gradient dynamics:

ẋ =

⎡⎢⎣ ẋ1
...

ẋN

⎤⎥⎦ = −

⎡⎢⎢⎢⎢⎣
∂ J1
∂x1

(x1, x−1)

...
∂ JN
∂xN

(xN , x−N )

⎤⎥⎥⎥⎥⎦ =: −F (x). (1)

Assumption 2 (Strictly Monotone Pseudo-gradient). The pseudo-
gradient mapping F in (1) is strictly monotone. □

Due to Assumption 2, it follows from Scutari, Facchinei, Pang,
and Palomar (2014, Th. 3) that there exists a unique Nash equi-
librium for the game G(I, {Ji}i, {Ωi}i). Moreover, due to Assump-
tions 1 and 2, the equilibrium of the dynamics in (1) is the unique
Nash equilibrium and is globally asymptotically stable.

2.2. Nash equilibrium problem with partial information: Distributed
seeking via static consensus

Whenever an agent i has no access to the full information x−i,
the authors in Gadjov and Pavel (2019) propose to augment the
pseudo-gradient dynamics. Specifically, each agent shall estimate
the states of all the other agents, i.e., implement the following
dynamics:

ẋij = ui
j ∀j ̸= i

ẋi = −
∂ Ji
∂xi

(
xi, xi−i

)
+ ui

i
(2)

where xi := col(xi1, . . . , x
i
i−1, xi, x

i
i+1, . . . , x

i
N ) is the state vector

of agent i, and ui
j ∈ Rnj , for all j ∈ I, are the control inputs for

agent i to be designed. Note that in (2), each agent i relies on
the estimated strategies xi

−i, which is available locally, not on the
true strategies x−i. This approach comes at the expenses that each
agent has a local copy of the state of each other agent in the game.
Whenever confusion does not arise, let us use both xii and xi for
the same variable.

In compact form, the dynamics for agent i read as

ẋi = −R⊤

i
∂ Ji
∂xi

(
xi

)
+ ui,

where Ri ∈ Rni×M is the matrix

Ri :=
[
0ni×n1 · · · 0ni×ni−1 Ini×ni 0ni×ni+1 · · · 0ni×nN

]
.

To induce the local variables xij, j ̸= i, to converge towards the
true values xj, a consensus protocol is used, i.e.,

ui
=

N∑
j=1

ai,j
(
xj − xi

)
, (3)
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where ai,j are the entries of the adjacency matrix of a graph over
which the agents exchange information.

Assumption 3. The adjacency matrix A = [ai,j] defines an
undirected and connected graph. □

Now, if we define x = col
(
x1, . . . , xN

)
,

F (x) = col
(

∂ J1
∂x1

(x1), . . . ,
∂ JN
∂xN

(xN )
)

(4)

and R⊤
= diag

(
R⊤

1 , . . . ,R⊤

N

)
, then the closed-loop system reads

in compact form as

ẋ = −R⊤F (x) − (L ⊗ IM )x, (5)

where L is the Laplacian matrix associated with the information-
exchange graph. It follows from Gadjov and Pavel (2019, Lemma
2) that an equilibrium x̄ of (5) satisfies x̄ = 1N ⊗x∗, with x∗ being
a Nash equilibrium.

2.3. Stability analysis

For the stability analysis of the dynamics in (5), we consider
the following assumptions.

Assumption 4 (Strongly Monotone Pseudo-gradient). The pseudo-
gradient mapping F in (1) is µ-strongly monotone, with µ >
0. □

Assumption 5 (Lipschitz Pseudo-gradient). The pseudo-gradient
mapping F in (1) is ℓF -Lipschitz continuous, with ℓF > 0;
the extended pseudo-gradient mapping F in (4) is ℓF -Lipschitz
continuous, with ℓF > 0. Define ℓ := max{ℓF , ℓF }. □

The following result due to Gadjov and Pavel (2019) estab-
lishes global asymptotic convergence of the dynamics in (5) to
the unique Nash equilibrium, under a strong coupling condition.

Lemma 1 (Gadjov & Pavel, 2019, Th. 2). Let Assumptions 1(i), 3, 4,
5 hold. If

λ2(L) > ℓ + ℓ2/µ, (6)

then, for any initial condition, the solution to (5) is bounded and
converges exponentially to the unique Nash equilibrium, i.e., limt→∞

x(t) = 1N ⊗ x∗. □

3. Distributed averaging integral Nash equilibrium seeking

In this section, we propose a novel Nash equilibrium seeking
algorithm on networks. Instead of the static consensus coupling
u = −(L ⊗ IM )x in (3), we propose an integral loop that tunes
the control gains to compensate for the possible lack of strong
coupling, i.e., without requiring condition (6) on the algebraic
connectivity of the graph:

k̇i = γi
ρi

2

ρi
=

N∑
j=1

ai,j
(
xj − xi

)
ui

= −

N∑
j=1

ai,j(kjρj
− kiρi)

(7)

where, for all i ∈ I, ki ∈ R is the state of the ith integrator,
ui, ρi

∈ RM , and γi > 0 is a constant parameter. Note that
the control algorithm in (7) requires the agents to exchange the
variables xi, ki, and ρi. In vector form, we have

k̇ = D(ρ)⊤(Γ ⊗ IM )ρ
u = −(LKL ⊗ IM )x (8)

where
k := col(k1, . . . , kN ), ρ := col(ρ1, . . . , ρN ),
Γ := diag(γ1, . . . , γN ) K := diag(k1, . . . , kN ),
D(ρ) := block.diag(ρ1, . . . , ρN ),

and we used that ρ = −(L⊗ IM )x and u = (L⊗ IM )(K ⊗ IM )ρ. Then,
the resulting closed-loop system has the form

ẋ = −R⊤F (x) − (LKL ⊗ IM )x
k̇ = D(ρ)⊤(Γ ⊗ IM )ρ, ρ = −(L ⊗ IM )x. (9)

Next, inspired by Kim and De Persis (2017), we show convergence
of x(t) in (9) to the Nash equilibrium without the assumption of
strong coupling of the information exchange graph.

Theorem 1 (Convergence to Nash Equilibrium). Let Assumptions 1(i),
3, 4, 5, hold. Then, for any initial condition, the solution to system (9)
is bounded and its x-component globally asymptotically converges to
the Nash equilibrium, i.e., limt→∞ x(t) = 1N ⊗ x∗. □

Proof. See Appendix A. ■

4. Projected distributed averaging integral Nash equilibrium
seeking

In this section, we postulate Assumption 1(ii), that is, we
consider compact local constraints. Moreover, by Facchinei and
Pang (2007, Prop. 1.4.2), a vector is the Nash equilibrium if and
only if it satisfies the variational inequality VI(Ω, F ). Due to the
presence of the constraint sets, in Gadjov and Pavel (2019), the
authors consider the projected pseudo-gradient dynamics

ẋij = ui
j ∀j ̸= i

ẋi = ΠΩi

(
xi , −

∂ Ji
∂xi

(xi, xi−i) + ui
i

) (10)

that in compact form read as

ẋi = R⊤

i ΠΩi

(
xi, −

∂ Ji
∂xi

(xi) + Riui
)

+ (IM − R⊤

i Ri)ui (11)

where

(IM − R⊤

i Ri)ui
=

⎡⎣col
(
ui
1, . . . , u

i
i−1

)
0ni

col
(
ui
i+1, . . . , u

i
N

)
⎤⎦ .

Similarly to (5), the overall extended pseudo-gradient dynam-
ics can be written as

ẋ = R⊤ΠΩ (Rx , −F (x) + Ru) + (IM − R⊤R)u. (12)

We recall the following equivalence between the equilibrium
of (12) and the Nash equilibrium:

Lemma 2. x∗
∈ Ω is the Nash equilibrium if and only if the pair(

x, u
)

= (1N ⊗ x∗, 0M ) is the equilibrium of (12), i.e.,

0 = R⊤ΠΩ

(
Rx , −F (x)

)
. □ (13)

Proof. Eq. (13) holds if and only if x∗ is a solution to the
VI(Ω, F). The proof follows from Facchinei and Pang (2007, Prop.
1.4.2). ■

We now rephrase a key result from Gadjov and Pavel (2019).

Lemma 3 (Gadjov & Pavel, 2019, Lemma 8). The storage function
V (x, y) =

1
2∥x − y∥

2 satisfies, for all x, y such that Rx,Ry ∈ Ω

and all u, v ∈ RM ,

∇V (x, y)⊤
[ ẋ
ẏ
]

≤ −(x − y)R⊤(F (x) − F (y)) + (x − y)⊤(u − v),
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where ẋ is the right-hand side of (12) and ẏ equals

R⊤ΠΩ (Ry , −F (y) + Rv) +
(
IM − R⊤R

)
v. □ (14)

We remark that in Lemma 3 the dissipation inequality is
intended to hold point-wise, which dispenses us to specify the
notion of solution at this stage. The dissipation inequality high-
lighted in Lemma 3 is important for our purposes because it
allows us to derive a Lyapunov inequality for the feedback inter-
connection of the project dynamical system in (12) with the dis-
tributed averaging integral control in (8), namely for the closed-
loop system:

ẋ = R⊤ΠΩ(Rx , −F (x) − R(LKL ⊗ IM )x)
−(IM − R⊤R)(LKL ⊗ IM )x,

k̇ = D(ρ)⊤(Γ ⊗ IM )ρ, ρ = −(L ⊗ IM )x.
(15)

We can now show the following inequality for the closed-
loop system in (15).

Lemma 4. Let Assumption 1(ii) hold. Then, the Lyapunov function

W (x, k) =
1
2∥x − x∥2

+
1
2

k − k
2

Γ −1 ,

where x = 1N ⊗ x∗, k = k∗1N and k∗
∈ R to determine, satisfies, for

all x such that Rx ∈ Ω and all k ∈ RN ,

∇W (x, k)
[ ẋ
k̇

]
≤ −(x − x)R⊤(F (x) − F (x))

− (x − x)⊤(LK ∗L ⊗ IM )(x − x), (16)

where K ∗
= k∗IN and

[ ẋ
k̇

]
denotes the right-hand side of (15). □

Proof. Assumption 1(ii) implies the existence of a Nash equilib-
rium x∗

∈ Ω, which is equivalent to Rx ∈ Ω. Thus, we can apply
Lemma 3 with x and 0 in place of y and v, respectively. In view
of (13), we obtain that

∂V (x, x)
∂x

⊤

ẋ ≤ −(x − x)R⊤(F (x) − F (x))
+ (x − x)⊤u.

Now, for u = −(LKL ⊗ IM )x, since ∂V
∂x =

∂W
∂x , the inequality

above becomes

∂W
∂x

⊤

ẋ ≤ −(x − x)R⊤(F (x) − F (x))

−(x − x)⊤(LKL ⊗ IM )x. (17)

Furthermore, as in the proof of Theorem 1,

∂W
∂k

⊤

k̇ = x⊤(L(K − K ∗)L ⊗ InN )x. (18)

Since the sum of the second addend on the right-hand side
of (17) and the term on the right-hand side of (18) is −(x −

x)⊤(LK ∗L ⊗ IM )(x − x), the thesis follows. ■

Similarly to Lemma 3, we remark that the Lyapunov inequality
in Lemma 4 holds point-wise. We now use Lemma 4 and an
invariance principle for projected dynamical systems to infer
convergence for the closed-loop system.

We first note that the closed-loop system (15) can be written
as a projected dynamical system:[
ẋ
k̇

]
= ΠΞ

([
x
k

]
, g(x, k)

)
. (19)

Specifically, let us define Ω1
:= Ω1

× Rn
× · · · × Rn, Ω2

:=

Rn
×Ω2

×Rn
×· · ·×Rn, . . . , ΩN

:= Rn
×· · ·×Rn

×ΩN , the closed
convex set Ξ := Ω1

× · · · × ΩN
× RN , for all i ∈ I, the mapping

f i(xi, ui) := R⊤

i
∂ Ji
∂xi

(xi, xi−i) + ui, (20)

and finally the mapping

g(x, k) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f 1

⎛⎝x1 , −

N∑
j=1

a1,j(kjρj
− k1ρ1)

⎞⎠
...

f N

⎛⎝xN , −

N∑
j=1

aN,j(kjρj
− kNρN )

⎞⎠
γ1

ρ1
2

...

γN
ρN

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where we recall that, for all i ∈ I, ρi
=

∑N
j=1 ai,j

(
xj − xi

)
from Eq. (7).

The projected dynamical system in (19) has a discontinu-
ous right-hand side, and its solutions must be intended in a
Carathèodory sense. It is known (Nagurney & Zhang, 1996, Th.
2.5), (Cherukuri et al., 2016, Prop. 2.2), that if the vector field g
is Lipschitz continuous on the closed convex set Ξ, then for any
initial condition (x0, k0) ∈ Ξ, there exists a unique Carathèodory
solution to (19) from (x0, k0) that is defined on the entire interval
[0, ∞), satisfies (x(t), k(t)) ∈ Ξ for all t ∈ [0, ∞), and is
uniformly continuous with respect to the initial condition. The
latter property is essential to prove the invariance of the positive
limit set associated to any initial condition, as stated next.

Lemma 5 (Brogliato & Goeleven, 2005, Proof Th. 4, Part 1). If the
mapping g is Lipschitz continuous on the closed convex set Ξ, then,
for any y0 ∈ Ξ, the positive limit set Λ(y0) of the solution to (19)
starting from y0 is forward invariant. □

Proof. Take any point z ∈ Λ(y0). By definition, there exists a
diverging sequence {tk}k∈N such that limk→∞ y(tk, y0) = z . By
the Lipschitz continuity, uniform continuity of the solution with
respect to the initial condition holds, and therefore y(t, z) =

limk→∞ y(t, y(tk, y0)). Then, one can proceed as in Brogliato and
Goeleven (2005, Proof of Th. 4, Part 1). ■

Once we have guaranteed invariance of the limit set, we
establish the following invariance principle for systems with
Carathèodory solutions. The proof is a variation of the arguments
in Brogliato and Goeleven (2005), Cherukuri et al. (2016) and
Bacciotti and Ceragioli (2006) adapted to our case study and is
included for the sake of completeness.

Theorem 2. Consider a projected dynamical system ẋ = ΠK (f (x)),
where the set K ⊂ Rn is closed and convex, and the mapping
f : K → Rn is continuously differentiable. Let Ψ ⊂ Rn be a
compact set such that the intersection K ∩ Ψ is an invariant set for
ẋ = ΠK (f (x)). Suppose that there exists a continuously differentiable
function V : Rn

→ R such that

sup
x∈K∩Ψ

∇V (x)⊤ΠK (f (x)) ≤ 0. (21)

Then, for any initial condition in K ∩ Ψ , there exists a unique
Carathèodory solution to ẋ = ΠK (f (x)), which remains in K ∩ Ψ

and converges to the largest invariant set contained in {x ∈ K ∩Ψ |

∇V (x)⊤ΠK (f (x)) = 0}. □

Proof. See Appendix B. ■

We are ready to show the main result of this section, the global
asymptotic convergence to a Nash equilibrium of the projected
dynamical system in (19), technically, the same convergence
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result as in Gadjov and Pavel (2019, Th. 5), but without assuming
a lower bound on the algebraic connectivity of the graph. Our
proof relies on an invariance principle for projected dynamical
systems, not on Barbalat’s lemma as in Gadjov and Pavel (2019).

Theorem 3. Under Assumptions 1(ii), 3–5, for any initial condition
in Ξ, there exists a unique Carathèodory solution to system (15),
which belongs to Ξ for all t ≥ 0, such that its x-component con-
verges asymptotically to the Nash equilibrium, i.e., limt→∞ x(t) =

1N ⊗ x∗. □

Proof. See Appendix C. ■

5. Discussion

5.1. On the proposed distributed averaging algorithm

The proposed algorithm in (7) comprises a distributed integral
action averaging the local decisions of the agents whose state
variable ki, i ∈ I, is used as a tuning weight of the input u cou-
pling the agents’ dynamics. The control gains ki are updated with
positive rates that vanish as the states xi approach the Nash equi-
librium. The update compensates for the lack of knowledge of the
algebraic connectivity, as inferred from (A.7)–(A.8) in Appendix A.
Consequently, the proposed algorithm requires the exchange of
the vector kiρi in addition to the vector xi. By following Kim and
De Persis (2017), an alternative control algorithm may be given
by

k̇i = γi
ρi

2
, ρi

=

N∑
j=1

ai,j(xj − xi), ui
= kiρi (22)

where the local control ui uses the local average ρi only, as
opposed to (7). This alternative approach requires the use of a
different Lyapunov function and to establish additional technical
results for the boundedness of the solutions. Similarly, the results
in Kim and De Persis (2017) suggest that, if the control input u
is affected by an exosystem-generated additive disturbance d, a
suitably modified internal-model-based version of the controller
(8) could still guarantee the convergence to the Nash equilibrium
in spite of the disturbance. We leave these lines of investigation
for future research.

5.2. On the algebraic connectivity

We note that for the unconstrained case, Gadjov and Pavel
(2019, Th. 1) establishes asymptotic stability without a condition
on the graph algebraic connectivity but under a monotonicity
assumption on the extended pseudo-gradient F , an assumption
which is stronger than the Lipschitz continuity considered in
Assumption 5 (cf., Gadjov & Pavel, 2019, Remark 1). On the
other hand, under the same assumption on the Lipschitz con-
tinuity of the extended pseudo-gradient F considered in our
Theorem 1, Gadjov and Pavel (2019, Th. 3) relaxes the condi-
tion on the algebraic connectivity using a singular perturbation
approach. The result, which guarantees exponential stability, re-
quires however the use of a gain 1/ϵ which is global to all the
agents and must be larger than a bound 1/ϵ∗. See Gadjov and
Pavel (2019, Remark 4) for additional discussion on the singular
perturbation approach to the problem. The approach we propose
in Theorem 1 removes the need of a global parameter. Similarly,
for the constrained case, compared with Gadjov and Pavel (2019,
Th. 5), our Theorem 3 relaxes the need of a condition on the
algebraic connectivity.

6. Conclusion

Computing a Nash equilibrium in a distributed fashion, with
unknown algebraic connectivity of the information exchange
graph, nor imposing a fixed high-gain, is possible via dynamic
(rather than static) consensus and pseudo-gradient dynamics,
mainly under strong monotonicity and Lipschitz continuity as-
sumptions. Our analysis and design are based on passivity and an
invariance principle for projected dynamical systems. Solving the
generalized Nash equilibrium problem is left as future work.

Appendix A. Proof of Theorem 1

For the stability analysis, we consider the Lyapunov function

W (x, k) =
1
2∥x − x∥2

+
1
2

k − k
2

Γ −1

where x = 1N ⊗ x∗ and k = k∗1N , with k∗
∈ R≥0 to determine.

The time derivative of W is then written as
Ẇ (x, k) = −(x − x)⊤R⊤F (x)

− (x − x)⊤(LKL ⊗ IM )x
+ (k − k)⊤Γ −1D(ρ)⊤(Γ ⊗ IM )ρ.

(A.1)

Now, we show that the first addend is bounded as follows:

−(x − x)⊤R⊤F (x) ≤

−

[
∥(PN ⊗ IM) x∥
∥avg(x) − x∗∥

]⊤ [
−ℓF ℓ

ℓ µ

][
∥(PN ⊗ IM) x∥
∥avg(x) − x∗∥

]
, (A.2)

where PN := IN −
1
N 1N1⊤

N and avg(x) :=
1
N

∑N
i=1 x

i
= ( 1

N 1
⊤

N ⊗ IM )x.
In fact, following Gadjov and Pavel (2019) with minor modifica-
tions, let us define x⊥

:= (PN ⊗ IM )x and x∥
:= 1N ⊗ avg(x). Then,

the first addend in (A.1) reads as

−(x − x)⊤R⊤F (x) = −x⊥⊤R⊤(F (x) − F (x∥))
− x⊥⊤R⊤F (x∥)
− (x∥

− x)⊤R⊤(F (x) − F (x∥))
− (x∥

− x)⊤R⊤F (x∥).

Since ∥R⊤
∥ = 1, by Assumption 5, we havex⊥⊤

R⊤(F (x) − F (x∥))
 ≤ ℓF∥(PN ⊗ IM )x∥2. (A.3)

Then, we note that F (x∥) = F (avg(x)). Similarly, since x =

1N ⊗ x∗, it holds that F (x) = F (x∗) = 0. Thus, by the ℓF -Lipschitz
continuity of F , it holds that

−x⊥⊤R⊤F (x∥) = −x⊥⊤R⊤ (F (avg(x)) − F (x∗))
≤ ℓF∥x⊥

∥∥avg(x) − x∗
∥.

(A.4)

Furthermore, we note that Rx∥
= avg(x), Rx = x∗, and

therefore, by Assumption 5, the following inequality is true

−(x∥
− x)⊤R⊤(F (x) − F (x∥))

= −(avg(x) − x∗)⊤(F (x) − F (x∥))
≤ ℓF∥avg(x) − x∗

∥∥x⊥
∥.

(A.5)

By the strong monotonicity stated in Assumption 4, we obtain
that
−(x∥

− x)⊤R⊤F (x∥)
= −(x∥

− x)⊤R⊤(F (x∥) − F (x))
= −(avg(x) − x∗)⊤ (F (avg(x)) − F (x∗))
≤ −µ∥avg(x) − x∗

∥
2.

(A.6)

The second addend on the right-hand side in (A.1) can be
rewritten as −x⊤(LKL⊗ IM )x. Finally, we rewrite the third addend
in (A.1) as

(k−k)⊤Γ −1D(ρ)⊤(Γ ⊗ IM )ρ =

N∑
i=1

(ki − k∗)ρi⊤ρi

= ρ⊤((K − K ∗) ⊗ IM )ρ = x⊤(L(K − K ∗)L ⊗ IM )x,
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where K ∗
:= k∗IN . Thus, the sum of the second and the third

addend is equal to −x⊤(LK ∗L⊗IM )x, from which (Kim & De Persis,
2017), we conclude that

x⊤(LK ∗L ⊗ IM )x ≥ k∗λ2(L)2∥(PN ⊗ IM )x∥2. (A.7)

By replacing the bounds (A.3)–(A.7) in (A.1), we obtain the
following inequality:

Ẇ (x, k) ≤ −

[
∥(PN ⊗ IM )x∥
∥avg(x) − x∗

∥

]2

M
(A.8)

where

M =

[
−ℓF + k∗λ2(L)2 ℓ

ℓ µ

]
(A.9)

and the free design parameter k∗ is chosen such that M ≻ 0.
Since the Lyapunov function W is radially unbounded, the

inequality in (A.8) shows boundedness of the solutions and con-
vergence to the largest invariant set where (PN ⊗ IM )x = 0 and
avg(x) = x∗. On this invariant set, we have x = 1N ⊗ x∗. Thus,
limt→∞ x(t) = 1N ⊗ x∗. ■

Remark 6 (Passivity Interpretation). The design of (8) and the
proof above are inspired by passivity-based arguments. The first
part of the proof establishes the shifted passivity property of the
dynamics ẋ = −R⊤F (x) + u, namely

V̇ (x) ≤ (x − x)⊤u−[
∥(PN ⊗ IM) x∥
∥avg(x) − x∗∥

]⊤ [
−ℓF ℓ

ℓ µ

][
∥(PN ⊗ IM) x∥
∥avg(x) − x∗∥

]
,

where V (x) =
1
2∥x − x∥2. On the other hand, writing the control

gain dynamics as k̇ = v, with v to design, the storage function
U(k) =

1
2

k − k
2

Γ −1 satisfies the shifted dissipation inequality
U̇(k) ≤ (k − k)⊤v. Taking as storage function for the overall
system the function W (x, k) = V (x)+U(k), the design of u and v
is guided by the idea that the cross-terms (x−x)⊤u and (k−k)⊤v
should provide the extra damping term −(x−x)⊤(LK ∗L⊗ IM )(x−

x), leading to the desired convergence result. Similar comments
apply to the projected version of the algorithm (Section 4). ■

Appendix B. Proof of Theorem 2

By the compactness of K ∩ Ψ , the convexity of the set K , and
the continuous differentiability of f , f is Lipschitz continuous on
K∩Ψ . Thus, by the invariance of K∩Ψ under ẋ = ΠK (f (x)), for any
initial condition x0 in K ∩ Ψ , there exists a unique Carathèodory
solution defined on [0, ∞) that remains in K ∩ Ψ . The derivative
V̇ (x(t)) exists for almost all t because x(t) is absolutely continu-
ous, and by (21), it satisfies V̇ (x(t)) ≤ 0 for almost all t . Since
V (x(t)) is absolutely continuous and x(t) belongs to the compact
set K ∩ Ψ , then V (x(t)) is bounded from below, and the last
property, along with V̇ (x(t)) ≤ 0 for almost all t , implies that
limt→∞ V (x(t; x0)) = V∗, for some V∗ ∈ R. Consider now a point
p in the limit set Λ(x0). Note that Λ(x0) is non-empty because
x(t; x0) is bounded, as a consequence of the Bolzano–Weierstrass
theorem. Then, by definition of limit set, V (p) = V∗, and since p
is a generic point in Λ(x0), V (p) = V∗ for all p ∈ Λ(x0). It is also
known that limt→∞ dist(x(t; x0), Λ(x0)) = 0.

By Lemma 5, any solution x(t, p) with p ∈ Λ(x0) remains in
Λ(x0) by the Lipschitz continuity of f on K ∩ Ψ . Thus, since V (x)
is constant on Λ(x0), we have 0 = V̇ (x(t, p)) = ∇V (x(t, p))⊤
ΠK (f (x(t, p))) for almost all t ∈ R≥0. Now, since the function
∇V (x)⊤ΠK (f (x)) is continuous, we have

0 = lim
t→0+

∇V (x(t, p))⊤ΠK (f (x(t, p)))

= ∇V (p)⊤ΠK (f (p)). (B.1)

Since p is a generic point in Λ(x0), the equality above shows
that ∇V (p)⊤ΠK (f (p)) = 0 for all p ∈ Λ(x0). We conclude that
Λ(x0) is contained in the largest invariant set contained in {y ∈

K ∩ Ψ | ∇V (y)⊤ΠK (f (y)) = 0}. The proof then follows since
limt→0 dist(x(t; x0), Λ(x0)) = 0. ■

Appendix C. Proof of Theorem 3

In view of Lemmas 4 and 5, similarly to the proof of Theorem 1,
we obtain that

∇W (x, k)⊤ΠΞ (col(x, k) , g(x, k))

≤ −

[
∥(PN⊗InN )x∥
∥avg(x)−x∗∥

]2

M
(C.1)

where M is as in (A.9) and M ≻ 0 for large enough k∗.
Having fixed k∗, let Ψ be any compact sublevel set of the

function W which contains the initial condition in Ξ. The inter-
section Ξ∩Ψ is a compact convex set and therefore g is Lipschitz
continuous on it. The last property and the inequality in (C.1)
imply that there exists a unique Carathèodory solution to (15),
which belongs to Ξ∩Ψ for all time and, by Theorem 2, converges
to the largest invariant set contained in {(x, k) ∈ Ξ ∩ Ψ :

Ẇ (x, k) = 0}, where, by an abuse of notation, Ẇ (x, k) denotes
the right-hand side of (C.1). As in Theorem 1, on this invariant
set, we have x = 1N ⊗ x∗, which yields the thesis. ■
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