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Abstract—In this paper we address the problem of tracking
multiple targets based on raw measurements by means of
Particle filtering. This strategy leads to a high computational
complexity as the number of targets increases, so that an efficient
implementation of the tracker is necessary.

We propose a new multitarget Particle Filter (PF) that
solves such challenging problem. We call our filter Interact-
ing Population-based MCMC-PF (IP-MCMC-PF) since our ap-
proach is based on parallel usage of multiple population-based
Metropolis-Hastings (M-H) samplers. Furthermore, to improve
the chains mixing properties, we exploit genetic alike moves
performing interaction between the Markov Chain Monte Carlo
(MCMC) chains.

Simulation analyses verify a dramatic reduction in terms of
computational time for a given track accuracy, and an increased
robustness w.r.t. conventional MCMC based PF.

I. INTRODUCTION

Multitarget tracking is a well-known problem which consists
of sequentially estimating the states of several targets from
noisy data. It arises in many applications, e.g. radar based
tracking of aircraft. Bayesian methods provide a rigorous
general framework for dynamic state estimation problems. The
Bayesian recursions update the posterior probability density
function (pdf) of the state based on all available information,
including the set of received measurements. The application
of the Bayesian sequential estimation framework to multitarget
tracking problems is plagued by two difficulties. First, the state
and observation models are often non-linear and non-Gaussian,
so that no closed-form analytic expression can be obtained for
the tracking recursions. The second difficulty is due to the
fact that in most practical tracking applications the sensors
yield unlabeled measurements of the targets. This leads to a
challenging data association problem.

The multitarget tracking problem has been traditionally
addressed with techniques such as multiple hypothesis tracking
(MHT) and joint probabilistic data association (JPDA), which
require plot measurements (detection) and a measurement-
to-track association procedure [1]. Solutions using a Particle
Filter (PF) have been proposed in the past ten years [2]-[4].
These so-called Track-Before-Detect (TBD) approaches define
a model for the raw measurements in terms of a multi-target
state hypothesis, thus avoiding an explicit data association
step. Furthermore, as opposed to the conventional thresholded
measurement procedure, these strategies allow the tracker to
perform well in the low Signal-to-Noise Ratio (SNR) regime.
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Particle filtering is a Sequential Monte Carlo (SMC)
simulation-based method of approximately solving the Bayes
prediction and update equations recursively using a stochastic
samples (particles) cloud [5]. The Sampling Importance Re-
sampling (SIR) Multitarget PF, that recursively estimates the
joint multitarget probability density (JMPD), has demonstrated
its ability to successfully perform nonlinear and non-Gaussian
tracking and to enable more accurate modeling of the target
correlations. While the SIR PF is fairly easy to implement and
tune, its main drawbacks are the computational complexity
which increases rapidly with the state dimensions and the loss
of diversity among the particles due to resampling. To mitigate
the former problem an adaptive sampling strategy, called the
Adaptive Proposal (AP) method [3], has been suggested. This
strategy proposes to construct particle proposals at the partition
level, incorporating the measurements so as to bias the pro-
posal towards the optimal importance density. The AP method
automatically factors the JMPD when targets are behaving
independently [6], while attempt to handle the permutation
symmetry and correlations that arise when targets are coupled
[3]. The latter problem can effectively be addressed by using
Particle MCMC (PMCMC) methods [7], [8], e.g. the Particle
Marginal Metropolis-Hastings (PMMH) algorithm.

In recent years there has been an increasing interest towards
Markov Chain Monte Carlo (MCMC) methods to simulate
complex, nonstandard multivariate distributions. There are
two basic MCMC techniques: the Gibbs sampler [9], [10],
and the Metropolis-Hastings (M-H) [11], [12] algorithm. The
former method is based on sampling from the collection of
full conditional distributions, while the latter approach is a
generalization that can be used when the full conditionals
cannot be written in a closed form.

Recently, the research done on Markov chains and Hidden
Markov Models has led the definition of the M-H algorithm
through the notion of reversibility [13], and allowed for
the derivation of convergence results for Sequential MCMC
methods, e.g. the PMCMC. Although these methods are very
reliable, the computational expense of PMCMC algorithms for
complex models remains a limiting factor. Furthermore, the
mixing of the resulting MCMC kernels can be quite sensitive,
both to the number of particles and the measurement space
dimension.



In this paper we focus on issues arising in the imple-
mentation of multitarget Bayesian filtering. Thus, we pro-
pose an alternative algorithm, which fully exploits the speed
and the parallelism of modern computing architectures and
resources. We introduce a new M-H based PF in which
several MCMC chains will be running in parallel, this way
generating population-based samples to approximate the target
distribution. Furthermore, to improve the mixing properties of
the resulting MCMC kernel, the diversity of each population
is increased by means of an interaction procedure [14]. Note
that we will assume throughout this paper that the number of
targets M is known and constant over time.

The paper is organized as follows: in section II we review
the Bayesian Filtering problem; section III briefly reviews the
basics of particle filtering and MCMC methods for sampling.
Section IV reports the main part of our work. Here we
introduce our new algorithm, which we called Interacting
Population-based MCMC-PF (IP-MCMC-PF), discuss the im-
provements attainable by using a fully parallelizable PF, and
give theoretical justifications for our approach. In section V the
system dynamics and measurement model are introduced for
the specific TBD surveillance application. Section VI collects
our simulations results. Finally, we report our conclusions and
direction for future research in section VII.

II. BAYESIAN FILTERING PROBLEM

In this section, we briefly describe the Bayesian Filtering
problem. Let us consider the following dynamical system:

D
2

where x; € R"™ denotes the state vector, z € R"= the
system measurement, Vi ~ Dy, (v) the process noise, and
Wi ~ Dw, (W) the measurement noise.

Furthermore, let Z;, 2 {z,...,z.} be the sequence of
measurements collected up to time k. The measurement zy
is assumed to be independent from the past states, i.e.,

= fr(xx, Vi),
= hi(xx) + Wy,

Xk+1
Zj

P(2k|Zk—1,- - B1, Xk, X1, - - -, X0) = P(zp[xK), (3)

where p(z|xy) denotes the likelihood function.

Given a realization of Zj, Bayesian filtering boils down
to finding an approximation of the posterior pdf p(xy|Zg).
In particular, the marginal filtering distribution p(xy|Zy) is
obtained at time k£ by means of a two-step recursion:

(1) the Prediction Step, which is solved using the Chapman-
Kolmogorov equation, i.e.,

p(%k|Zk—1) = / P(xslXk_1) POXk1| Tk 1)1 (4)
where, p(xx|Zj_1) is the predictive density at time k;
(2) the Update Step, which is solved using Bayes theorem, i.e.,
(zx|xx) p(xk|Zk—1)
p(zk|Zg—1)

where p(z|Z_1) is the Bayes normalization constant (evi-
dence). Thus, the filtering pdf is completely specified given

p(xi|Zy) = 2

®)
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some prior p(xg), a transition kernel p(xy|x;—1) and a like-
lihood p(zg|xk).

Given the a posteriori pdf p(x|Zy), some averaged statis-
tics of interest can be calculated, e.g. the mean-squared error
(MSE), i.c.,

Bl — P12 = [ e~ ol 2
which can be used to derive the minimum variance estimator,

£ /Xk P(Xk|Zy)dx,.

III. FUNDAMENTALS

XMV

(6)

In this section we recall the basics of Markov Chain
Monte Carlo, Particle Filtering and Particle MCMC methods,
necessary for clarifying the strengths of our method. In fact,
in section IV we propose an approach for state estimation that
combines the differing pros of both MCMC and PF based
signal processing. Specifically, subsection III-A is dedicated
to MCMC methods; subsection III-B reviews Particle Filtering
techniques; while subsection III-C is used to discuss related
work on Particle MCMC methods.

A. Basic of Markov Chain Monte Carlo process

Let X C RM be a compact set and suppose that 7(x) is
a probability distribution on such a high-dimensional space
X. Denote by B(X) the Borel o-field and by (X,B(X))
the associated measure space. Then, thanks to Markov chains
theory and Monte Carlo sampling, the following holds:

A Markov Chain Monte Carlo method for the simulation of
the distribution w is any method which generates an ergodic
Markov chain {x,(;)}izl on X, according to a kernel K(.,.)
defined on (X x B(X)), with 7 as stationary distribution.

Let us recall two basic concepts:

1) = is the stationary distribution of the Markov chain, i.e.,
for all A € B(X),

W(A)Z/XK(.T,A)W({L‘)dLU.

2) The Markov chain is ergodic, i.e. for any integrable
function ¢ : X — R

(7

V) = E,(g) = /X g(@)n(x)dr @)

with probability 1, V X,go) € X, where N is the number

of iterations of the MCMC algorithm.

The Metropolis-Hastings (M-H) algorithm [15] is a well
known procedure based on a Markovian process which ful-
fills the requirement of ergodicity [16]. The M-H algorithm
employs a conditional density ¢, also known as proposal
distribution, to generate a Markov chain with an invariant
distribution 7. At each MCMC iteration i, a move x’ ~
q(x'|x(=1) is proposed and accepted with a probability
0 < a(xt=Y x) < 1.



Notice that the initial burn-in samples are strongly influ-
enced by the initial configuration, so discarding them increases
the speed of convergence towards the stationary distribution.

Let us now consider a multitarget setting where X
[Xk,1,..., Xk, ) is the multitarget base state vector, with xy, ;
being the state vector of the j target at time k. Within the
Bayesian estimation framework, the target distribution 7 is
chosen as the approximate posterior distribution,

m(ox ) = oV 1Z) o plx ) p(Zalx ). ©)
The acceptance ratio is then given by:
/ 7. |x! (i—1) X!
plx') p(Zifx) a(xf " |X) 10

PV Pl ) )

A suitably designed proposal distribution is fundamental
to guarantee a well mixing Markov chain. The efficiency of
the M-H algorithm is strongly influenced by such choice. In
particular, this problem becomes central when dealing with
high dimensional and interdependent state vectors.

Such distributions should both be easy to sample from and
allow the Markov chain to explore all the high density regions
of X under 7 freely. However, the design of such efficient
proposal distributions might be problematic. Instead, local
strategies, focusing on some of the subcomponents of 7, (e g.

propose to move one target at each time, x/; ~ ¢(x) |X(l 1)))
are often used, to break up the original samphng problem
into simpler ones. Nevertheless, these can be prone to poor
performance, as local strategies inevitably ignore some of the
global features of 7.

In summary, Markov Chain Monte Carlo (MCMC) methods
are convenient and flexible, but they require to meet the
following conditions :

o A sufficiently long burn-in time to allow convergence.
« Enough simulation draws for a suitably accurate inference
for estimating the distribution 7.

Note however that the convergence of MCMC algorithms
strongly depends on whether the model actually fits the data
and, in particular, the quality of the proposal distribution.
Therefore convergence problems are often related to modeling
issues.

B. Basic of Particle Filtering

A Farticle Filter is known for its ability to tackle nonlinear
and non-Gaussian problems. The detailed PF algorithm, as
introduced in [17], is described below. At time step k& — 1,
the posterior pdf p(xg—_1|Zk—1) is approx1mated by a set of
particles {x,(cll}iv with associated weights {w 1- Each

,(f) , is passed through the system dynamlcs eq.( ) to

obtain {xk }z 1, the predicted particles at time step k. Once
the observation data zj is received, the importance weight
of each predicted particle can be evaluated according to the
weight equation reduces to:

)

particle x

= p(zi [}
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Then, after normalization of the weights, the a posteriori
density p(xy|Zy) at time step k can be approximated by the
empirical distribution as :

Xk|Zk (11)

Zw,(f) 0. () Xk
2(9)

where J_¢)(.) denotes the delta-Dirac mass located at X;.°.

See [18] for a proof and [19] for more detail and an overview
of convergence results.

Finally, a resampling step is used to prevent the variance
of the particle weights to increase over time. Although the
resampling step reduces the effects of the degeneracy problem,
it introduces other practical problems. First, it limits parallel
processing since all particles have to be combined. Second,
by resampling the posterior distribution, the heavily weighted
particles are statistically selected several times. This leads to a
loss of diversity among the particles, the sample impoverish-
ment problem. In the extreme case, all the particles collapse to
the same location. The sample impoverishment leads to failure
in tracking since less diverse particles are used to represent the
uncertain dynamics of the moving object. Both problems can
effectively be handled by using a MCMC method implemented
by e.g. the M-H algorithm.

C. Particle Markov chain Monte Carlo (PMCMC)

Several algorithms combining MCMC and SMC approaches
have already been proposed in the literature [7], [20], [21].
Recently, Andrieu, Doucet and Holenstein [8] introduced a
general framework, known as Particle MCMC (PMCMC),
which uses a PF to construct proposal kernels for an MCMC
sampler. PMCMC algorithms can be thought of as natural
approximations to standard and idealized MCMC algorithms
which cannot be implemented in practice. This framework
provides three powerful methods for joint Bayesian state and
parameter inference for nonlinear, non-Gaussian state-space
models. These methods are referred to as Particle Independent
Metropolis-Hastings (PIMH), Particle Marginal Metropolis-
Hastings (PMMH) and Particle Gibbs (PG). In particular, the
PMMH algorithm aims an exact approximation of a Marginal
Metropolis-Hastings (MMH) update. The implementation of
the PMMH scheme requires an SMC approximation targeting
p(X0:x|Zx, 0) and the filter estimate of the marginal likelihood
p(Z)0) with 0 € © some static parameter. Full details of the
PMMH scheme including a proof establishing that the method
leaves the full joint posterior density p(6,X¢.x|Zy) invariant
can be found in [8].

However, note that to obtain reasonable mixing of the
resulting MCMC kernels, it was reported in [8] that a fairly
high number of particles was required in the SMC scheme.
Since every iteration of the PMMH scheme requires a run of
a PF, a lot of computational resources are needed. In fact, if
a PF algorithm using [V,, particles is applied at each iteration,
then the computational complexity of the PMCMC algorithm
is O(N, M N), where N is the number of MCMC iterations
and M = dim(xy). In the following section we will propose



an alternative algorithm, which is much more robust to a low
number of particles, and well suited to deal with tracking
problems.

IV. INTERACTING POPULATION-BASED MCMC-PF

In this section, we will present the Interacting Population-
based MCMC-PF (IP-MCMC-PF) algorithm. We will give
theoretical justifications for our approach and discuss the
improvements attainable by using a fully parallelizable PF.

A. Justifications behind the IP-MCMC-PF algorithm

There are two basic ideas behind the proposed algorithm :

(1) Reliable statistical inferences for the target distribution
are required. For this purpose we run multiple MCMC sam-
pling chains each starting from different seeds, in parallel. A
single possibly time varying transition kernel is used for all
parallel chains. The only difference is the region of the space
explored by each chain. The simulations from the chains are
spread across various high probability regions of the target
distribution. After a sufficiently long burn-in period, each
chain reaches the stationary distribution. This means that, once
enough stationary simulations have been drawn, mixing all sets
of draws provides a good estimate of the target distribution.

(2) Rapid mixing within each MCMC chain is required. We
want to speed up the MCMC convergence rate for minimizing
the burn-in period. For that the history from all the chains is
used to adapt the kernel and therefore to guide any particular
population member in the exploration of the state space toward
regions of higher probability. Thus more global moves (than
independent MCMC chains) can be constructed. This ensures
the least correlation among a single particle’s history states
resulting in faster mixing within each MCMC chain.

Furthermore the proposed implementation resorts to within-
chain analysis to monitor stationarity and between/within
chains comparisons to monitor mixing. Combined, stationarity
and mixing lead to the convergence of the set of MCMC
chains.

B. IP-MCMC-PF algorithm and challenges of implementation

In the proposed IP-MCMC-PF algorithm, the posterior
distribution over target states at time k — 1 is represented by a
set of IV, particles {xgﬁl £V=171~ Each particle contains the joint
state of M artitions corresponding to the different targets. We
refer to xk 1,; as the states of the 4" partition of the particle
i at time step k — 1. The particle state vector is given by :

(@) (@) (@) ]

Xpl1 = {Xk L1 XM
Let us denote Nycyc the optimal number of MCMC chains
that can operate in parallel. The parameter Ny, depends on
firstly, the experiment setup (targets in track and modelling
complexity) and secondly, the system specification (parallel
processing potential, memory resources). At each time step
k, Ny particles are randomly selected from {x,(;ll fvz”l.
These particles are then propagated based on the dynamic
model eq.(1) to obtain the predicted random subset of particles
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{“(0)}]\/ MOMC - The predicted particles are then chosen as the
starting points in the MCMC sampling procedure.

The MCMC sampling procedure consists to run Nycye M
H samplers in parallel Each sampler s is initiated with the
configuration {y(0 00 } and is used to generate a set of
N samples from p(xy|Zy). At each MCMC iteration nyy,
a partition j of a random particle ¢ picked out of {x,(ﬁ1 f\;”l
is randomly selected. Given this partition x,(;zl’ ;» @ partition
move y’ is prognosed This move seeks to update the sin-
gle partition Xk via a Markov kernel that describes the
state dynamic eq( ). This move, also known as Mutation
(Genetic Algorithm see [22]), allows for local exploration of
the state space, as well as ensuring the required irreducibility

of the Markov chain. Then, given {yE”M'H*”;ég”M'H*”} the

previous configuration, a new configuration {yé”M-H);ZQ"M-H)}
is obtained by replacing the partition j by y’ and updating
the joint log-likelihood. This new configuration is proposed
and accepted as the next realization from the chain s with a
probability

(’ILMH 1) ~(nM H)

0 < min (1 a(ys Ve

)) < 1.

The acceptance ratio only depends on the likelihoods and is
given by :

ZgnM—H)

(nven)

a(yime—) gl (12)

)=
Note that such M-H move can be seen as an Exchange move
(Genetic Algorithm see [22]). It can be proven that information
exchange between MCMC chains targeting close distributions
does not effect convergence properties [16]. Furthermore, in
the proposed procedure, the MCMC sampling chains swap
information within the M-H samplers without effecting the
parallel processing. At the end of the procedure, the ini-
tial burn-in simulations, which are strongly influenced by
starting values, are discarded, while the remaining samples
{ygnmu)}B+N , are stored as new particles to summarize

nMu=B+1 .
the target distribution at time step k.

In the proposed algorithm, a validation test is performed to
check the convergence on the basis of Gelman and Rubir} [23]
diagnostic. The potential scale reduction factor (PSRF) R can
be used for such test. In fact, R, defined as

R—,/C/W, (13)
with C the empirical variance from all chains combined and
W, the mean of the empirical within-chain variances, provides
an ANOVA-like comparison of the within-chain and between-
chain variances, i.e.

« R = 1, then the MCMC chains have converged within
the burn-in period.

« R> 1, then all the MCMC chains have not fully mixed
and that further simulation might increase the precision
of inferences.



If the PSRF is close to 1, we can conclude that each of the
Nyewe sets of N simulated observations is close to the target
distribution. In the proposed algorithm the parallel chains are
considered well-mixed when R is less or equal than 1.1 (the
PSREF is estimated with uncertainty because our MCMC chain
lengths are finite).

Once the set of chains have reached approximate conver-
gence, the MCMC sampling chains outputs, i.e. the Nycyc
sets of simulations, mixed all together give the new set of
particles {x,(;)}fv:pl which approximates the target distribution
p(xk|Zy).

The proposed IP-MCMC-PF algorithm is summarized in
Algorithm 1. Then, a pseudo-code description of the MCMC
sampling procedure is given by Algorithm 2.

Algorithm 1: IP-MCMC-PF algorithm

input : {xgll}fipl and a new measurement, zj,.
output: {x\"} .

1 - Initialisation starting points: ‘
Select a random subset {ygo)}ﬂ"f"“c C {x,(jzl}ﬁi"l
while s <— 1 to N,,q,c do

Predict a new particle state at time k:

while j — 1 to M do

| I = A v
end
Compute the associated joint log-likelihood:

09 = log p(Z|5").

(1)
k—1,5°

end

Store the new states in a cache {y(o) o0 } Mwewe,

2 - MCMC sampling procedure:

Run Nycue Metropolis- Hastmgs samplers in parallel
(Algorlthm 2) to obtain {ys } where i =1,..., N and
s=1,..., Nuomc-

3 - Checkii}g convergence:

Compute R: (eq. 13).

if R > 1.1 then
Run the chains out longer to improve convergence to
the stationary distribution.

else
Mix all the NMCMC set of simulations together to

obtain {x % }

end

V. SYSTEM SETUP AND TBD PROBLEM FORMULATION

In this section, we will describe the system dynamic model
and the measurement model.
Let us denote by xj, ; the vector describing the state of the

§ target (j € {1, M}) at time step k written as:
Xkj = 8k k] (14)

where, s;, ; represents the position and velocity of the gth
target in Cartesian coordinates and pg ; is the unknown
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Algorithm 2: MCMC sampling procedure

input : A © }N MEMC

{yS ; initial configurations, IV,
required number of samples, B number of
burn-in samples.
output: {ygl)} where s =1,...,

with N := N, /Nyexc.

while s <— 1 to N, do

for n,, < 1to B+ N do

1 - Proposal of move:

Randomly select a partition x
(i) \Np

{ 1}1 15

Given xi 2 1,57

Nyemc and i =1,..., N

,(jl 1,; out of

(4)

draw y’ ffk(xk 1) Vel g

Propose 7. i) by y' — gime
Compute the joint lo -likelihood:

& = log p(Zy [y ).

2 - M-H acceptance:

Sample u ~ Ujp 1), U|p,1) a uniform distribution in
[0, 1];

Compute the M-H acceptance probability

a(@m gimey: eq. 12).

if v < min (1, «) then
‘ Accept move:

{ygnM—H); ggnM—H)} _ {ygnM—H); Z(gnM,H)},

else
Reject move:
{yganH);&(;nM,H)} _ {y:(;nM,Hfl);ggnM,Hfl)}.

end
end

Discard B initial burn-in samples, store the
~(B+1:B+N)
remaining samples ¥ {yg

z 1
end

modulus of the target complex amplitude. The state vectors
(Xk.j) jeq1,0ry can be concatenated into the multitarget state
vector Xg.

A. Dynamic model

To model the dynamics of the targets we adopt a nearly con-
stant velocity model to describe object position and velocity in
a Cartesian frame, see e.g. [4], and a random walk model for
object amplitude pi ;. The model uncertainty is handled by
the process noise vy, ;, which is assumed to be standard white
Gaussian noise with covariance GG. Under these assumptions,
the corresponding state-space model, for x;, ;, the state vector

associated to the j** target, is given by:
Xpt1,j = FXpj + Vi 4, (15)

where I’ represents a transition matrix with a constant sam-
pling time 7" such as:

F = diag(Fl,Fl,l),
1 T
where, [ { 0 1 } . (16)



and G, the covariance process noise, is given by:

G = diag(a,G1,ayG1,a,T),
R
where, G; = i 7{ , 17

2

where a, = a, and a, denote the level of process noise in
object motion and amplitude, respectively. This model cor-
rectly approximates small accelerations in the object motion
and fluctuations in the object amplitude.

B. Measurement model

At discrete instants k, the radar system positioned at the
Cartesian origin collects a noisy signal. Each measurement
zy, consists of N, X Ny x N, reflected power measurements
zﬁgm", where N,., N; and N, are the number of range, doppler
and bearing cells. The power measurement per range-doppler-
bearing cell is defined by :

Ilm lmn |2

Z "= |Zp,k 7k‘ eN. (18)
where z!™" is the complex envelope data of the target de-

scribed b}’f the following nonlinear equation, see [4]:

Imn

M
lmn i lmn
2 =) pr €A (s ) + Wi,

Jj=1

vk € (0,27)
(19)

where h!™"(sy, ;) is the reflection form of the j target, that
for every range-doppler-bearing cell is defined by:

(dm—dp ) (bn—by ;)°
2D 2B

(ry =7, ) _
3R

R (%, ) 1= e (20)
I=1,...,N,, m=1,....Ng, n=1,...,N, and k € N

where the relationship between the measurement space and
the target space can be established as:

r=+z2+9y2, d=

w and b = arctan (%) .

(2D

R, D and B are related to the resolutions in range, doppler and
bearing. chm” are independent samples of a complex white
Gaussian noise with variance 202, (i.e. the real and imaginary
components are assumed to be independent, zero-mean white

Gaussian with the same variance o2).

C. TBD Problem Formulation

Consider the system represented by the equations (15), (18)
and (19). Assume that the set of measurements collected up
to the current time is denoted by Zy = {z1,...,2z;}. The
filtering problem can be formulated as finding the a posteriori
distribution of the joint state x; for all possible numbers of
targets conditioned on all past measurements Zy.
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VI. SIMULATION SETUP AND RESULTS

In this section the multitarget TBD filtering problem has
been recursively solved by running the IP-MCMC-PF on the
power measurements. We investigate through simulations the
improvements provided by interacting population-based simu-
lation over standard SMC and MCMC methods. Simulations
are performed with a typical ground radar scenario (one or
several targets move in the x-y plane at unknown constant
velocity). The radar parameters and the targets settings used
in simulation are reported in Table I.

TABLE I
PARAMETERS USED IN SIMULATION

Targets settings

Range area
Radial velocity area
Acceleration in turn

Radar sampling time T =1 [sec]
Beamwidth in bearing B = 155 [rad]
Radar parameters Range-quant size R =10 [m]
Doppler-bin size D=2 [m.s"1
Bearing area bo ~ U [-6,6] [°]

70 ~ U [2700,2900] [m]
lvo| ~ U [0,15] [m.s71]
ap ~U[0,1] [m.s72]

Angle of turn
SNR
Maximum Target Speed

o~ U[=3,3] ]
SNR ~ U9,20] [dB]
VUmaz = 40 [m.s_l]

Throughout the simulation the targets move according to
the initial conditions along a constant velocity trajectory. As
recursive track filter we have used a filter tracking the two-
dimensional position and velocity with a piecewise constant
white acceleration model defined in eq.(15) for the target
dynamics, where we have set the standard deviation of the
random accelerations to 1 m.s~2. All the targets remain within
the surveillance region until the last time step.

We first consider a simplified version of the Track-Before-
Detect (TBD) problem, where a single-target moves within
the surveillance area and never leaves the sensor Field-of-View
(FoV). In particular, we focus on the scenario depicted in fig.1.

Radar Coverage

400 300 200 100 0

x[m]

100 200 300 400 500

Fig. 1. True track in the x-y plane. Target move with near-constant velocity
along the paths shown.

Three algorithms : the conventional (a) SIR PF (alg. see
[4]), the recently developed (b) PMMH (alg. see [7]) and the
proposed (c) IP-MCMC-PF (algo. 1) are considered.



In fig. 2 we report the empirical posterior PDF and the MV

estimate of eq.(6) over a single trial.

(a) SIR PF
2850

2800

2750

(b) PMMH
2850,

2800,
2750,
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E

> 2650
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(c) IP-MCMC-PF

2850
2800
2750
2700

E

> 2650

2600|

2550)

O True targets state

9 Estimated targets state

!

2500

i s

30 20 10 0
x [m]

a0 20

x [m]

~10 [

Fig. 2. Empirical posterior distribution and conditional mean over a single
trial. Each filter uses 500 particles. It is immediate to verify that the proposed
method reduces the intrinsic uncertainty in the posterior PDF when compared
to SIR PF.

In fig. 3 we compare the tracking accuracy, measured in
terms of the Root Mean Square Error (RMSE), over 100
Monte-Carlo simulations.

The tracks (the means of each set of target samples)
produced by the IP-MCMC-PF algorithm over 100 Monte
Carlo runs are shown in fig. 5.
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Fig. 5. Tracking trajectory. Np = 500 particles, Nycme = 50 MCMC
chains and B = 100 burn-in samples.

We then compared the tracking accuracy, the computational
cost and the robustness of the three algorithms over 100
Monte-Carlo simulations. The tracking performance is mea-
sured in terms of the Root Mean Square Error (RMSE). The

results are reported in fig. 6.
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We then consider a typical scenario with 10 random targets
depicted in fig. 4.
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Fig. 4. True tracks in the x-y plane. Targets move with near-constant velocity
along the paths shown.
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The performance of the methods is also compared via the
average RMSE, the tracking loss rate (TLR) and the average
CPU time (avg.CPU), which are listed in Table II.

TABLE II
PERFORMANCE COMPARISON AVERAGED OVER 100 MC RUNS
Algorithm Np RMSE TLR | avg.CPU
(a) SIR PF 500 6.74 [m] | 6% 0.5
5000 | 6.23 [m] | 3% 3.8
(b) PMMH 500 | 542 [m] | 1% 0.6
5000 | 4.65 [m] | 0% 2.7
(c) IP-MCMC-PF | 500 | 4.84 [m] | 0% 0.4
5000 | 4.61 [m] | 0% 0.69




The tracking loss rate (TLR) is defined as the ratio of the
number of simulations, in which the target is lost in track
(Maximum Position error > 20[m]) , to the total number of
simulations carried out. The average CPU time (avg.CPU) is
the CPU time needed to execute one time step in MATLAB
R2011b (win64) on an Intel Core i7 (Nehalem microarchitec-
ture) operating under Windows 7 Ultimate (Version 6.1). All
the important specifications and features are reported in Table
111

TABLE III
SPECIFICATIONS & FEATURES
Type Intel( R) Core(TM) i7
Processor | Model 920
Frequency | 4.2 GHz
Cores 4 (8 threads)
Memory DRAM 6144 MB (3 x 2048 DDR3-SDRAM)
Type PC3-8500 (533 MHz)

VIL

In this work, we propose an Interacting Population based
Monte Carlo Markov Chain based PF (IP-MCMC-PF) that
solves the multitarget tracking problem, which is fully par-
allelizable. In particular, the proposed algorithm matches the
tracking performance of the multitarget SIR PF, while allowing
for a dramatic reduction of the computational time.

Furthermore, we demonstrate through simulations that the
proposed IP-MCMC-PF provides better tracking performance
than the conventional MCMC based particle filter. This holds
in terms of track accuracy and robustness to a low number of
particles. In fact, sampling particles from the target posterior
distribution via interacting population-based simulation avoids
sample impoverishment and accelerates the MCMC conver-
gence rate.

In a forthcoming work, we will therefore focus on more
complex scenarios where targets may enter or leave the
observation area. Furthermore, as future research we will
investigate the applicability of well known MCMC techniques
to additionally reduce the computational burden.

CONCLUSION

ACKNOWLEDGMENT

The research leading to these results has received funding
from the EU’s Seventh Framework Programme under grant
agreement n°238710.

The research has been carried out in the MC IMPULSE
project: https://mcimpulse.isy.liu.se.

81

(1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

(11]

(12]
[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

J. Vermaak, S. Godsill, and P. Perez, “Monte carlo filtering for multi-
target tracking and data association,” IEEE Tr. Aerospace and Electronic
Systems, vol. 41, no. 1, pp. 309-332, January 2005.

D. J. Salmond and H. Birch, “A particle filter for track-before-detect,”
Proc. of the 2001 American Control Conference,, pp. 3755-3760, 2001.
C. Kreucher, K. Kastella, and A. Hero, “Tracking multiple targets using a
particle filter representation of the joint multitarget probability density,”
Proceedings of the SPIE, vol. 5204, pp. 258-269, 2003.

Y. Boers and J. N. Driessen, “Multitarget particle filter track-before-
detect application,” IEE Proc. on Radar, Sonar and Navigation, vol.
151, pp. 351-357, 2004.

A. Doucet and A. M. Johansen, “A tutorial on particle filtering and
smoothing: fifteen years later,” In Handbook of Nonlinear Filtering,
University Press, 2009.

M. Orton and W. Fitzgerald, “Bayesian approach to tracking multiple
targets using sensor arrays and particle filters,” IEEE Transactions on
Signal Processing, vol. 50, no. 2, pp. 216-223, February.

C. Andrieu, A. Doucet, and R. Holenstein, “Particle markov chain monte
carlo for efficient numerical simulation,” Monte Carlo and Quasi-Monte
Carlo Methods, pp. 45-60, Spinger-Verlag Berlin Heidelberg 2008.

, “Particle markov chain monte carlo methods,” Journal of the Royal
Statistical Society: Series B, vol. 72, no. 3, pp. 269-342, 2010.

A. E. Gelfand and A. F. M. Smith, “Sampling-based approaches to
calculaing marginal densities,” Journal of the American Statistical
Association, vol. 85, pp. 398-409, 1990.

G. Casella and E. 1. George, “Explaining the gibbs sampler,” The
American Statistician, vol. 46, no. 3, pp. 167-174, August 1992.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, “Equations of state calculations by fast computing machines,”
J. Chemical Physics, vol. 21, pp. 1087-1091, 1953.

W. K. Hastings, “Monte carlo sampling methods using markov chains
and their applications,” Biometrika, vol. 57, pp. 97-109, 1970.

S. Chib and E. Greenberg, “Understanding the metropolis-hastings
algorithm,” The American Statistician, vol. 49, pp. 327-335, 1995.

S. Park, J. P. Hwang, E. Kim, and H. J. Kang, “A new evolutionary
particle filter for the prevention of sample impoverishment,” [EEE
Transactions on Evolutionary Computation, vol. 13, no. 4, pp. 801-809,
August 2009.

W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Markov Chain Monte
Carlo in Practice. Chapman & Hall, 1996.

C. Andrieu and E. Moulines, “On the ergodicity properties of some
adaptive meme algorithms,” Annals of Applied Probability, vol. 16, no. 3,
pp. 1462-1505, 2006.

N. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to
nonlinear/non-gaussian bayesian state estimation problems,” /IEE Proc.
on Radar and Signal Processing, vol. 140(2), pp. 107-113, 1993.

A. F. M. Smith and A. E. Gelfand, “Bayesian statistics without tears:
A sampling-resampling perspective,” The American Statistician, vol. 46,
pp. 84-88, 1992.

X.-L. Hu, T. Schon, and L. Ljung, “A basic convergence result for
particle filtering,” IEEE Transactions on Signal Processing, vol. 56,
no. 4, pp. 1337-1348, April 2008.

Z. Khan, T. Balch, and F. Dellaert, “Mcmc-based particle filtering
for tracking a variable number of interacting targets,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. 27, no. 11, pp. 1805—
1819, 2005.

C. Andrieu and G. O. Roberts, “The pseudo-marginal approach for
efficient monte carlo computations,” Annals of Statistics, vol. 37, no. 2,
pp. 697-725, 2009.

F. Liang and W. H. Wong, “Real parameter evolutionary monte carlo
with applications to bayesian mixture models,” Journal of the American
Statistical Association, vol. 96, pp. 653-666, 2001.

A. Gelman and D. B. Rubin, “Inference from iterative simulation using
multiple sequences (with discussion),” Statistical Science, vol. 7, pp.
457-511, 1992.




