283 research outputs found

    Multitarget tracking with interacting population-based MCMC-PF

    Get PDF
    In this paper we address the problem of tracking multiple targets based on raw measurements by means of Particle filtering. This strategy leads to a high computational complexity as the number of targets increases, so that an efficient implementation of the tracker is necessary. We propose a new multitarget Particle Filter (PF) that solves such challenging problem. We call our filter Interacting Population-based MCMC-PF (IP-MCMC-PF) since our approach is based on parallel usage of multiple population-based Metropolis-Hastings (M-H) samplers. Furthermore, to improve the chains mixing properties, we exploit genetic alike moves performing interaction between the Markov Chain Monte Carlo (MCMC) chains. Simulation analyses verify a dramatic reduction in terms of computational time for a given track accuracy, and an increased robustness w.r.t. conventional MCMC based PF

    Robust and Efficient Inference of Scene and Object Motion in Multi-Camera Systems

    Get PDF
    Multi-camera systems have the ability to overcome some of the fundamental limitations of single camera based systems. Having multiple view points of a scene goes a long way in limiting the influence of field of view, occlusion, blur and poor resolution of an individual camera. This dissertation addresses robust and efficient inference of object motion and scene in multi-camera and multi-sensor systems. The first part of the dissertation discusses the role of constraints introduced by projective imaging towards robust inference of multi-camera/sensor based object motion. We discuss the role of the homography and epipolar constraints for fusing object motion perceived by individual cameras. For planar scenes, the homography constraints provide a natural mechanism for data association. For scenes that are not planar, the epipolar constraint provides a weaker multi-view relationship. We use the epipolar constraint for tracking in multi-camera and multi-sensor networks. In particular, we show that the epipolar constraint reduces the dimensionality of the state space of the problem by introducing a ``shared'' state space for the joint tracking problem. This allows for robust tracking even when one of the sensors fail due to poor SNR or occlusion. The second part of the dissertation deals with challenges in the computational aspects of tracking algorithms that are common to such systems. Much of the inference in the multi-camera and multi-sensor networks deal with complex non-linear models corrupted with non-Gaussian noise. Particle filters provide approximate Bayesian inference in such settings. We analyze the computational drawbacks of traditional particle filtering algorithms, and present a method for implementing the particle filter using the Independent Metropolis Hastings sampler, that is highly amenable to pipelined implementations and parallelization. We analyze the implementations of the proposed algorithm, and in particular concentrate on implementations that have minimum processing times. The last part of the dissertation deals with the efficient sensing paradigm of compressing sensing (CS) applied to signals in imaging, such as natural images and reflectance fields. We propose a hybrid signal model on the assumption that most real-world signals exhibit subspace compressibility as well as sparse representations. We show that several real-world visual signals such as images, reflectance fields, videos etc., are better approximated by this hybrid of two models. We derive optimal hybrid linear projections of the signal and show that theoretical guarantees and algorithms designed for CS can be easily extended to hybrid subspace-compressive sensing. Such methods reduce the amount of information sensed by a camera, and help in reducing the so called data deluge problem in large multi-camera systems

    A track-before-detect labelled multi-Bernoulli particle filter with label switching

    Full text link
    This paper presents a multitarget tracking particle filter (PF) for general track-before-detect measurement models. The PF is presented in the random finite set framework and uses a labelled multi-Bernoulli approximation. We also present a label switching improvement algorithm based on Markov chain Monte Carlo that is expected to increase filter performance if targets get in close proximity for a sufficiently long time. The PF is tested in two challenging numerical examples.Comment: Accepted for publication in IEEE Transactions on Aerospace and Electronic System

    Acoustic multi target tracking using direction-of-arrival batches

    Get PDF
    In this paper, we propose a particle filter acoustic direction-of-arrival (DOA) tracker to track multiple maneuvering targets using a state space approach. The particle filter determines its state vector using a batch of DOA estimates. The filter likelihood treats the observations as an image, using template models derived from the state update equation, and also incorporates the possibility of missing data as well as spurious DOA observations. The particle filter handles multiple targets, using a partitioned state-vector approach. The particle filter solution is compared with three other methods: the extended Kalman filter, Laplacian filter, and another particle filter that uses the acoustic microphone outputs directly. We discuss the advantages and disadvantages of these methods for our problem. In addition, we also demonstrate an autonomous system for multiple target DOA tracking with automatic target initialization and deletion. The initialization system uses a track-before-detect approach and employs the matching pursuit idea to initialize multiple targets. Computer simulations are presented to show the performances of the algorithms

    Random finite sets in multi-target tracking - efficient sequential MCMC implementation

    Get PDF
    Over the last few decades multi-target tracking (MTT) has proved to be a challenging and attractive research topic. MTT applications span a wide variety of disciplines, including robotics, radar/sonar surveillance, computer vision and biomedical research. The primary focus of this dissertation is to develop an effective and efficient multi-target tracking algorithm dealing with an unknown and time-varying number of targets. The emerging and promising Random Finite Set (RFS) framework provides a rigorous foundation for optimal Bayes multi-target tracking. In contrast to traditional approaches, the collection of individual targets is treated as a set-valued state. The intent of this dissertation is two-fold; first to assert that the RFS framework not only is a natural, elegant and rigorous foundation, but also leads to practical, efficient and reliable algorithms for Bayesian multi-target tracking, and second to provide several novel RFS based tracking algorithms suitable for the specific Track-Before-Detect (TBD) surveillance application. One main contribution of this dissertation is a rigorous derivation and practical implementation of a novel algorithm well suited to deal with multi-target tracking problems for a given cardinality. The proposed Interacting Population-based MCMC-PF algorithm makes use of several Metropolis-Hastings samplers running in parallel, which interact through genetic variation. Another key contribution concerns the design and implementation of two novel algorithms to handle a varying number of targets. The first approach exploits Reversible Jumps. The second approach is built upon the concepts of labeled RFSs and multiple cardinality hypotheses. The performance of the proposed algorithms is also demonstrated in practical scenarios, and shown to significantly outperform conventional multi-target PF in terms of track accuracy and consistency. The final contribution seeks to exploit external information to increase the performance of the surveillance system. In multi-target scenarios, kinematic constraints from the interaction of targets with their environment or other targets can restrict target motion. Such motion constraint information is integrated by using a fixed-lag smoothing procedure, named Knowledge-Based Fixed-Lag Smoother (KB-Smoother). The proposed combination IP-MCMC-PF/KB-Smoother yields enhanced tracking

    Bayesian-based techniques for tracking multiple humans in an enclosed environment

    Get PDF
    This thesis deals with the problem of online visual tracking of multiple humans in an enclosed environment. The focus is to develop techniques to deal with the challenges of varying number of targets, inter-target occlusions and interactions when every target gives rise to multiple measurements (pixels) in every video frame. This thesis contains three different contributions to the research in multi-target tracking. Firstly, a multiple target tracking algorithm is proposed which focuses on mitigating the inter-target occlusion problem during complex interactions. This is achieved with the help of a particle filter, multiple video cues and a new interaction model. A Markov chain Monte Carlo particle filter (MCMC-PF) is used along with a new interaction model which helps in modeling interactions of multiple targets. This helps to overcome tracking failures due to occlusions. A new weighted Markov chain Monte Carlo (WMCMC) sampling technique is also proposed which assists in achieving a reduced tracking error. Although effective, to accommodate multiple measurements (pixels) produced by every target, this technique aggregates measurements into features which results in information loss. In the second contribution, a novel variational Bayesian clustering-based multi-target tracking framework is proposed which can associate multiple measurements to every target without aggregating them into features. It copes with complex inter-target occlusions by maintaining the identity of targets during their close physical interactions and handles efficiently a time-varying number of targets. The proposed multi-target tracking framework consists of background subtraction, clustering, data association and particle filtering. A variational Bayesian clustering technique groups the extracted foreground measurements while an improved feature based joint probabilistic data association filter (JPDAF) is developed to associate clusters of measurements to every target. The data association information is used within the particle filter to track multiple targets. The clustering results are further utilised to estimate the number of targets. The proposed technique improves the tracking accuracy. However, the proposed features based JPDAF technique results in an exponential growth of computational complexity of the overall framework with increase in number of targets. In the final work, a novel data association technique for multi-target tracking is proposed which more efficiently assigns multiple measurements to every target, with a reduced computational complexity. A belief propagation (BP) based cluster to target association method is proposed which exploits the inter-cluster dependency information. Both location and features of clusters are used to re-identify the targets when they emerge from occlusions. The proposed techniques are evaluated on benchmark data sets and their performance is compared with state-of-the-art techniques by using, quantitative and global performance measures
    corecore