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A Feedback Control Algorithm to Steer Networks
to a Cournot–Nash Equilibrium

Claudio De Persis and Nima Monshizadeh

Abstract—In this paper, we propose distributed feedback
control that steers a dynamical network to a prescribed
equilibrium corresponding to the so-called Cournot–Nash
equilibrium. The network dynamics considered here are a
class of passive nonlinear second-order systems, where
production and demands act as external inputs to the sys-
tems. While productions are assumed to be controllable at
each node, the demand is determined as a function of local
prices according to the utility of the consumers. Using re-
duced information on the demand, the proposed controller
guarantees the convergence of the closed-loop system to
the optimal equilibrium point dictated by the Cournot–Nash
competition.

Index Terms—Aggregative games, distributed control, in-
ternal model.

I. INTRODUCTION

IN RECENT years, there has been a renewed interest in con-
trollers that can steer a given network dynamical system to

a steady state, which is optimal in a suitable economic sense,
mostly motivated by research connected to power networks,
where, for instance, given a certain demand, the problem of
dynamically adjusting the generation in order to satisfy the de-
mand while fulfilling an optimal criterion at steady state, for
example, minimizing the generation costs or maximizing the
social welfare, has been formulated and addressed with differ-
ent approaches. Other application domains of interests are flow
and heat networks [1], [2] as well as logistical systems [3], [4].

Generally speaking, the proposed approaches to dynamically
control networks while fulfilling steady-state optimality criteria
can be classified in two categories. One relies on primal–dual
gradient algorithms, which solve the optimization problem, and
apply online the computed control input to the physical network,
possibly taking into account feedback signals coming from the
network for improved robustness [5]–[8]. This approach returns
control algorithms that can handle general convex objective
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functions and constraints but typically require exactly knowing
the demand in real time. This requirement can be alleviated at
the expense of requiring more information about the network
parameters [6], [7, Sec. IV-C].

The second category relies on internal-model-based con-
trollers [9]–[11], popularized under distributed averaging pro-
portional integral controllers [12], which can typically deal with
linear-quadratic cost functions only, but can, on the other hand,
tackle uncertainty in the power demand.

This paper aims at contributing to the second category of
results allowing for an uncertain demand and considering an
economic objective, which is different from the ones consid-
ered so far—economic optimal dispatch, implemented via a
distributed [9], [10] or a semidecentralized control architecture
[13]. In fact, our interest is to design controllers at the produc-
ers that aim at maximizing their profit according to a Cournot
model of competition [14]. While the papers [9], [10], and [13]
assume a demand that is constant over time, in this paper, we
investigate whether the stability of a network is preserved when
the demand changes as a function of some control parameters
that can be regarded as “prices” (see [15] and references therein
for the same demand function). Moreover, different from the
welfare optimization problem, the local objective function of
each player depends on the other players’ decision variables via
the price. The Cournot model provides us with an economically
accepted framework where a price-dependent demand function
can be specified and used in the analysis. In electricity mar-
kets, the dynamic stability of real-time pricing influencing the
consumers’ demand has been studied at least since [16]. In this
paper, we focus on the close interaction between the pricing
algorithms and the physics of a second-order nonlinear network
representing a physical system.

Other works are available that have solved problems different
from the economic optimal dispatch problem, for example,
[17] and [18], where algorithms solving the optimal power
generation model under a Bertrand model of competition and a
primal–dual setting have been proposed. These papers propose
saddle-point-based algorithms for modeling the Bertrand game
of competition [17] and interconnect them in feedback with the
dynamical model representing the physical network [18]. Being
based on saddle-point dynamics, these algorithms require the
knowledge in real time of the total demand, which is collected
by a central aggregator.

Cournot models of competition and the resulting Cournot–
Nash equilibrium [15], [19], [20] are very well-studied topics
in game theory and its applications. Reference [21] provides
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a general framework where Nash equilibria are characterized
as solutions to variational inequalities and Nash equilibrium-
seeking algorithms are given. Reference [15] studies the
existence of a generalized Nash equilibrium in a transmission
electricity market with Cournot competition, where demand is
modeled as a linear function of the price, generators maximize
their profits, and the market maximizes some objective functions
(social welfare, residual social welfare, and consumer surplus).
Properties of Cournot equilibria in a Cournot oligopoly model
under convex cost and inverse demand functions are provided in
[20], where they are used to establish the efficiency of Cournot
equilibria compared to the optimal social welfare problem. As
a special case, the study is conducted for affine inverse demand
functions, which are those relevant to our investigation.

In the context of game-theoretic equilibria seeking dynamics,
pseudogradient dynamical algorithms that converge to Cournot–
Nash equilibria have been extensively investigated in the litera-
ture [22]–[25]. In fact, the Cournot model of competition falls in
the class of aggregative games, where players can be controlled
to a prescribed game-theoretic equilibrium while fulfilling local
and coupling constraints [25]. As a special case of noncooper-
ative games over networks, network Cournot competition has
been studied in [24]. Being based on interdependent Karush–
Kuhn–Tucker (KKT) conditions, these algorithms implement
projected dynamics that require the knowledge of the parame-
ters defining the constraints, which, in the context of Cournot
games, amount to the real-time measurement of the demand
function.

What differentiates our results from the existing ones are three
features. First, as highlighted before, we devise a feedback con-
trol algorithm that does not rely on the exact knowledge in real
time of the demand in the network. Second, this algorithm is
interconnected in a feedback loop with a given physical net-
work, and the resulting closed-loop system is analyzed as a
whole, showing that the physical network converges to an equi-
librium at which the controller output is equal to the value of the
Cournot–Nash equilibrium. Third, while the existing results on
dynamic integral controllers focus on achieving social welfare
optimization [9], [10], [13], we are interested in a controller
that guarantees optimality in the Cournot–Nash sense. The lat-
ter is valued for providing good explanation of observed price
variation, for it gives rise to a form of price that depends on
the demand in an affine way, a well-accepted fact in economics
[15], [20]. Compared with the existing literature, the analysis
requires carefully crafting a control algorithm that simultane-
ously satisfies a suitable passivity property, ensures stability,
guarantees convergence of generation, demand, and prices to
the Cournot–Nash equilibrium.

Since the controller state variable has the interpretation of a
price, we, at times, refer to the feedback control also as a pricing
mechanism.

Although the motivation for this investigation was inspired
by problems in power networks, in order to convey the results
to an audience that is not necessarily interested in power net-
works, we decided to present our results for a class of nonlinear
second-order passive dynamical networks [26], in which power
networks fall after suitable modifications. The passivity property

plays an important role in the modeling, design, and analysis of
many physical systems [27], including the ones that are of in-
terest in this paper. Besides power networks, other examples of
physical dynamics that can be modeled via the second-order dy-
namical network considered in this paper are: robotic networks
[26] arising in formation control problems with disturbance re-
jection; and flow and hydraulic networks with frictionless pipes
networks and electrical networks with inductive lines [2], [28].

The rest of this paper is organized as follows. In Section II,
we recall basic concepts and results about the Cournot model
of competition. Section III contains the main results of this
paper, namely, the design and analysis of a distributed feedback
controller steering the closed-loop system toward a Cournot–
Nash equilibrium. A case study is discussed in Section IV.
Finally, conclusions are drawn in Section V.

II. COURNOT COMPETITION

In this section, we revisit a few results about the Cournot
model of competition [14], [19], which are used to determine the
optimal triple of supply, demand, and price. Although Cournot–
Nash equilibria are a well-studied topic in economics, game
theory, and control [20], [24], [25], we could not find the spe-
cific characterization of the Cournot–Nash equilibrium, optimal
demand solution, and price function given in Theorem 1 in the
existing literature. The theorem is the principal contribution of
this section and is instrumental to formulate our main results in
the next section, where a dynamic controller is designed to steer
a given network to such an optimal Cournot triple.

In a model of Cournot competition, n producers produce a
homogeneous good that is demanded by m consumers. The
price p of the good is assumed to be determined by the good
producers, whereas the consumers are price takers, a scenario
motivated by having few producers and many consumers.

Each producer i aims at maximizing its profit Πgi : Rn
≥0 → R,

given the production of other firms. The profit is defined by the
objective function

Πgi(Pgi, P−gi) = p(Pg )Pgi − Cgi(Pgi),

i ∈ I := {1, 2, . . . , n}

where Pgi ∈ R≥0 is the good production by producer i, Pg =
col(Pg1 , . . . , Pgn ) ∈ Rn is the vector of all productions, P−gi ∈
Rn−1 is the vector obtained by removing the ith element of
Pg , p : Rn → R is the price function, and Cgi : R≥0 → R is a
function satisfying the following assumption [19].

Assumption 1: For each i, the cost function Cgi is convex,
nondecreasing, and continuously differentiable for Pgi ∈ R≥0 .
Moreover, Cgi(0) = 0.

Given a price p ∈ R, each consumer j wants to maximize its
utility, described by the function

Πdj (Pdj , p) = Uj (Pdj ) − pPdj , j ∈ J := {1, 2, . . . ,m}

where Pdj ∈ R≥0 is the good demand by consumer j, and Uj :
R≥0 → R is a continuously differentiable function. To simplify
the notation, in the sequel, we denote p simply by p. Now, given
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a price p ∈ R, we consider the utility maximization problem

sup
Pdj ≥0

Πdj (Pdj , p). (1)

Assumption 2: For each j ∈ J , the utility function Uj :
R≥0 → R is continuously differentiable and strictly concave.
Moreover, U ′

j : R≥0 → R satisfies limPdj →+∞ U ′
j (Pdj ) = −∞

and U ′
j (0) > 0.

A. Utility Maximization

The utility maximization problem admits the following well-
known solution (e.g., [16, Remark 1]).

Lemma 1: Let Assumption 2 hold. Then, Pdj is a solution
to (1) if and only if

Pdj = πj (p) (2)

where πj : R → R≥0 is defined as

πj (λ) =

{
(U ′

j )
−1(λ) if λ<U ′

j (0)

0 if λ≥U ′
j (0)

. (3)

Proof: The proof descends from the KKT conditions. �

B. Supply–Demand Matching

As will be discussed in Section III, we are interested in a
supply–demand balancing condition, where the total generation
is equal to the total demand, namely

1�Pg = 1�Pd (4)

where Pd = col(Pd1 , . . . , Pdm ) and 1 denotes the vector of all
ones of suitable size. Under this balancing condition, the price
can be written as a function of the total production, as stated
next.

Lemma 2: Let Assumption 2 and the balance equation (4)
hold, with 1�Pg ≥ 0. Then, there exists a continuous function
u : R≥0 → R satisfying

u(1�Pg ) = p(Pg ) (5)

with the following properties: i) u(0) > 0; ii) u is strictly de-
creasing; and iii) limq→+∞ u(q) = −∞.

Proof: See the Appendix. �
Example 1: Consider the case of two consumers with linear-

quadratic utility functions

Uj (Pdj ) = −1
2
PdjQdjPdj + bdjPdj

where Qdj , bdj > 0, j = 1, 2. For each j, we have

πj (λ) =

{
Q−1

dj (bdj − λ) if λ < bdj

0 if λ ≥ bdj

. (6)

Let bd1 < bd2 . Then

π(λ) =

⎧⎪⎪⎨
⎪⎪⎩

∑
j=1,2 Q−1

dj (bdj − λ) if λ ≤ bd1

Q−1
d2 (bd2 − λ) if bd1<λ ≤ bd2

0 if λ>bd2

and for q = π(λ), q > 0, we have

π−1(q) =

{−Qd2q + bd2 if 0 < q ≤ Q−1
d2 (bd2 − bd1)

−αq + β if q ≥ Q−1
d2 (bd2 − bd1)

where

β =

∑
j=1,2

bdj

Qdj∑
j=1,2

1
Qd i

, α =
1∑

j=1,2
1

Qd i

.

It then follows that:

u(q) =

{−Qd2q + bd2 if 0 ≤ q ≤ Q−1
d2 (bd2 − bd1)

−αq + β if q ≥ Q−1
d2 (bd2 − bd1)

.

In view of (2) and (5), we conclude that the optimal demands
are given by

Pdj =

{
(U ′

j )
−1(u(1�Pg )) if u(1�Pg ) < U ′

j (0)

0 if u(1�Pg ) ≥ U ′
j (0)

. (7)

By construction, the optimal demand Pd detailed above satisfies
1�Pd = 1�Pg .

C. Profit Maximization: The Cournot–Nash Equilibrium

Motivated by the discussion before, we consider a Cournot
game consisting of the set of producers I, each one aiming at
solving the maximization problem

max
Pg i ≥0

Πgi(Pgi, P−gi) (8)

with

Πgi(Pgi, P−gi) = p(Pg )Pgi − Cgi(Pgi). (9)

More formally, we define the Cournot game as follows.
Definition 1: A Cournot game CG(I, (Πgi , i ∈ I)) consists

of the following:
1) a set I of producers (or players);
2) a strategy Pgi ∈ R for each producer i ∈ I;
3) the convex and closed set Rn

≥0 of allowed strategies Pg =
(Pg1 , . . . , Pgn );

4) a payoff function Πgi(Pgi, P−gi), where for Pg ∈ Rn
≥0 ,

Πgi(Pg ) is continuous in Pg and concave in Pgi for each
fixed P−gi .

The Cournot–Nash equilibrium is defined next [19].
Definition 2: A Cournot–Nash equilibrium of the game

CG(I, (Πgi , i ∈ I)) is a vector P�
g ∈ Rn

≥0 that for each i ∈ I
satisfies

Πgi(P�
gi, P

�
−gi) ≥ Πgi(Pgi, P

�
−gi)

for all Pgi ∈ R≥0 .
The existence of a Cournot–Nash equilibrium is a conse-

quence of a well-known result on concave games due to [29].
Let us recall the definition of a concave game.

Definition 3: A concave game consists of the following:
1) a set I of players;
2) a strategy xi ∈ Rpi for each player i ∈ I;
3) the convex, closed, and bounded set R ⊂ Rp of allowed

strategies x = (x1 , . . . , xn ), with p =
∑n

i=1 pi ;
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4) a payoff function ϕi(xi, x−i) for each player i ∈ I, where
for x ∈ S, ϕi(x) is continuous in x and concave in xi for
each fixed x−i , with S = P1 × · · · × Pn and Pi is the
projection of R on Rmi .

A difference between a Cournot and a concave game is the
lack of a bounded set of bounded strategies for the Cournot game
(Rn

≥0 is clearly unbounded). However, following [19, Prop. 2],
it can be shown that solving (8) is equivalent to solving

max
0≤Pg i ≤P̄g i

Πgi(Pgi, P−gi) (10)

with P̄gi being some positive constant. As a matter of fact,
Πgi(Pgi, P−gi) = u(1�Pg )Pgi − Cgi(Pgi) is zero at Pgi = 0,
and by Assumptions 1 and 2 and Lemma 2, there exists
P̄gi > 0 such that Πgi(P̄gi , P−gi) = 0 and Πgi(Pgi, P−gi) < 0
for Pgi ≥ P̄gi . Hence, in the case of (10), R = S = [0, P̄g1 ] ×
· · · × [0, P̄gn ]. Moreover, the payoff function Πgi(Pgi, P−gi)
satisfies the properties of a concave game by Assumptions 1
and 2 and Lemma 2. Therefore, the game defined by (10) or,
equivalently, by (8) is a concave game. It can then be concluded
by [29, Th. 1] that a Cournot–Nash equilibrium exists.

Proposition 1: (see [29, Theor. 1]) Under Assumptions 1
and 2, there exists a Cournot–Nash equilibrium P�

g .

D. Linear-Quadratic Utility and Cost Functions

In this section and for the remainder of this paper, we restrict
the cost and utility functions of producers and consumers to
linear-quadratic functions, namely

Cgi(Pgi) =
1
2
PgiQgiPgi + bgiPgi , bgi , Qgi > 0 (11)

Uj (Pdj ) = −1
2
PdjQdjPdj + bdjPdj , bdj, Qdj > 0. (12)

Analogous results can be obtained for more general convex cost
functions, if the price function p(Pg ) admits an affine form in
(17). The restriction to linear-quadratic cost and utility functions
is motivated by two reasons: to obtain more explicit expressions
for optimal production and demand (see Theorem 1), and for
technical reasons, namely, to prove stability of the overall system
in the next section (see Remark 9).

Now, Lemma 1 is specialized as follows.
Corollary 1: The scalar Pdj is a solution to (1) with Uj as

in (12) if and only if

Pdj =
{

Q−1
dj (bdj − p) if p < bdj

0 if p ≥ bdj
. (13)

We are particularly interested in the case where all producers
and consumers enter the market, that is, Pgi, Pdj > 0 for all
i ∈ I and j ∈ J . Conditions under which this case occurs are
formalized next.

Lemma 3: Let the utility functions of consumers be given
by (12) and consider the utility maximization problem (1). Then,
the following statements are equivalent.

1) There exists Pd ∈ Rn
>0 solution to (1).

2) p < bd , where bd := min{bdj : j ∈ J }.
3) The vector Pd given by

Pd = Q−1
d (b − 1p) (14)

is the unique solution to (1), and p 
= bd .

Proof: See the Appendix. �
We note that given the strictly positive demand (14) in Lemma

3, the expression can be inverted to obtain

p = β∗ − α∗1�Pd (15)

where

β∗ :=

∑
j∈J

bd i

Qd i∑
j∈J

1
Qd i

=
1�Q−1

d bd

1�Q−1
d 1

,

α∗ :=
1∑

j∈J
1

Qdj

=
1

1�Q−1
d 1

(16)

and bd := col(bd1 , . . . , bdn ), Qd = diag(Qd1 , . . . , Qdn ), bg

:= col(bg1 , . . . , bgn ), Qg = diag(Qg1 , . . . , Qgn ).
We turn now our attention to the producers. Let the price

function in (8) admit the affine form

p(Pg ) = β − α1�Pg (17)

for some scalars α, β > 0, which is motivated by Lemma 2
specialized to the case of linear-quadratic cost functions with
strictly positive generation and demand. In the next section,
scalars α and β in (17) will be set to those in (16), as we are
interested in the supply–demand matching condition (4). This
will be made more explicit in Theorem 1.

Since Assumptions 1 and 2 are satisfied in the case of linear-
quadratic functions, Proposition 1 holds and a Cournot–Nash
equilibrium exists. Then, the computation of the Cournot–Nash
equilibrium P�

g descends from the optimization problem

P�
gi ∈ arg max

Pg i ≥0
Πgi(Pgi, P

�
−gi) (18)

where in the view of (9), (11), and (17)

Πgi(Pgi, P−gi) = (β − αPgi − α1�P−gi)Pgi

− 1
2
PgiQgiPgi − bgiPgi .

One could expect the presence of an upper bound on the pro-
duction Pgi in the optimization problem (18). The reason for
neglecting this is technical and is explained in Remark 1.

The conditions under which the parabola (β − αPgi −
α1�P−gi)Pgi − 1

2 PgiQgiPgi − bgiPgi has a non-negative max-
imizer can be formalized as follows.

Lemma 4: Pgi is a solution to (18) if and only if

Pgi =

{
γi (P−g i )
2α+Qg i

if γi(P−gi) > 0

0 if γi(P−gi) ≤ 0
(19)

with

γi(P−gi) := β − bgi − α
∑

j 
=i:Pg j >0

Pgj .

The proof is straightforward and, thus, omitted. Recall that
we are interested in the case where every producer contributes
to a strictly positive production, that is, Pg ∈ Rn

>0 . This brings
us to the following lemma.

Lemma 5: The following statements are equivalent.
1) There exists a Pg ∈ Rn

>0 solution to (18).
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2) The vector Pg given by

Pg = (α(I + 11�) + Qg )−1(β1− bg ) (20)

is the unique solution to (18) and β − α1�Pg 
=bg , where
bg := maxi∈I bgi .

3) (α(I + 11�) + Qg )−1(β1− bg ) ∈ Rn
>0 .

4) The inequality

1�(α(I + 11�) + Qg )−1(β1− bg ) <
β − bg

α
(21)

holds.
Proof: See the Appendix. �

To summarize, Lemma 4 and Corollary 1 identify the op-
timal production and optimal demand, respectively, for the
cost and utility functions (11) and (12). Lemma 3 character-
izes the conditions under which the optimal demand of each
consumer is strictly positive, and Lemma 5 provides equiv-
alent conditions for strict positivity of optimal productions.
Based on the aforementioned results, the following necessary
and sufficient condition for the existence of an optimal triple
(P�

g , P �
d , p�) ∈ Rn

>0 × Rm
>0 × R>0 can be given.

Theorem 1: Let the price function admit the affine form
p(Pg ) = β − α1�Pg , for some positive scalars α, β > 0. For
linear-quadratic functions (11), (12), let P�

g denote the Cournot–
Nash equilibrium solution to (18), and P�

d the optimal demand
solution to (1) computed with respect to the optimal price p� :=
p(P�

g ). Then, the following conditions are equivalent:
1)

β − bd

α
< 1�(α(I + 11�) + Qg )−1(β1− bg ) <

β − bg

α
.

(22)

2)

P�
g = (α(I + 11�) + Qg )−1(β1− bg ) (23a)

P�
d = Q−1

d (bd − β1 + α11�P�
g ) (23b)

p� = β − α1�P�
g (23c)

and bg 
= p� 
= bd .
3) (P�

g , P �
d , p�) ∈ Rn

>0 × Rm
>0 × R>0 .

Moreover, in case α = α∗ and β = β∗ with α∗ and β∗ as in
(16), the balancing condition holds, namely

1�P�
g = 1�P�

d . (24)

Proof: By Lemmas 3 and 5, establishing the equivalence
of the three statements is straightforward. Now suppose that
α = α∗ and β = β∗, then (23b) becomes

P�
d = Q−1

d (bd − β∗1 + α∗11�P�
g ).

This yields

1�P�
d = 1�Q−1

d bd − β∗1�Q−1
d 1 + α∗1�Q−1

d 11T P �
g .

The balancing condition (24) then follows from (16). �
Remark 1: The vector P�

g in (23a) can be rewritten as

P�
g = (αI + Qg )−1(β1− bg − α11�P�

g )

= (αI + Qg )−1(1p� − bg ). (25)

Hence, the triple (P�
g , P �

d , p�) can be equivalently characterized
by the implicit form

P�
g = (αI + Qg )−1(1p� − bg ) (26a)

P�
d = Q−1

d (bd − 1p�) (26b)

p� = β − α1�P�
g . (26c)

We see from (26a) that the optimal generation vector P ∗
g

depends affinely on the optimal price p� . This allows us to design
the feedback controller that asymptotically converges to such a
value in the next section. The presence of active constraints on
Pg at the optimal solution would lead to a nonlinear expression
of P ∗

g as a function of the price and would prevent us from
deriving a controller, for which analytical stability guarantees
can be provided. In fact, the design of internal-model-based
regulators in the presence of constraints is, to the best of the
authors’ knowledge, an open problem.

Remark 2: To give an interpretation to condition (22), we
rewrite it in a different form. By Theorem 1, condition (22) can
be rewritten as

β − bd

α
< 1�P�

g <
β − bg

α
(27)

which is equivalent to bg < β − α1�P�
g < bd , or also

C ′
i(0) < p(P�

g ) < U ′
i(0) ∀i ∈ I.

Noting that p(Pg ) is monotonically decreasing, the lower bound
yields C ′

i(0) < p(0). This means that the marginal costs of the
producers are lower than the price at zero generation (Pgi = 0).
Therefore, the producers always benefit from providing nonzero
amount of goods to the consumers. Analogously, the upper
bound indicates that the marginal utility of each consumer at
zero demand (Pdj = 0) is higher than the eventual optimal price
p� = p(P�

g ) dictated by the consumers. Hence, under condition
(22), it is always advantageous for consumers to enter the market
and have a strictly positive demand.

III. COURNOT–NASH OPTIMAL DYNAMICAL NETWORKS

In the previous section, we studied Cournot competition and
characterized the Cournot–Nash equilibrium among producers
and consumers. In this section, the Cournot model of competi-
tion is used to devise a feedback control algorithm that, when
interconnected with a physical network, steers its state to a
point prescribed by the Cournot–Nash equilibrium. In particu-
lar, we introduce a dynamical network whose output variables
are affected by the cumulative effect of demand and generation
mismatch. Using these variables as measurements, we propose
a dynamic output feedback algorithm that steers the dynamical
network to the Cournot–Nash optimal solution identified by the
triple (P�

g , P �
d , p�) with

P�
g = (α∗(I + 11�) + Qg )−1(β∗1− bg ) (28a)

P�
d = Q−1

d (bd − β∗1 + α∗11�P�
g ) (28b)

p� = β∗ − α∗1�P�
g . (28c)

Note that the triple above is obtained from (23) by setting
α = α∗ and β = β∗. The reason why we are interested in the
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latter choice is to ensure that the balancing condition (24) is met.
Moreover, we require a reduced amount of information about the
consumers to allow for the changing demand present in dynamic
interactive markets. Finally, note that the feedback algorithm
should be designed such that the stability of the physical system
is not compromised.

A. Network Dynamics

In this section, we provide the model of the physical network.
The topology of such a network is represented by a connected
and undirected graph G(V, E) with a vertex set V = {1, . . . , n},
and an edge set E given by the set of unordered pairs {i, j}
of distinct vertices i and j. The cardinality of E is denoted by
m.1 The set of neighbors of node i is denoted by Ni = {j ∈ V |
{i, j} ∈ E}.

We consider a second-order consensus-based network dy-
namics of the form

miẍi + diẋi −
∑
j∈Ni

∇Hij (xi − xj ) = ui (29)

where mi, di ∈ R>0 are constant, Hij : R → R is a continu-
ously differentiable strictly convex function2 with its minimum
at the origin, ∇Hij denotes the partial derivative of Hij with
respect to its argument xi − xj , xi ∈ R is the state associated
with node i, and ui ∈ R is the input applied to the dynamics
of the ith node. Note that as Hij is strictly convex, ∇Hij is
a strictly increasing function of xi − xj . The second-order dy-
namics (29) can represent different kinds of networks, including
power networks, by appropriately choosing the function Hi , see,
for example, [30] and [31], formation of mobile robots [26], and
flow networks [2], [28]. Producers and consumers affect the dy-
namics (29) via

ui = Pgi − Pdi

where Pgi is the production and Pdi is the aggregated demand
at node i as before. This means that a mismatch between pro-
duction and demand causes the node i’s state variable to drift
away from its unforced behavior. Note that the number of pro-
ducers and consumers here are considered to be the same, and
we thus use the notation Pdi rather than Pdj , which was used in
the previous section.

Let R be the incidence matrix of the graph G. Note that by
associating an arbitrary orientation to the edges, the incidence
matrix R ∈ Rn×m is defined elementwise as Rik = 1, if node i
is the sink of edge k, Rik = −1, if i is the source of edge k, and
Rik = 0 otherwise. In addition, ker R� = im1 for a connected
graph G. Then, (29) can be written in vector form as

ẋ = y (30a)

Mẏ = −Dy − R∇H(R�x) + Pg − Pd (30b)

1The integer m should not be confused with the number of consumers in the
previous section, as the latter is equal to the number of producers in this section
and is denoted by n.

2Locally, strictly convex functions can be analogously treated in the analysis,
with the only difference being that the convergence result will become local in
this case.

where x = col(xi), M = blockdiag(mi), D = blockdiag(di),
Pg = col(Pgi), Pd = col(Pdi), i ∈ V . In addition, col(∇Hij )
is denoted by ∇H : Rm → Rm , where the edge ordering in
∇H is the same as that of the incidence matrix R. It is easy to
see that (30) has nonisolated equilibria for constant vectors Pg

and Pd . In fact, given a solution (x, y) of (30), (x + c1, y) is a
solution to (30) as well, for any constant c ∈ R. To avoid this
complication, we perform a change of coordinates by defining

ζi = xi − xn , i = 1, . . . , n − 1. (31)

Let Rζ ∈ Rn−1 × Rm denote the incidence matrix with its nth
row removed. Then, we have

R�x = R�
ζ ζ

where col(ζi) = ζ ∈ Rn−1 . Moreover, it holds that ζ = E�x,
where E� =

[
In−1 −1n−1

]
. Noting that R = ERζ , and

defining a function Hζ such that H(R�
ζ ζ):=Hζ (ζ) and, thus,

Rζ∇H(R�
ζ ζ) = ∇Hζ (ζ), system (30) in the new coordinates

reads as

ζ̇ = E�y (32a)

Mẏ = −Dy − E ∇Hζ (ζ) + Pg − Pd. (32b)

Remark 3: The system above belongs to a class of dynam-
ical networks given by

ẋ = f(x) + gu (33a)

z = h(x) (33b)

which are output-strictly shifted passive [27, Ch. 6.5], satisfying
an equilibrium-observability property [32, Remark 6] and the
inclusion

{x∗| h(x∗) = 0} ⊆ {x∗| 1�g+f(x∗) = 0}

with g+ being a left inverse of g. In (32), u = Pg − Pd , x =
col(ζ, y), h(x) = y, and

f(x) =

[
0 E�

−M−1E −M−1D

][
∇Hζ (ζ)

y

]
, g =

[
0

M−1

]
.

We have opted to consider system (32) rather than more general
subclasses of (33) to keep the focus of this paper and provide
more explicit results. The choice of the second-order consensus-
based dynamics is motivated by applications in power networks,
hydraulic networks, and robotics [2], [26], [28]. Although dy-
namic controllers for the network systems (32) or (33) have been
studied before, for example, [4], there is no controller available
that enforces a Cournot–Nash equilibrium in the closed-loop
system and makes it attractive. The proposed controller estab-
lishes such a result.

As a result of the change of coordinates, network (32) now
has at most one equilibrium, for given constant vectors Pg and
Pd , and we have the following lemma.

Lemma 6: Let Pg = Pg and Pd = Pd for some constant
vectors Pg , P d ∈ Rn . Then, the point (ζ, y) is an equilibrium



1492 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 6, NO. 4, DECEMBER 2019

of (32) if and only if

y = 1y∗, y∗ =
∑

i∈V (Pgi − Pdi)∑
i∈V Di

(34)

∇Hζ (ζ) = E+
(

In − D11�

1�D1

)
(Pg − Pd) (35)

where E+ = (E�E)−1E�. Moreover, the equilibrium, if it ex-
ists, is unique.

Proof: The proof is analogous to similar ones given in the
context of power networks [9], [10], [13], and is provided in the
Appendix. �

B. Dynamic Pricing Mechanism

Next, we seek for a dynamic feedback (pricing mechanism)
that steers the physical network to an asymptotically stable equi-
librium, while guaranteeing the convergence of the production
and the demand to the Cournot–Nash solution. In particular, we
are interested in regulating the production Pg to P�

g , the demand
Pd to P�

d , and attain the optimal price p� given by (28). Note
that setting the generation and production to constant vectors as
Pg = P�

g and Pd = P�
d is undesirable since it requires complete

information of the entire network and utility functions.
Recall that in the Cournot model, consumers are price takers,

meaning that they optimize their utility functions given a price.
Consistent with (26b), we consider the demand as

Pdi(t) = Q−1
di (bdi − pi(t)) (36)

where pi(t) can be interpreted as a momentary or estimated price
for the ith consumer at time t. In vector form, this is written as
Pd = Q−1

d (bd − p(t)), with p(t) = col(pi(t)).
Next, looking at the expression of y∗ in Lemma 6, we notice

that the deviation from the supply–demand matching condition
(4) is reflected on the steady-state value of the state variable y.
In fact, (4) holds if and only if y∗ = 0. This motivates the imple-
mentation of a negative feedback from y to Pg in the controller.
Moreover, in order to ensure optimality, we rely on a commu-
nication layer next to the physical network that appropriately
distributes, the information on the local price estimations pi

over the entire network. The topology of this communication
layer is modeled via an undirected connected graph Gc(V, Ec),
and the set of neighbors of the node i is denoted by N c

i . We
stress that the “physical” network (29) and the communication
network modeled by Gc are, in general, distinct, although they
share the same set of nodes.

Inspired by the aforementioned remarks, the following dis-
tributed controller (pricing mechanism) is proposed:

τi ṗi = −kiyi − Q−1
di yi −

∑
j∈N c

i

ρij (pi − pj ) (37a)

Pgi = ki(pi − bgi) (37b)

where τi > 0 is the time constant, ρij > 0 indicates the weight
of the communication at each link, and the constant parameter
ki > 0 will be specified later.

Remark 4: In this control, the agents only share their state
variable pi and not the parameters of the cost and utility func-

Fig. 1. Interconnection of the physical layer and the control/pricing
algorithm.

tions, which are sensitive information in a competitive market.
Rather than the distributed controllers (37), the literature on
aggregative games suggests a one-to-all controller, which col-
lects and processes a weighted average of the measurements
and sends back the producers a control signal [25]. Such a con-
troller could be an alternative to (37), which can be designed
and analyzed following the results of this paper and [13], but
this alternative is not investigated any further here.

Let T = diag(τi), K = diag(ki), and the weighted Laplacian
matrix of Gc be denoted by L. Then, the overall closed system
admits the following state-space representation:

ζ̇ = E�y (38a)

Mẏ = −Dy − E ∇Hζ (ζ)

+ K(p − bg ) − Q−1
d (bd − p) (38b)

T ṗ = −Lp − Ky − Q−1
d y. (38c)

For an illustration of the interconnection of the control/pricing
algorithm and the physical layer, see Fig. 1.

The result in the following characterizes the static properties
of the closed-loop system (38).

Lemma 7: The point (ζ, y, p) is an equilibrium of (38) if
and only if y = 0

p = 1nq, q =
1�Kbg + 1�Q−1

d bd

1�K1 + 1�Q−1
d 1

(39)

and ζ satisfies

∇Hζ (ζ) = E+(Pg − Pd) (40)

with

Pg = K(p − bg ), P d = Q−1
d (bd − p).

The equilibrium, if it exists, is unique. Moreover, if K =
(α∗In +Qg )−1 , then (Pg , P d, p) = (P�

g , P �
d , p�) given by (28).

Proof: See the Appendix. �
Remark 5: In case of linear dynamics, namely, 2Hζ (ζ) =

ζ�Rζ WR�
ζ ζ, W > 0, the vector ζ is explicitly obtained as

ζ = (Rζ WR�
ζ )−1E+(Pg − Pd).

Lemma 7 imposes the following assumption.
Assumption 3: There exists ζ ∈ Rn−1 such that (40) is

satisfied.
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Remark 6: As evident from (35), the condition in Assump-
tion 3 is a consequence of the agents’ dynamics (29), rather
than the choice of the controller. In case the graph G is a tree,
the incidence matrix has full-column rank and Assumption 3 is
always satisfied with

ζ = R −�
ζ ∇H−1((R�R)−1R�(Pg − Pd)

)
where ∇H(∇H−1(x)) = x, ∀x ∈ Rm .

The next theorem provides the main result of this section,
which validates the proposed feedback algorithm.

Theorem 2: Let Assumption 3 hold. Then, the equilibrium
(ζ, y, p) of (38) is asymptotically stable. Moreover, for K =
(α∗In + Qg )−1 , the vector (Pg , Pd, p), with Pg defined as in
(37b) and Pd as in (36), asymptotically converges to the optimal
Cournot–Nash solution (P�

g , P �
d , p�), the latter given by (28).

Proof: See the Appendix. �
The above-mentioned result shows that generation, demand,

and price converge to the Cournot–Nash solution asymptoti-
cally, implying that demand and supply balance can be violated
during the transient. Since the demand is not precisely known,
it cannot be compensated by the generation in real time and in-
stead some time is required for the integral action to provide the
right amount of generation. In practice, for instance, in power
networks (see, e.g., [6] and the references therein for consid-
erations about primary control), imbalance of the network over
short periods of time is a widely accepted event. In the current
setting, the transient behavior of system (38) and the magnitude
of the momentary power imbalance can be partially regulated
by tuning the parameters of the proposed feedback control algo-
rithm (37); however, providing analytical measures is difficult.

Remark 7: By Theorem 2, the controller (37) with ki =
(α∗ + Qgi)−1 steers the network to the Cournot–Nash optimal
solution. Note that with the exception of the parameter α∗, the
ith controller uses only the local variables at node i together
with the communicated variables pi − pj of the neighboring
nodes in the communication graph. If the parameter α∗ is not
precisely known, then ki is set to (α̂∗

i + Qgi)−1 , where α̂∗
i is an

approximation of α∗ at node i. This approximation will shift the
equilibrium of the closed-loop system away from the one associ-
ated with the Cournot–Nash solution. However, by Theorem 2,
asymptotic stability will not be jeopardized, local price variables
will synchronize, and the vector (Pg , Pd, p) will converge to the
point (Pg , P d, p) given in Lemma 7. The investigation of how
far the equilibrium is from the Cournot–Nash equilibrium in the
presence of uncertainty on α∗ is left for future research.

Remark 8: When α∗ is not precisely known, another pos-
sibility is to estimate the parameter offline, as utility functions
are not frequently changing. To this end, one can implement a
distributed algorithm such as

χ̇ij = α̂i − α̂j , {i, j} ∈ Ec (41a)

˙̂αi =
1
n
− Q−1

di α̂i −
∑
j∈N c

i

κijχij , i ∈ V (41b)

which requires local parameter Qdi , communicated variables
χij , and assumes that each controller is aware of the total num-
ber of participating agents, namely, n. It is easy to see that α̂

TABLE I
SIMULATION PARAMETERS

asymptotically converges to α∗ = (1�Q−1
d 1)−1 . While it is dif-

ficult to provide analytical guarantees for the online use of this
estimator in the controller (37), our numerical investigation in
Section IV validates the stability and performance of such a
scheme [see (43)].

Remark 9: While one can suggest heuristic modifications
in the proposed controller to incorporate more general cost and
utility functions, providing analytical guarantees on the stability
of the overall closed-loop systems turns out to be a very difficult
problem. Due to the very same challenge, the cost functions in
[9], [10], and [12] in the context of optimal distributed integral
control of networks have been restricted to quadratic or linear-
quadratic functions.

IV. CASE STUDY

We illustrate the proposed pricing mechanism on a specific
example of a network with producers and consumers, namely,
a four-area power network [10]; see [33] on how a four-area
network equivalent can be obtained for the IEEE New Eng-
land 39-bus system or the South Eastern Australian 59-bus. The
power network model we consider here is given by the so-called
swing equation [31], and is mathematically equivalent to the
dynamics in (32), under the assumption that voltages are con-
stant and the frequency dynamics is decoupled from the reactive
power flow. In this case, ζ is the vector of phase angles measured
with respect to the phase angle of a reference bus (area 4), y is
the vector of frequency deviations from the nominal frequency
(50/60 Hz), and the diagonal matrices M and D collect the
inertia and damping constants. The vectors Pg and Pd denote
the vector of generation and demand as before. The numerical
values of the system parameters are provided in Table I. The
physical and communication graphs, namely, G and Gc , are de-
picted in Fig. 2, where the solid and dotted edges denote the
transmission lines and communication links, respectively.

For each {i, j} ∈ E , the (locally convex) function Hij in
(29) is given by −|Bij |ViVj cos(xi − xj ), where Bij < 0 is the
susceptance of the line {i, j}, and Vi and xi are the voltage
magnitude and voltage phase angle at the ith area (bus). In (32),
this yields the expression

∇Hζ = Rζ W sin(R�
ζ ξ)

where W = diag(wk ), with wk := BijViVj , k ∼ {i, j}, and
sin(·) is interpreted elementwise.
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Fig. 2. Solid lines denote the transmission lines, and the dashed lines
depict the communication links. The edge weights indicate the suscep-
tance of the transmission lines.

Fig. 3. Numerical simulation of the closed-loop system (38).

We consider linear-quadratic cost and utility functions given
by (11) and (12), with the parameters provided in Table I.

We consider the distributed controller in (37), and we set
ρij = 1, for each {i, j} ∈ Ec . The closed-loop system (38) is
initially at steady state. At time t = 5 s, we modify the utility
functions by increasing bd by 25%, which results in a step in
the demand. The response of the closed-loop system to this
change is shown in Fig. 3, where the values are in per unit
with respect to a base power of 1000 MVA. As can be seen
in the figure, at steady state, the frequency is regulated to its
nominal value, which indicates that the matching condition (4)

Fig. 4. Numerical simulation of the closed-loop system (43).

is satisfied. The local prices converge to the same value, which
identifies the market clearing price p� . As desired, the triple
(Pg , Pd, p) converges to the Cournot–Nash optimal solution

P�
g =

⎡
⎢⎢⎢⎢⎣

2.05

0.77

0.96

0.34

⎤
⎥⎥⎥⎥⎦, P �

d =

⎡
⎢⎢⎢⎢⎣

1.67

0.56

1.04

0.83

⎤
⎥⎥⎥⎥⎦, p� = 4.99. (42)

Next, we consider the case where the parameter α∗ is unknown
and is identified in real time by the estimator (41). This results
in the closed-loop dynamics

ζ̇ = E�y (43a)

Mẏ = −Dy − E ∇Hζ (ζ)

+ (α̂In + Qg )−1(p − bg ) − Q−1
d (bd − p) (43b)

T ṗ = −Lp − (α̂In + Qg )−1y − Q−1
d y (43c)

χ̇ = R�
c α̂ (43d)

˙̂α =
1
n
1− Q−1

d α̂ − Rcχ (43e)

where Rc denotes the incidence matrix of the communication
graph, and we have set κij = 1 for simplicity. The system is
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initially at steady state. At time t = 5 s, we modify as before the
utility functions by increasing bd by 25%. At the same time, we
decrease the elements of Qd by 20%, which modifies the actual
value of α according to (16). For a better comparison to the
system without the estimator, the initial value of Qd is chosen
such that its new value will be equal to the one provided in
Table I. The response of the closed-loop system (43) is illustrated
in Fig. 4. As can be seen from the figure, frequency is regulated
to its nominal value and the triple (Pg , Pd, p) converges again
to the one given by (42). This means that the controller (37)
equipped with the estimator (41) is able to steer the network
to the Cournot–Nash optimal solution. Note that compared to
Fig. 3, the transient performance is only slightly degraded.

V. CONCLUSION

We have proposed a distributed feedback algorithm that steers
a dynamical network to a prescribed equilibrium corresponding
to the so-called Cournot–Nash equilibrium. We characterized
this equilibrium for linear-quadratic utility and cost functions,
and specified the algebraic conditions under which the produc-
tion and the demand are strictly positive for all agents. For a
class of passive nonlinear second-order systems, where pro-
duction and demands act as external inputs to the systems, we
propose a control algorithm (pricing mechanism) that guaran-
tees the convergence of the closed-loop system to the optimal
equilibrium point associated with the previously characterized
Cournot–Nash equilibrium. Considering a different type of com-
petition such as Bertrand and Stackelberg games as well as a
thorough comparison of the equilibrium points resulting from
competitive games against those obtained from a social welfare
problem is of interest for future research. The Cournot game be-
longs to the class of aggregative games [25]. Using the passivity
property of projected pseudogradient algorithms highlighted in
[34] and game equilibrium seeking integral control for aggrega-
tive games [35], one could consider the feedback interconnec-
tion of the network dynamics with projected dynamical systems
[36], possibly enabling the extension of the results in this paper
to a more general case.

APPENDIX

Proof of Lemma 2: In view of Assumption 2, the functions
πj (λ) in (2) are continuous with a range equal to the whole
R≥0 . Each function πj (λ) is strictly decreasing on the interval
(−∞, U ′

j (0)] and identically zero on the interval [U ′
j (0),+∞).

Define the function π(λ):=
∑

j∈J πj (λ). This is a continuous
function with a range equal to the whole R≥0 . Moreover, it is
strictly decreasing on (−∞,maxj U ′

j (0)] and identically zero
on the interval [maxj U ′

j (0),+∞). Let q := π(λ). Then, the
function π can be inverted, on the interval where q ∈ R>0 , to
obtain λ = π−1(q). Now we define u : R≥0 → R as

u(q) =

{
π−1(q) if q > 0

π−1(0+) if q = 0
(44)

where limq→0+ π−1(q) =: π−1(0+). By construction, u is a
continuous function, which is strictly decreasing and satisfies

the properties i)–iii) of the statement. Moreover, by substitut-
ing q = 1�Pg in (44), using (2) together with the balancing
condition (4), and noting the monotonicity of u, we obtain
equality (5). �

Proof of Lemma 3: From Corollary 1, it follows that the
first two statements are equivalent, and they imply the third
statement. It remains to show that 3)⇒ 2). Now, suppose that
the third statement holds. From Pd = Q−1

d (b − 1p), using again
Corollary 1, we obtain that p ≤ bdj for all j ∈ J . The condition
p 
= bd yields p < bd . �

Proof of Lemma 5: 1)⇒ 2) Suppose that the first statement
holds. Then, by Lemma 4, we have

Pg = (2αI + Qg )−1(β1− bg + α(I − 11�)Pg ). (45)

This is equivalent to αPg + α11�Pg + QgPg = β1− bg , and
to Pg = (α(I + 11�) + Qg )−1(β1− bg ). Hence, (20) is ob-
tained. This also shows the uniqueness of the solution. Now, note
that (α(I + 11�) + Qg )Pg = β1− bg , which is equivalent to
(αI + Qg )Pg = 1(β − α1�Pg ) − bg . Elementwise, this can
be written as (α + Qgi)Pgi = β − α1�Pg − bgi . Since Pgi > 0
for all i, we obtain that β − α1�Pg > bg .

2)⇒ 3) Next, suppose that the second statement of the lemma
holds. Then, using the same chain of equivalences as above,
we obtain (45). Therefore, by Lemma 4, we must have that
γi(P−gi)>0 for all i ∈ I. Without loss of generality, assume that
bg1 = bg . Suppose by contradiction that γ1(P−g1) ≤ 0. Then,
we have Pg1 = 0 and, thus, β − bg − α1�Pg = 0. This contra-
dicts the inequality in the second statement of the lemma, which
completes this part of the proof.

3)⇒ 1) Now, let the third statement hold, and set

P̂g := (α(I + 11�) + Qg )−1(β1− bg ), P̂g ∈ Rn
>0 . (46)

Again, the vector P̂g can be written in analogy to (45)
as P̂gi = (2α + Qgi)−1(β − bgi − α1�P̂−gi) for every com-
ponent i ∈ I. For every i ∈ I, since P̂gi > 0, then (2α +
Qgi)−1(β − bgi − α1�P̂−gi) > 0, which is equivalent to say
that γi(P̂−gi) > 0. Hence, the vector P̂g satisfies (19), and is
therefore a solution to (18), belonging to the interior of the
positive orthant.

3)⇔ 4) To complete the proof of the lemma, it suffices to
show that the last two statements of the lemma are equivalent,
namely

P̂g ∈ Rn
>0 ⇔ 1�(α(I + 11�) + Qg )−1(β1− bg ) ≤ β − bg

α

where P̂g is given by (46). From (46), we have (α(I + 11�) +
Qg )P̂g = β1− bg , which is equivalent to (αI + Qg )P̂g =
1(β − α1�P̂g ) − bg . Elementwise, this can be written as
(α + Qgi)P̂gi = β − α1�P̂g − bgi . Therefore, P̂gi > 0 if and
only if β − α1�P̂g > bg . By replacing P̂g with (α(I + 11�) +
Qg )−1(β1− bg ), we see that the latter inequality is equivalent
to (21). �
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Proof of Lemma 6: Suppose that (ζ, y) is an equilibrium
of (32). Then

0 = E�y (47a)

0 = −Dy − E ∇Hζ (ζ) + Pg − Pd. (47b)

Hence, we find that y = 1n ŷ for some ŷ ∈ R, and

0 = −D1ŷ − E ∇Hζ (ζ) + Pg − Pd. (48)

By multiplying both sides of the equality above from the left
by 1�, we find ŷ = y∗, where the latter is given by (34). By
replacing the expression of y∗ back to equality (48), and noting
that E has full-column rank, equality (35) is obtained.

Conversely, assume that a point (ζ, y) satisfies (34) and (35).
Clearly, E�y = 0. Moreover, note that(

In − D11�

1�D1

)
(Pg − Pd) ∈ (im1n )⊥ = im E.

Hence, multiplying both sides of (35) from the left-hand side by
E gives

E∇Hζ (ζ) =
(

In − D11�

1�D1

)
(Pg − Pd).

By the definition of y in (34), the equality above can be written
as (47b) and, therefore, (ζ, y) is an equilibrium of (32). For
uniqueness of the equilibrium, it suffices to show that

∇Hζ (ζ) = ∇Hζ (ζ̃) for some ζ, ζ̃ ∈ Rn−1 =⇒ ζ = ζ̃.

The equality ∇Hζ (ζ) −∇Hζ (ζ̃) = 0 is equivalent to

Rζ∇H(R�
ζ ζ) − Rζ∇H(R�

ζ ζ̃) = 0.

Multiplying both sides of the equality above from the left-hand
side by (ζ − ζ̃)� returns

(R�
ζ ζ − R�

ζ ζ̃)�(∇H(R�
ζ ζ) −∇H(R�

ζ ζ̃)) = 0.

By strict convexity of H , we find that R�
ζ ζ = R�

ζ ζ̃. The fact

that Rζ has full-row rank yields ζ = ζ̃. �
Proof of Lemma 7: Suppose that (ζ, y, p) is an equilibrium

of (38). Then

0 = E�y (49a)

0 = −Dy − E ∇Hζ (ζ)

+ K(p − bg ) − Q−1
d (bd − p) (49b)

0 = −Lp − Ky − Q−1
d y. (49c)

By the first equality, we have y = 1y∗ for some y∗ ∈ R.
Substituting this into (49c), and multiplying both sides of (49c)
from the left-hand side by 1�, we obtain that y∗ = 0. Hence,
(49c) results in p = 1q for some q ∈ R. The fact that q is given
by (39) and that (40) holds, suitable algebraic manipulations
follow analogous to the proof of Lemma 6. The converse result
as well as uniqueness of the equilibrium also follows analogous
to Lemma 6.

By (39), we have

(1 + α∗1�K1)q = β∗ + α∗1�Kbg

where α∗ and β∗ are given by (16). The equality above can be
written as q = β∗ − α∗1�K(1q − bg ), which yields

q = β∗ − α∗1�Pg . (50)

Equivalently, we have

K−1K(1q − bg ) + bg = 1β∗ − α∗11�Pg

and hence

(α∗11� + K−1)Pg = 1β∗ − bg .

By setting K = (α∗In + Qg )−1 , the equality above returns
Pg = P�

g , with P�
g given by (23a). Then, by comparing (50)

to (23c), we find that q = p� . Finally

Pd = Q−1
d (bd − 1q) = Q−1

d (bd − 1β∗ + α∗11�P�
g ) = P�

d

where the second equality follows from (50), and the last one
from (23b). �

Proof of Theorem 2: The proof is based on the interconnec-
tion of shifted passive systems in Fig. 1, with the interconnec-
tion ports (u, y), u = Pg − Pd . To prove asymptotic stability,
we consider the Lyapunov function candidate (see also [10],
[13], and [37, Ch. 6.5])

V =
1
2
(y − y)�M(y − y) +

1
2
(p − p)�T (p − p) + H(ζ)

where H takes the form of the Bregman distance between ζ, ζ
associated with the distance-generating function H(ζ) and the
point ζ, namely

H(ζ) = H(ζ) − H(ζ) − (ζ − ζ)�
∂H

∂ζ

∣∣∣∣
ζ

.

Since H is strictly convex, the Bregman distance H is non-
negative and is equal to zero whenever ζ = ζ. Then, clearly the
function V has a strict minimum at (ζ, y, p). Computing the
time derivative of V along the solutions of (38) yields

V̇ = −(y − y)�D(y − y) − (p − p)�L(p − p)

where we have used (49) together with the fact that

∂H
∂ζ

=
∂H

∂ζ
− ∂H

∂ζ

∣∣∣∣
ζ

.

Since V is positive definite and V̇ is nonpositive, we con-
clude that the solutions of (38) are bounded. By invoking
LaSalle’s invariance principle, on the invariant set, we have
y = y, Lp = Lp. Noting that y = 0 and Lp = 0, we find that
each point on the invariant set is an equilibrium of (38). By
Lemma 7, the equilibrium is unique and, therefore, the invari-
ant set comprises only the equilibrium point (ζ, 0, p) given by
(39) and (40). By continuity, the vectors Pg and Pd asymp-
totically converge to Pg = K(p − bg ) and Pd = Q−1

d (bd − p),
respectively. For K = (α∗In + Qg )−1 , by Lemma 7, we have
(Pg , P d, p) = (P�

g , P �
d , p�). �
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